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Abstract—A joint channel estimation and multiuser detec-
tion (JCEMUD) scheme is proposed for multiuser multiple-
input–multiple-output (MIMO) space-division multiple-access/
orthogonal frequency-division-multiplexing (SDMA/OFDM) sys-
tems. We design a dual repeated weighted boosting search
(DRWBS) scheme for JCEMUD, which is capable of providing
“soft” outputs, which are directly fed to the forward error cor-
rection (FEC) decoder. The proposed DRWBS-JCEMUD scheme
iteratively estimates the channel impulse responses and detects
the users’ transmitted signals while exploiting the error correction
capability of an FEC decoder to iteratively exchange information
between the detector and the estimator. Furthermore, the pro-
posed DRWBS-JCEMUD scheme is capable of providing the log-
likelihood ratios of the coded bits at low computational complexity
(comparable with the single-user scenario), which can directly be
fed to the FEC decoder. The simulation results demonstrate that
the proposed DRWBS-JCEMUD scheme is capable of attaining a
mean square error performance close to that of the ideal scenario
of the least-square channel estimator associated with 100% pilot
overhead and narrows the discrepancy with respect to the optimal
maximum-likelihood (ML) MUD associated with perfect channel
knowledge. As an example, at Eb/N0 = 10 dB, a factor-of-0.756
complexity reduction was achieved at the cost of a 1-dB perfor-
mance penalty, in comparison with the ML-MUD.

Index Terms—Joint channel estimation and multiuser detection
(JCEMUD), orthogonal frequency-division multiplexing (OFDM),
repeated weighted boosting search (RWBS), space-division multi-
ple access (SDMA).

I. INTRODUCTION

COMMUNICATION systems using multiple antennas at
the transmitter and/or the receiver have recently received

increased attention due to their ability to provide substantial
capacity improvements while achieving low error rate and/or
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high data rate by flexibly exploiting the attainable diversity gain
and/or the spatial multiplexing gain [1].

Space-division multiple-access/orthogonal frequency-
division-multiplexing (SDMA/OFDM) systems [2], [3] com-
bine the advantages of OFDM and SDMA, where we employ
an array of antennas at the base station (BS) for detecting
the received signal of multiple single-antenna aided mobile
stations (MSs). As a result, a substantially improved uplink
(UL) capacity is achieved, despite employing single-antenna-
based low-complexity MS transmitters [3]. However, the
performance of these systems is critically dependent on the
precision of the channel knowledge, which may be represented
by either the channel impulse response (CIR) or the Frequency-
Domain CHannel Transfer Function (FD-CHTF).

Over the past decade, intensive research efforts have been
devoted to developing effective approaches for both channel
estimation and multiuser symbol detection for transmitter-
and/or receiver-diversity-aided systems [3], [4]. Conventional
methods usually carry out the channel estimation and signal
detection separately, which may only attain suboptimal results.
To achieve near-optimal performance, joint channel estimation
and data detection algorithms have recently received significant
research attention [4]–[7]. These joint channel estimation and
data detection methods have indeed shown an enhanced per-
formance associated with reasonable convergence rates despite
using relatively short pilot symbol sequences. Among them, the
iterative expectation-maximization (EM) algorithm [8] and the
diverse derivatives of this algorithm have been shown to strike
an attractive tradeoff between the performance attained and the
complexity imposed. The classic EM algorithm was employed
for joint channel estimation and data detection in [7] and [9].
The authors of [10] proposed a joint symbol detection and chan-
nel estimation algorithm based on the variational Bayesian EM
algorithm. A space-alternating generalized EM-based iterative
receiver was designed for joint detection, decoding, and channel
estimation in [11]. However, the EM algorithm is unable to
guarantee convergence to the globally optimal solution. Fur-
thermore, genetic algorithm (GA)-based near-optimal search
schemes were also developed for channel estimation and data
symbol detection at the receiver [5], [12], [13]. Finally, in [14],
repeated weighted boosting search (RWBS) was employed to
identify the unknown multiple-input–multiple-output (MIMO)
channel, while an enhanced maximum-likelihood (ML) sphere
detector was used to perform ML detection of the transmitted
data.
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Fig. 1. Uplink system model for multiuser MIMO SDMA/OFDM.

