
An Elastic Net Orthogonal Forward

Regression Algorithm

Xia Hong ∗ Sheng Chen ∗∗

∗ School of Systems Engineering, University of Reading, UK.
∗∗ School of Electronics and Computer Science, University of

Southampton SO17 1BJ, UK. (also with the Faculty of Engineering,
King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract: In this paper we propose an efficient two-level model identification method for
a large class of linear-in-the-parameters models from the observational data. A new elastic
net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry
out simultaneous model selection and elastic net parameter estimation. The two regularization
parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm
at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE).
Illustrative examples are included to demonstrate the effectiveness of the new approaches.
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1. INTRODUCTION

A basic principle in practical nonlinear data modelling is
the parsimonious principle that ensures the smallest pos-
sible model for the explanation of the observational data.
A large class of nonlinear models and neural networks can
be classified as linear models which include statistically
linear or linear-in-the-parameters models. Regularization
methods are developed to carry out parameter estimation
and model structure selection simultaneously (Chen et al.
[2003], Zou and Hastie [2005]). From Bayesian viewpoint,
it has been shown that the parameter regularization us-
ing a penalty function on l2 norms of the parameters is
equivalent to a maximized a posterior probability (MAP)
estimate of parameters by adopting a Gaussian prior
for parameters. An iterative evidence procedure can be
used for solving the optimal l2 regularization parameters
(MacKay [1991], Chen et al. [2003], Chen [2002]).

Alternatively the model sparsity can be achieved by min-
imizing the l1 norm of the parameters. The l1 norm
minimization is fundamental to the basis pursuit or least
absolute shrinkage and selection operator (LASSO) (Chen
et al. [1998], Tibshirani [1996]). The least angle regression
(LAR) procedure is developed for solving the problem effi-
ciently, see Efron et al. [2004]. The Bayesian interpretation
for LASSO is simply by adopting an Laplacian prior for
parameters. The advantage of LASSO is that it can achieve
much sparser models by forcing more parameters to zero,
than models derived from the minimization of the lp norm,
as most lp norms will produces small, but nonzero, values.
Unfortunately introducing nondifferentiable l1 norm in the
cost function brings difficulties of model parameter esti-
mation and finding an appropriate l1 regularizer. Another
disadvantage of using l1 optimization is that a group of
correlated terms cannot be selected together, which is
not desirable for the sake of interpretability of the model
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in some applications. On the other hand, the use of l2

will improve model generalization, but cannot be used for
model selection by itself.

Recently a promising concept of the elastic net (EN) has
been proposed by minimizing the l1 and l2 norms of
the parameters together, see Zou and Hastie [2005]. The
EN keeps the model sparsity of LASSO, while strongly
correlated terms tend to be in or out of the model together.
It is shown that the elastic net problem can be transformed
into an equivalent LASSO problem on an augmented data,
based on which the LAR procedure is applicable, referred
to as LARS-EN, see Zou and Hastie [2005]. Note that
because there are two regularization parameters in the
elastic net, the cross validation has to be performed over a
two-dimensional space. The ten fold cross validation was
used in the choosing two regularization parameters by
searching over a grid of l2 norm regularization parameter
values. Then for each setting of the l2 norm regularization
parameter, the algorithm LARS-EN produces the entire
solution path of the elastic net, which is used to select
l1 norm regularization parameter by tenfold CV. Clearly
this may not yield the optimal parameters if the grid
search is set at a coarse level, but increasing the grid
search at a very fine level would inevitably increase the
computational cost. It would be desirable that the two
regularisation parameters can be optimized simultaneously
based on cross validation as well as in an efficient manner.

In this paper we propose an efficient model identification
method aiming at maximizing a model’s generalisation
capability. A new elastic net cost function is defined and
applied based on orthogonal decomposition, which facil-
itates the automatic model structure selection process
with no need of using a predetermined error tolerance
to terminate the forward selection process. The analytical
evaluation of LOOMSE was presented based on the resul-
tant ENOFR models without actually splitting the data
set. Consequently a fully automated procedure is achieved



without resort to any other validation data set for iterative
model evaluation. The algorithm has a two level structure.
At the upper level, the two regularization parameters in
the elastic net are optimized using PSO by minimizing the
LOOMSE. At the lower level are the simultaneous model
selection and elastic net parameter estimation. Illustrative
examples are included to demonstrate the effectiveness of
the new approaches.

