
AI Empowered Wireless S Chen

Lifelong Learning Meets Industrial
Processes: An Enabling Adaptive Process
Modeling Framework with Delayed Process

Output Measurement

Professor Sheng Chen

School of Electronics and Computer Science

University of Southampton

Southampton SO17 1BJ, United Kingdom

Joint work with Dr Tong Liu and Dr Po Yang, University of Sheffield, U.K.

1



AI Empowered Wireless S Chen

Motivation

• Many industrial processes operate continuously batch by batch

– Predicting plant output is needed for monitoring, decision making and control
– Predictor model is constructed from historical plant operational data

• During plant operation, underlying process characteristics change

– Predictor model must adapt, which requires actual process output as desired
target

• Process output measurement for these batch-by-batch streaming processes is
typically seriously delayed

– Without timely process output measurement, adapting predictor model is
impossible

• ‘Old’ predictor is used without adaptation ⇒ degrade prediction accuracy

– How to tackle this problem?
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Classic Machine Learning

• Isolated learning: Do not retain knowledge learned in the past and use it in future,
requring large number of training data to learn effectively
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How Human Learns

• Human learning: Learn continually with experience

– Maintain knowledge base (brain), use past knowledge (knowledge transfer)
to aid new task, and store new knowledge learned for future

– Quickly learn new tasks with small dataset
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Lifelong Maching Learning

• Lifelong maching learning imitates human learning

• Efficient lifelong learning algorithm

ELLA:

• Learning tasks consecutively

– Maintain knowledge base

for past learned tasks

– Transfer knowledge from

previous tasks to learn new

task

– Store new knowledge

learned in new task to

knowledge base

• To build a task model required

labeled training data (both

inputs and desired outputs)
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Efficient Lifelong Learning Algorithm

• ELLA fits a parametric model for each task
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Base model: linear, ELLA: actually nonlinear
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, T: tasks seen so far

• Online optimization: tasks arrive consecutively, update ‘recursively’ task by task
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ELLA (continue)

ELLA: given new task (batch) t

1. Train single-task model θ̂(t) for task t

• Estimate θ̂
(t) requires labeled training data (both input and desired output)

2. With θ̂
(t), solve sparse coding coefficient s

(t) in current knowledge base or
dictionary L via LASSO

• Knowledge transfer from past tasks

3. Update dictionary L with θ̂
(t), s(t) and old L via efficient ELLA unpdate rules

• Store knowledge learned for task t

4. Current task model is given by θ
(t) = Ls

(t)

• Build task model θ(t) requires labeled training data

• Not for streaming batch-by-batch industrial processes with delayed output measurement
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Unsupervised Transfer Aided Lifelong Learning

• We develop UTaLL: unsupervised

transfer aided lifelong learning

• Improve performance by knowledge

sharing in two spaces:

– Task model space (as in ELLA)

– New input feature space

• Learn new tasks without labeled

data by unsupervised transfer

Liu, Wang, Yang, Chen, Harris, “Unsupervised transfer aided lifelong regression for learning without target output,” IEEE Trans.

Knowledge and Data Engineering (under second review)
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UTaLL Idea

• Coupled dictionaries relate task model parameters

and input features

task model θ
(t)

= Ls
(t)

input feature x
(t)

= Ks
(t)

– x
(t): averaging inputs of batch t

– Input feature also reflects underlying plant

characteristics

– K: knowledge base for input feature space

• ELLA objective function

min
L,S
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T

T∑
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(

J
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θ
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‖1
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• UTaLL objective function

min
L,K,S
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input feature fit
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• For labeled task, learning steps are same as ELLA
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Unsupervised Knowledge Transfer

Given new task t with input data only

1. Use input feature x and dictionary K

to recover sparse code s

s
(t) = argmin

s

∥∥x(t) −Ks
∥∥2
2
+ µ‖s‖1

2. Use recovered s
(t) and dictionary L to

recover model parameters θ

θ̃
(t) = Ls

(t)

yielding task model for new task t

This UTaLL can be apply to online prediction and adaptation of streaming batch-by-batch

industrial processes with delayed output measurement
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UTaLL Meets Industrial Processes

• Use historical labeled data to build task model dictionary L and input feature dictionary K

• During online operation of plant, when a new batch of input data only arrives

– Use unsupervised knowledge transfer to recover predictor for predicting process output

– Later if process output measurements arrive, update L and K

Liu, Chen, Yang, Zhu, Mercangoz, Harris, “Lifelong learning meets dynamic processes: An emerging streaming process prediction

framework with delayed quality measurement,” IEEE Trans. Control Systems Technology (early access)
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Comparison Schemes

• LS, BAL (Bayesian augmented Lagrangian), PLS: Nonadaptive

– Trained models are fixed during online operation

• CLR (clustering-based locally linear regression), CLR-ensemble: Nonadaptive

– Trained local model set fixed during online operation

• RLS-batch: Model from previous batch is used to predict new batch. After true process output

data for this new batch are acquired, it updates model over the batch

• Proposed UTaLL

– Pro-nonadaptive: During online operation, trained KB is fixed, and model is recovered by

unsupervised transfer to predict new batch data

– Pro-adaptive: after unsupervised transfer based prediction of new batch data, KB is adapted

• RLS-idealized: after predicting output for a given input sample, output measurement is available

to adapt model with input-output sample pair

– Cannot be used in online modeling and prediction for streaming processes with delayed

output measurement

• Pro-idealized: UTaLL continuously operates in training mode

– Cannot be used in online modeling and prediction for streaming processes with delayed

output measurement
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Wastewater Treatment Plant

Input/output Description

x1 Readily biodegradable substrate

x2 Particulate inert organic matter

x3 Slowly biodegradable substrate

x4 Active heterotrophic biomass

x5 NH+
4 + NH3 nitrogen

y Flow rate

• 1300 samples are collected

• 40% training, 60% online testing

• Delayed output measurement time: 50

• Highly time-varying data: combination

of dry weather and long rainy period
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Penicillin Fermentation Process

Input/Output Description

x1 Aeration rate

x2 Agitator power

x3 Substrate feed rate

x4 Substrate feed temperature

x5 Dissolved oxygen concentration

x6 Culture volume

x7 Carbon dioxide concentration

x8 pH

x9 Fermentor temperature

x10 Generated heat

y1 Penicillin concentration

y2 Substrate concentration

• 1600 samples are collected

• 50% training, 50% online testing

• Delayed output measurement time: 100

• Multi-mode time-varying nonlinear characteristics
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Predicting Penicillin Concentration
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Prediction performance of RLS-batch is extremely poor, off the scale
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Predicting Substrate Concentration
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Why RLS-batch So Poor
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• RLS has short memory, allowing it to forget past data and concentrate on current data

• After batch adaptation, model forgets most of past knowledge and captures characteristics of

current batch

• This model is then used to predict next batch

• For highly time-varying nonlinear process, characteristics of next new batch can be very different

from those captured in model
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Conclusions

• Many industrial processes operate continuously batch by batch

– Predicting plant output from plant input is essential during online operation
– Online adapting model is vital to track plant time-varying characteristics
– Process output measurements of these streaming batch-by-batch processes are

seriously delayed, making it challenging for online adapting model

• Lifelong machine learning imitates human learning and has many advantages

– Require input-output data to construct predictor, and cannot be applied to
streaming batch-by-batch processes with delayed output measurement

• We have developed novel unsupervised transfer aided lifelong learning, capable
of construct predictor from input data only

– Ideal for online prediction and model adaptation of streaming batch-by-
batch processes with delayed output measurement

19