Against this background, in this paper, we proposed a novel
guided random search algorithm, which we refer to as the
dual RWBS (DRWBS) assisted joint channel estimation and
multiuser detection (DRWBS-JCEMUD) scheme designed
for multiuser MIMO SDMA/OFDM systems. The proposed
DRWBS-JCEMUD scheme consists of two components,
namely, the RWBS-based channel estimator and the RWBS-
based multiuser detector (MUD). The channel estimator carries
out channel estimation using the available detected symbols,
whereas the symbol detector carries out symbol detection using
the available channel estimate. The process is carried out by
iteratively exchanging information between the channel es-
timator and the symbol detector. Furthermore, the proposed
DRWBS-JCEMUD scheme is capable of providing the log-
likelihood ratios (LLRs) of the coded bits, which can directly
be fed to the forward error correction (FEC) decoder.

The rest of this paper is organized as follows: The system
model of the multiuser MIMO SDMA/OFDM UL is described
in Section II. The proposed DRWBS-JCEMUD scheme is
elaborated upon in Section III. In Section IV, we analyze the
computational complexity of the proposed DRWBS-JCEMUD
scheme, followed by its convergence characterization. Our
simulation results and discussions are presented in Section V,
whereas our conclusions are offered in Section VI.

II. SYSTEM MODEL

The multiuser MIMO SDMA/OFDM system considered sup-
ports U MSs simultaneously transmitting in the UL to the
BS, as shown in Fig. 1. Each of the users is equipped with a
single transmit antenna, whereas the BS employs an array of
P antennas. It is assumed that a time-division multiple-access
protocol organizes the division of the available time-domain
(TD) resources into SDMA/OFDM time slots. Instead of one, U
MSs are assigned to each slot that is allowed to simultaneously
transmit their streams of OFDM-modulated symbols to the
SDMA BS [2], [3].

More specially, all of the U MSs transmit independent data
streams, which are encoded by a user-specific FEC encoder, as
illustrated in Fig. 1. The information bits output by the FEC
encoder are grouped and mapped to a stream of modulated

data symbols. The modulated data X(u)[k], k = 1, 2, . . . ,K in
Fig. 1 are then serial to parallel converted, and the frequency-
domain training symbols are concatenated at the beginning of
each frame. The parallel modulated data are further processed
by the inverse fast Fourier transform (FFT) to form a set of
OFDM symbols. After concatenating the cyclic prefix (CP) of
Kcp samples, the TD signal is transmitted through a multipath
fading channel and contaminated by the receiver’s additive
white Gaussian noise (AWGN).

At the BS, the CP is discarded from every OFDM symbol,
and the resultant signal is fed into the corresponding FFT-based
receiver in Fig. 1. Let Yp[s, k] denote the signal received by
the pth receiver antenna element in the kth subcarrier of the
sth OFDM symbol, which is given as the superposition of the
different users’ channel-impaired received signal contributions
plus the AWGN, which is expressed as [3]

Yp[s, k] =
U∑

u=1

Hu
p [s, k]Xu[s, k] + Wp[s, k] (1)

where Hu
p [s, k] denotes the FD-CHTF of the link between the

uth user and the p th receiver antenna in the kth subcarrier of
the sth OFDM symbol.

As a benefit of the CP, the SDMA/OFDM symbols do not
overlap, and hence, SDMA processing can be applied on a per-
carrier basis, as depicted in Fig. 1. Each SDMA subcarrier’s
signal may be described as [2]⎡
⎢⎣

X̃1[s, k]
...

X̃U [s, k]

⎤
⎥⎦ = FSDMA

⎛
⎜⎝
⎡
⎢⎣

Y1[s, k]
...

YP [s, k]

⎤
⎥⎦ ,

⎡
⎢⎣

Ĥ1
1 [s, k] . . . ĤU

1 [s, k]
... . . .