2. PRELIMINARIES

Consider the general nonlinear system represented by the
nonlinear model, see Chen and Billings [1989]:

y(k) = f(x(k)) + e(k), (1)

where x(k) ∈ ℜm denotes the system input vector and
y(k) is the system output variable, respectively. e(k) is
the system white noise and f(•) is the unknown system
mapping. The system model (1) is to be identified from
an observation data set DN = {x(k), y(k)}Nk=1 using
some suitable functional which can approximate f(•) with
arbitrary accuracy. One class of such functionals is the
kernel regression model of the form:

y(k) = ŷ(k) + e(k) =

nM
∑

i=1

θiφi(x(k)) + e(k), (2)

where ŷ(k) denotes the model output, θi are the model
weights, φi(x(k)) are the regressors, and nM is the total
number of candidate regressors or model terms.

By letting φi = [φi(x(1)) · · ·φi(x(N))]T , for 1 ≤ i ≤ nM ,
and defining

y =







y(1)
...

y(N)






, Φ = [φ1 · · ·φnM

],

θ =







θ1
...

θnM






, e =







e(1)
...

e(N)






, (3)

the regression model (2) can be written in the matrix form

y = Φθ + e. (4)

Let an orthogonal decomposition of the matrix Φ be

Φ = WA, (5)

where

A =











1 a1,2 · · · a1,nM

0 1
. . .

...
...

. . .
. . . anM−1,nM

0 · · · 0 1











(6)

and

W = [w1 · · ·wnM
] (7)

with columns satisfyingwT
i wj = 0, if i 6= j. The regression

model (4) can alternatively be expressed as

y = Wg+ e, (8)

where the orthogonal weight vector g = [g1 · · · gnM
]T

satisfy the triangular system Aθ = g, which can be used
to determine model parameters θ, given A and g.

3. AUTOMATIC KERNEL REGRESSION MODEL
CONSTRUCTION ALGORITHM USING ENOFR

ASSISTED BY PSO

3.1 Elastic net orthogonal forward regression

For any fixed positive λ1 and λ2, the naive elastic net
(NEN) criterion is defined as Zou and Hastie [2005]

L(λ1, λ2, θ) = ‖y−Φθ‖2 + λ2‖θ‖
2 + λ1‖θ‖1 (9)

where ‖•‖ denotes Euclidean norm, and ‖θ‖1 =
∑nM

i=1 |θi|.
The naive elastic net estimator is the minimizer of

θ̂NEN = argmin
θ

{L(λ1, λ2, θ)} (10)

This can be transformed into an equivalent LASSO prob-
lem on an augmented data, based on which the LAR
procedure is applicable, referred to as LARS-EN in Zou
and Hastie [2005]. The EN has some desirable properties,
as it maintains the model sparsity of LASSO, but not
as aggressive as LASSO in excluding correlated terms in
the model. This is because these terms tend to be in
or out of the model together as a result of the l2 norm
regularization, see Zou and Hastie [2005]. Note that there
is no analytical solution to (10) unless the model terms are
orthogonal.

The key to the proposed concept of ENOFR is to consider
the following orthogonal elastic net (NEN) criterion based
on (8)

Le(λ1, λ2,g) = ‖y −Wg‖2 + λ2‖g‖
2 + λ1‖g‖1 (11)

The naive elastic net solution for g is obtained by setting
the subderivatives ∂Le

∂g
= 0, that is,

WTy −
λ1

2
sign(g) =

(

WTW + λ2I
)

g . (12)

where I is an identity matrix of appropriate dimension and
sign(g) = [sign(g1), ..., sign(gnM

)]T , where

sign(s)

{

= 1 if s > 0
= −1 if s < 0
∈ [−1, 1] if s = 0

(13)

Multiplying 2gT to both sides of (12) yields

2gTWTy − λ1‖g‖1 = 2gT
(

WTW + λ2I
)

g . (14)

Substitute (14) into (11) to yield

Le(λ1, λ2,g) = yTy − 2gTWTy + gTWTWg

+λ2‖g‖
2 + λ1‖g‖1

= yTy − gTWTWg− λ2‖g‖
2 (15)

Normalizing by yTy,

Le(λ1, λ2,g)/(y
Ty)

= 1−

nM
∑

i=1

(

wT
i wi + λ2

)

(g
(NEN)
i )2/(yTy). (16)

where the superscript (NEN) denotes the naive elastic net
solution. The elastic net error reduction ratio is defined by

[eNerr]i =

(

wT
i wi + λ2

)