...
Ĥ1

P [s, k] . . . ĤU
P [s, k]

⎤
⎥⎦
⎞
⎟⎠ (2)

where FSDMA(·) represents a SDMA subprocessor, which is
constituted by the MUD. In addition, Ĥu

p [s, k], u = 1, . . . , U ,
p = 1, . . . , P , is the estimated value of the FD-CHTF. Var-
ious algorithmic alternatives for this generic SDMA detec-
tor are available, which cover a wide range of performance
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versus complexity tradeoffs, such as those represented by
the minimum mean square error (MMSE) SDMA/OFDM,
per-carrier successive interference cancellation SDMA/OFDM,
and ML SDMA/OFDM [2]. In the following section, we outline
our DRWBS-JCEMUD scheme designed for multiuser MIMO
SDMA/OFDM systems.

III. DRWBS-JCEMUD SCHEME PROPOSED FOR

MULTIUSER MIMO SDMA/OFDM SYSTEMS

A. JCEMUD

In the context of the JCEMUD problem of the SDMA/OFDM
systems, the cost function (CF) can be based on the log-
likelihood function conditioned both on the matrix h[s] contain-
ing the CIR coefficients and on the users’ transmitted data X[s]
incorporating the M -quadrature amplitude modulated (QAM)
signals, which is given by

J (h[s],X[s]) =
P∑

p=1

∥∥Yp[s] − XT [s]Fhp[s]
∥∥2

(3)

where the received data Yp[s] ∈ C
K×1, the transmitted data

X[s] ∈ C
UK×K , the block diagonal matrix F ∈ C

UK×UL, and
the CIRs hp[s] ∈ C

UL×1 in (3) are defined as

Yp[s] = [Yp[s, 1], Yp[s, 2], . . . , Yp[s,K]]T (4)

X[s] =
[
X1[s],X2[s], . . . ,XU [s]

]T
(5)

Xu[s] = diag {Xu[s, 1],Xu[s, 2], . . . ,Xu[s,K]} (6)

F = diag{F1,F2, . . . ,FU} (7)

hp[s] =
[
h1

p[s],h
2
p[s], . . . ,h

U
p [s]

]T
. (8)

Furthermore, Fu, u = 1, 2, . . . , U , in (7) is a (K × L)-
element FFT matrix with Fu[k, l] = e−j2π(k−1)(l−1)/K , 1 ≤
k ≤ K, 1 ≤ l ≤ L.

The ML problem is equivalent to a least-square problem
since the received data are corrupted by the Gaussian noise,
which can then be viewed as a special case of a convex
optimization problem [15] (see [15] and references therein for
more detailed discussions on convex optimization). In [16], a
Viterbi-algorithm-aided RWBS (VA-RWBS) technique is de-
veloped to solve a similar ML problem in a single-user com-
munication system, where they iteratively detected the data
sequences and estimated the channel coefficients. The scheme
was referred to as joint channel estimation and data detection
in [16]. More specifically, the signal detection—namely, the
inner optimization—was carried out by using the standard VA,
whereas the channel estimation—the outer optimization—was
performed by the RWBS algorithm. However, the VA-RWBS
scheme cannot directly be transplanted into the multiuser
SDMA/OFDM systems considered in this paper because we
should first separate the multiple users’ data at the BS. Hence,
the VA-RWBS algorithm cannot directly detect the users’ sig-
nals in multiuser communication systems. To circumvent this
problem, we propose the DRWBS-JCEMUD scheme, which
is illustrated within the box surrounded by the dotted line in
the right-hand side of Fig. 1. The proposed DRWBS-JCEMUD

scheme alternately estimates the channel as well as the users’
data and mutually exchanges these estimates between both pop-
ulations to find the joint optimum. Furthermore, the DRWBS-
JCEMUD is capable of exploiting the beneficial convergence
acceleration capability of an arbitrary FEC decoder, as seen in
Fig. 1. More explicitly, the FEC decoder mitigates the effects
of estimation errors, regardless of their source, and, hence, ac-
celerates convergence and reduces the complexity by requiring
fewer iterations.