(g
(NEN)
i )2

(yTy)
, i = 1, · · · , nM (17)



where g
(NEN)
i , i = 1, ...nM are the solution of (12), given

by

g
(NEN)
i

=

(

wT
i
wi

wT
i
wi + λ2

|g
(LS)
i

| −
λ1/2

wT
i
wi + λ2

)

+

sign(g
(LS)
i

) (18)

with g
(LS)
i =

w
T

i
y

w
T

i
wi

and

z+ =

{

z if z > 0
0 if z ≤ 0

(19)

Based on this ratio, significant regressors can be selected
in a forward regression procedure. The automatic model
term selection property of naive elastic net is explained as
follows. Note that for λ1 = 0, [eNerr]i becomes the model
term selective criterion, the regularized error reduction
ratio [rerr]i, as defined in Chen et al. [1996]. In order to
produce a sparse model containing ns (≪ nM ) significant
regressors, a chosen tolerance ξ (0 < ξ < 1) needs to be
preset, and the selection process is terminated at the ns-th
stage when

1−

ns
∑

l=1

[rerr]l < ξ (20)

is satisfied Chen et al. [1996]. However using elastic net
orthogonal forward regression (λ1 > 0), there is no need
of setting ξ. This is because the cost function contains
sparsity inducing l1 norm so that some parameters will
be zeros and [eNerr]i can return exact zero values during
the selection process. The model selection is terminated at
the (ns + 1)-th stage when [eNerr]ns+1 = 0, producing a
sparse model containing ns (≪ nM ) significant regressors
automatically. The naive elastic net orthogonal forward
regression (ENOFR) algorithm based on the modified
Gram-Schmidt (MGS) scheme for a given λ = [λ1, λ2]

T

can be implemented by modifying the algorithm of Chen
et al. [1996], Chen and Wigger [1995].

Finally the elastic net (EN) parameter estimate is defined
by

g
(EN)
i =

(

|g
(LS)
i | −

λ1/2

wT
i wi

)

+

sign(g
(LS)
i ) (21)

which produces the elastic net parameter estimates for the
ns term model selected using the algorithm of Appendix A.

This step inflates g
(NEN)
i by the original shrinkage amount

w
T

i
wi+λ2

w
T

i
wi

and aims to overcome the double shrinkage

problem of naive elastic net estimator, see Zou and Hastie
[2005]. This means that the effect of l2 norm regularization
to parameter estimation is undone by this step, which is
helpful to reduce bias in the naive elastic net estimator
which could be too large.

We point out that as this rescaling step happens after
the model terms selection so the existence of λ2 has an
impact on model structure compared with the case of
λ2 = 0. For example, because the model term selective
criterion (17) is dependent on λ2, so for a three term
candidate set of {φ1, φ3, φ3}, a two term model could be
composed by φ1 and φ2 for λ2 = 0, but by φ1 and φ3 for
λ2 6= 0. The effect of l2 norm regularization in selecting
groups (correlated terms) was analyzed Zou and Hastie

[2005]. For our proposed algorithm, the analysis to the
first two regression steps can be extended to any regression
steps. As a result of combined effect of λ1 and λ2, the
explained output variance by selected regressors at earlier
regression steps are reduced in comparison with a model

using the least square parameter g
(LS)
i . Effectively this

would allow the model output to be further explained by
other regressors, that are correlated to previously selected
regressors, to enter the model at later stages. Therefore
the proposed algorithm has a similar effect to the original
elastic net, of keeping correlated terms in the model,
which is advantageous in that less variable models could
be produced to provide physical insights on the causal
relationships of the systems from large data sets, see Zou
and Hastie [2005].

3.2 Choosing regularization parameters by optimizing the
LOOMSE using PSO

Cross validation criteria are metrics that measure a
model’s generalisation capability. To optimize the model
generalization capability, the model selection criteria are
often based on cross-validation, see Stone [1974], Ljung
[1987]. Due to its simplicity, a popular version of cross-
validation is the so called leave one out (LOO) cross
validation. If f(•) is modelled using linear models via
least square method, there is an elegant way to gen-
erate LOOMSE , without actually sequentially splitting
the estimation data set by using the Sherman-Morrison-
Woodbury theorem, see Myers [1990]. In the following
we show that LOOMSE based on the proposed ENOFR
estimator can also be evaluated efficiently without actually
sequentially splitting the estimation data set.

From (12) and (21), the elastic net parameter estimator
based on a specified λ using N data points can be
represented by

g(EN) = H−1

(

WTy −
λ1

2
sign(g(EN))

)

(22)

where H = WTW. The model residual is

e(k) = y(k)− (g(EN))Tw(k)

= y(k)−

(

yTW −
λ1

2
[sign(g(EN))]T

)

H−1w(k)

(23)

If the data sample indexed at k is removed from estimation
data set, the leave one out elastic net parameter estimator
obtained by using only (N − 1) data points is given by

g(EN,−k) = [H(−k)]−1

×

(

[W(−k)]Ty(−k) −
λ1

2
sign(g(EN,−k))

)

(24)

in which H(−k) = [W(−k)]TW(−k), W(−k) and y(−k)

denote the resultant regression matrix and output vector
respectively. The leave one out error evaluated at k is given
by

e(−k)(k)

= y(k)− [g(EN,−k)]Tw(k)



= y(k)−

(

[y(−k)]TW(−k) −
λ1

2
[sign(g(EN,−k))]T

)

×[H(−k)]−1w(k) (25)

It can be shown that

H(−k) = H−w(k)wT (k) (26)

[y(−k)]TW(−k) = yTW − y(k)wT (k) (27)

Applying the matrix inversion lemma to (26), yields

[H(−k)]−1 = [H−w(k)wT (k)]−1

=H−1 +
H−1w(k)wT (k)H−1

1−wT (k)H−1w(k)
(28)

and

[H(−k)]−1w(k) =
H−1w(k)

1−wT (k)H−1w(k)
(29)

Substituting (27) and (29) into (25), yields

e(−k)(k)

= y(k)−

(

yTW − y(k)wT (k)−
λ1

2
[sign(g(EN,−k))]T

)

×
H−1w(k)

1−wT (k)H−1w(k)

=
y(k)− (yTW − λ1

2 [sign(g(EN,−k))]T )H−1w(k)

1−wT (k)H−1w(k)
(30)

The leave one out mean square error (LOOMSE) can be
calculated as

J(λ) =
1

N

N
∑

k=1

[e(−k)(k)]2 (31)

≈
1

N

N
∑

k=1

[
e(k)

1−wT (k)H−1w(k)
]2

=
1

N

N
∑

k=1

[
e(k)

1−
∑ns

i=1[wi(k)]2/(wT
i wi)

]2 (32)

by making use of (23) and assuming that sign(g(EN,−k)) =
sign(g(EN)) holds for most k. This assumption is mild
because only one data sample is removed at a time, based
on significant regressors selected in a forward regression
manner.

It is simple to evaluate J(λ) as a result of the following
reasons.

• Firstly the proposed elastic net cost function is based
on parameter regularization within an orthogonal
space, making it possible to derive an closed form
expression for the parameters of the elastic net.

• Secondly we provide the above original derivation to
show that the LOOMSE based on models using elastic
net estimator can be analytically approximately eval-
uated without actually splitting the data by making
use of the matrix inversion lemma and a mild assump-
tion.

• Thirdly as the byproduct of the orthogonalization
procedure H is diagonal, so that the evaluation of

e(−k)(k) does not involve any matrix inversion and
has a very small computational cost (see (30)).

The PSO constitutes a population based stochastic op-
timisation technique, which was inspired by the social
behaviour of bird flocks or fish schools, see Kennedy and
Eberhart [1995, 2001]. The algorithm commences with
random initialisation of a swarm of individuals, referred
to as particles, within the specific problem’s search space.
It then endeavours to find a globally optimum solution by
gradually adjusting the trajectory of each particle towards
its own best location and towards the best position of the
entire swarm at each optimisation step. The PSO method
is popular owing to its simplicity in implementation, abil-
ity to rapidly converge to a “reasonably good” solution and
to “steer clear” of local minima. It has been successfully
applied to wide-ranging optimisation problems, see van der
Merwe and Engelbrecht [2003], Ratnaweera et al. [2004],
Omran [2005], Guru et al. [2005], Soo et al. [2007]. We
apply the PSO algorithm to find the minimum of (31).
The complete algorithm can be illustrated with reference
to the schematic diagram of Figure 1. The algorithm has
a two layer structure. The upper level is the PSO with
population size of S. It learns the two optimal regulariza-
tion parameters based on the LOOMSE values provided
by the lower level of S particles. At the lower level, each
particle performs the ENOFN algorithm over the itera-
tions, with each iteration consisting of two stages; (i) select
a subset model based on the naive elastic net parameter
estimator using the MGS algorithm in Appendix A; and
(ii) determine the elastic net model parameters for the
selected model terms using (21) and then calculate the
associated LOOMSE using (30) & (31).