In the following, we will use the respective CFs for es-
timating both the CIRs and the users’ transmitted data. The
reason for using two separate CFs—rather than one—is simply
to reduce the complexity by decomposing the JCEMUD tasks
into two simpler subtasks. The computational complexity will
further be reduced when we carry out the MUD on a per-
carrier basis, whereas the accuracy of the channel estimator
will be enhanced when we rely on all the data relevant for
the estimated link. The pairs of CFs used in the RWBS-based
channel estimator and MUD are formulated as

Jh

(
hp[s]|X̂[s]

)
=

∥∥∥Yp[s] − X̂T [s]Fhp[s]
∥∥∥2

(9)

JX

(
X[s, k]|Ĥ[s, k]

)
=

∥∥∥Y[s, k] − Ĥ[s, k]X[s, k]
∥∥∥2

(10)

where the estimated signals of the block diagonal matrix
X̂[s] ∈ C

UK×K have a similar structure as X[s] ∈ C
UK×K in

(5). Furthermore, the received data Y[s, k] ∈ C
P×1, the FD-

CHTFs Ĥ[s, k] ∈ C
P×U , and the users’ transmitted data to be

estimated, namely, X[s, k] ∈ C
U×1, are defined as

Y[s, k] = [Y1[s, k], Y2[s, k], . . . , YP [s, k]]T (11)

Ĥ[s, k] =

⎡
⎢⎣

Ĥ1
1 [s, k] . . . ĤU

1 [s, k]
... . . .

...
Ĥ1

P [s, k] . . . ĤU
P [s, k]

⎤
⎥⎦ (12)

X[s, k] =
[
X1[s, k], . . . ,XU [s, k]

]T
. (13)

The decision rule for the optimal JCEMUD is to find the
specific channel coefficient matrix ĥp[s] and/or signal vector
X̂[s, k] that has the lowest cost (or highest fitness value). This
is achieved with the aid of the RWBS-based global optimization
technique.

B. RWBS-Algorithm-Assisted Channel Estimation

The RWBS [16] constitutes a guided random search-based
global optimization algorithm. The basic philosophy of the
RWBS algorithm is that by commencing from a search pool
of the potential solutions, which is initially randomly popu-
lated, the algorithm continues by replacing the “lowest quality”
solutions of the population with the “best” potential solutions
generated by nature-inspired combinations/mutations of the
candidate solutions in the pool until the process converges. The
process is constituted by an amalgam of the mutation, evalua-
tion, normalization, weighting, and construction steps, which
will further be detailed later in this section. Specifically, we
are interested in determining the CIR vector ĥp[s] and the
data vector X̂[s, k] that minimize the CFs of (9) and (10),
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Fig. 2. Flowchart depicting the structure of the proposed RWBS algorithm
used to jointly estimate the CIR coefficients and to detect the users’ transmitted
signals.

respectively. The principle of the proposed RWBS-based joint
channel estimator and MUD can best be understood with the aid
of the flowchart shown in Fig. 2, which will often be referred
to during our forthcoming discourse. Subsequently, we limit
our treatment to the channel estimator for reasons of space
economy.1

1) Generation Initialization: Initialization of the RWBS is
performed at every so-called generation for each optimiza-
tion step, as seen in Fig. 2, by creating Ps candidate so-
lutions or individuals. The set of Ps individuals is known
as a population, where Ps is the population size. These in-
dividuals represent the unknown variables of interest, which
in this case are the CIR vector ĥp[s] in (9). We denote the

complex-valued CIR coefficient individuals as ĥ(g,ps)
p [s] =

[ĥ1,(g,ps)
p [s], ĥ2,(g,ps)

p [s], . . . , ĥU,(g,ps)
p [s]]T , where g and ps

represent the generation index and the index of an individual
in the population, respectively.

More specifically, Ps individuals are generated as ĥ(g,1)
p [s] =

ĥ(g−1)
p,best[s], where ĥ(g−1)

p,best[s] is the best individual of generation

1The MUD’s operation is similar to that of the channel estimator, with the
slight difference that the MUD relies on the CF of (10).

(g − 1), which will be defined later in this section. The re-
maining (Ps − 1) individuals are then created by the mutation
operator, which is the same as the GA’s mutation operator [4],
yielding⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R

(
ĥ(g,ps)

p [s]
)

= R

(
ĥ(g,1)

p [s]
)

+ μ · randn(UL, 1), ps = 2, 3, . . . , P s

I

(
ĥ(g,ps)

p [s]
)

= I

(
ĥ(g,1)

p [s]
)

+ μ · randn(UL, 1), ps = 2, 3, . . . , P s
(14)

where randn(UL, 1) is a (UL × 1)-element pseudorandom
vector drawn from the normal distribution with zero mean and
unit variance, whereas μ is known as the mutation parameter. R
and I respectively denote the real and imaginary components of
the specific CIRs ĥ(g,ps)

p [s] to be mutated.
2) Evaluation of the CF: Associated with the ps th indi-

vidual is a so-called CF value, which has to be evaluated, as
seen in Fig. 2. The CF value, which is denoted by J

(g,ps)
h for

ps = 1, 2, . . . , Ps, is computed by substituting the elements of
the psth CIR coefficient individual ĥ(g,ps)

p [s] into the CF of (9).
The users’ transmitted data X̂[s] used in this equation are given
by the RWBS-based MUD. Before the RWBS-based MUD
output data becomes available, we employ the pilot-symbol-
assisted CIR estimate. Here, we denote the best individual in
this generation as ĥ(g)

p,best[s], which has the minimal CF value

ĥ(g)
p,best[s] = arg min

ĥ
(g,ps)
p [s]

Jh

(
hp[s]|X̂[s]

)
. (15)

3) Normalization: To reflect the relative merit of an indi-
vidual compared with other individuals of this generation, we
normalize the CF value as follows:

J̄
(g,ps)
h = J

(g,ps)
h /

Ps∑
ps=1

J
(g,ps)
h , ps = 1, 2, . . . , Ps. (16)

The relative merit of the individual constitutes vital infor-
mation, which will be used for generating the weighting factor
guiding the random search toward the optimal solution.

4) Generation of the Weighting Factor: Intuitively, the mer-
itorious individuals having low CF values should contribute
toward generating new individuals. Hence, we introduce
weighting factors for reflecting the relative merits of the cor-
responding individuals, which will be perpetually modified
according to their normalized CF values as follows:

1) Compute the weighting factor βt
h according to

βt
h =

ηt
h

1 − ηt
h

, ηt
h =

Ps∑
ps=1

δ
(g,ps)
h (t − 1)J̄ (g,ps)

h (17)

where δ
(g,ps)
h (t − 1) are the weights of the individuals

representing the CIR coefficients of ĥ(g,ps)
p [s], whereas

t represents the iteration index in the weighted boosting
aided search. The weighting factor βt

h used for updating

the weights δ
(g,ps)
h (t) is not fixed, it rather changes at each

iteration of the weighted boosting-aided search according
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to ηt
h. The updated weighting factor βt

h decreases with
the reduction of ηt

h, which in turn increases the difference

between δ
(g,ps)
h (t) and δ

(g,ps)
h (t − 1).

2) Update the weights as

δ
(g,ps)
h (t) =

{
δ
(g,ps)
h (t − 1) (βt

h)J̄
(g,ps)
h , βt

h ≤ 1

δ
(g,ps)
h (t − 1) (βt

h)1−J̄
(g,ps)
h , βt

h > 1
(18)

and then normalize them as follows:

δ
(g,ps)
h (t) =

δ
(g,ps)
h (t)

Ps∑
ps=1

δ
(g,ps)
h (t)

, ps = 1, 2, . . . , Ps. (19)

The weights δ
(g,ps)
h (t − 1) reflect the fitness ratios of

the individuals, which are used for constructing new
individuals for the next generation. All of the weights
δ
(g,ps)
h (t − 1) assigned throughout all the iterations t =

1, 2, · · · will be nonnegative and sum to one, yielding∑Ps

ps=1 δ
(g,ps)
h (t − 1) = 1. Naturally, if we have no rea-

son to favor any of the individuals, we can set all of
the initial weights to δ

(g,ps)
h (0) = 1/Ps.The reason for

differently updating the weights for the two scenarios
according to βt

h � 1 is that the exponential function of
(βt

h)x is monotonically increasing when we have βt
h >

1, and it is monotonically decreasing for βt
h < 1. To

augment the influence of meritorious individuals (having
low CF values) and to deweight the deficient individuals
(having high CF values), the weights are updated using
the multiplicative rule of (18).