The computation cost of the PSO is dominated by that of
the cost function evaluation. Let Imax denote the total
number of iterations in PSO. The total computational
complexity of the proposed two-level learning scheme is
determined by the total number of function evaluations of
PSO (S×Imax), multiplying the average computation cost
of each particle, i.e, that of the elastic forward regression.
The latter is in the order of O(N), which is further scaled
by the product of candidate and final model size ns ×
nM . Note that nM can be set much lower than N if the
latter is too large in order to save computation cost. The
computational cost of the proposed algorithm is much
smaller than conventional cross validation approaches of
grid search over a two-dimensional space. For example if
the ten-fold cross validation is used for a very coarse grid
search of 3 by 3 on λ, its computation cost is roughly the
same as the proposed algorithm with S = 9 and Imax = 9
which is found to be appropriate from our experience.
However the grid search of 3 by 3 on λ is likely to be
too coarse to produce reasonably solutions.

4. AN ILLUSTRATIVE EXAMPLE

Consider using a RBF network to approximate an un-
known scalar function

f(x) =
sin(x)

x
(33)

A data set of two hundred points was generated from
y = f(x)+ ξ, where the input x was uniformly distributed
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Fig. 1. A schematic diagram of the proposed ENOFR using PSO.

in [-10,10] and the noise ξ was Gaussian with zero mean
and standard deviation 0.2. The data were very noisy. The
Gaussian function

φi(x) = exp(−
(x− ci)

2

2τ2
) (34)

was used as the basis function to construct a RBF model,
with a kernel width τ2 = 10. All the two hundred data
points were used as the candidate RBF centre set for ci.
The search space of PSO were set [10−7, 0.1] for λ1, and
[10−7, 1] for λ2. S = 5, Imax = 5 were predetermined. The
proposed algorithm automatically selects a final model
with only 7 terms, produced by regularization parameters
λ1 = 0.0465, λ2 = 0.145. These were automatically
determined by the PSO based on the LOOMSE criterion
without using another validation data set. Figure 2(a)
depicts [eNerr]j values against the forward regression
process, which automatically terminated at the 8th step
when [eNerr]8 = 0. Figure 2 (b) depicts the model
prediction of the resultant 7-term model in comparison
to the noisy data used for training and the unknown true
function. The resultant 7-term model produces a mean
square error of 0.0015 with respect to the true function,
illustrating the excellent model generalization capability
of the model in this particular problem.

For comparison we construct models using ENOFR al-
gorithm introduced in the paper, except that for se-
lecting λ ten fold cross validation was used, rather
than LOOMSE with PSO. By setting a grid of λ1 =
[10−7, 10−5, 10−4, 10−3, 0.1] and λ2=[10−7, 10−5, 10−3, 0.1, 1],
25 settings of λ are evaluated using ten fold cross valida-
tion. We used the same kernel width τ2 = 10, and for each
fold all resultant 180 training data points were used as the
candidate RBF centre set. The estimated computational
cost is roughly nine times of using LOOMSE with PSO in
terms of how many times the MGS algorithm is applied.
We also assume that, due to the reduction of 10% in train-
ing data set size for ten fold cross validation, there is also
10% computational cost reduction. The best λ is found to
be λ1 = 0.1, λ2 = 0.001. For each fold, a 7-term model was
produced. With respect to the true function, the resultant
mean square error for all data points over ten models is

0.0023± 0.0003 (mean ± standard deviation), illustrating
that selecting λ using ten fold cross validation does not
offer superior performance to the proposed algorithm for
this particular problem.

5. CONCLUSIONS

Aiming at maximizing a model’s generalisation capability,
this paper has proposed an efficient two-level model iden-
tification method for the linear-in-the-parameters models.
At the lower level is the proposed ENOFR algorithm that
is able to perform simultaneous model selection and elastic
net parameter estimation for a given pair of regularization
parameters. At the upper level these regularization pa-
rameters are optimized using a particle swarm optimiza-
tion (PSO) algorithm by minimizing the leave one out
(LOO) mean square error (LOOMSE). As a result a fully
automated procedure is achieved without resort to any
other validation data set for iterative model evaluation.
An illustrative example is included to demonstrate the
effectiveness of the proposed algorithm.
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