5) Convex Combination: Convex combination is a linear
combination of the given vectors, which is employed to explore
all the possible combinations within the convex hull2 of the
given vectors by updating the weights in the boosting search,
as seen in Fig. 2. More formally, given a finite number of indi-
viduals representing the CIR coefficients, a convex combination
of these individuals is created to construct a new individual in
the form of

ĥ(g,Ps+1)
p [s] =

Ps∑
ps=1

δ
(g,ps)
h (t)ĥ(g,ps)

p [s]. (20)

Intuitively, we can see that the convex combination of (20)
is capable of exploiting the meritorious individuals of low CF
values (having high weights) to produce individuals that may
have an even lower CF value. A “mirror image” of ĥ(g,Ps+1)

p [s]
is also considered as a new individual, which is generated
with respect to ĥ(g)

p,best[s] and along the direction defined by

(ĥ(g)
p,best[s] − ĥ(g,Ps+1)

p [s]) as follows:

ĥ(g,Ps+2)
p [s] = ĥ(g)

p,best[s] +
(
ĥ(g)

p,best[s] − ĥ(g,Ps+1)
p [s]

)
.

(21)

2Convex hull is the minimal convex set containing all the given vectors [15].
The vectors refer to the individuals in this paper.

6) Weighted Boosting Update: The two new individuals
generated by convex combination will compete for superseding
the worst individual according to their CF values. The better
individual of ĥ(g,Ps+1)

p [s] and ĥ(g,Ps+2)
p [s] then substitutes

the worst individual ĥ(g)
p,worst[s] and becomes part of the next

iteration of the boosting search. Here, the worst individual
ĥ(g)

p,worst[s] is defined as

ĥ(g)
p,worst[s] = arg max

ĥ
(g,ps)
p [s]

Jh

(
hp[s]|X̂[s]

)
. (22)

7) Termination: There are two termination criteria: 1) judge
whether to terminate the weighted boosting search, and 2 judge
whether to terminate the generation search. We will elaborate
upon both in the following.

1) Determine whether to terminate the weighted boosting
search. If we have ‖ĥ(g,Ps+1)

p [s] − ĥ(g,Ps+2)
p [s]‖ < ξh,

i.e., there is no further substantial improvement in the
boosting search, then we will terminate the boosting
search of this generation and go to the next step in Fig. 2
to determine whether to terminate the generation search.
Here, ξh represents the accuracy that has to be reached
before terminating the weighted boosting search.

2) Determine whether to proceed to the next generation. If
we have ‖ĥ(g)

p,best[s] − ĥ(g−1)
p,best[s]‖ < ζh and g > G̃, then

curtail the search in Fig. 2, and use the final solutions:
ĥp[s] = ĥ(g)

p,best[s], or go to the generation initialization
step. Here, ζh quantifies the accuracy that has to be
satisfied, whereas G̃ is the minimal number of repeated
generation search loops to be visited. The reason for this
setting is to guarantee that a sufficiently high number of
repeats or generations have been considered to find the
globally optimal solution.

Again, it is worth pointing out that the proposed DRWBS-
JCEMUD conveniently generates the soft bit values or LLRs
associated with the mB th bit position of the uth user’s trans-
mitted M -QAM-modulated signal X̂[s, k] upon invoking the
maximum approximation technique of [3], which yields3

Lu,mB
≈ − 1

σ2
n

[∥∥∥Y[s, k] − Ĥ[s, k]X̂u,mB ,0[s, k]
∥∥∥2

−
∥∥∥Y[s, k] − Ĥ[s, k]X̂u,mB ,1[s, k]

∥∥∥2
]

(23)

where the FD-CHTF Ĥ[s, k] may readily be obtained after
we acquire the CIR coefficient estimate ĥp[s]. The notation of
X̂u,mB ,b[s, k], b = 0, 1 suggests that the mB th bit position of
the uth user’s signal on the kth subcarrier of the sth OFDM
symbol is b, whereas the other users’ signals are the same as
those in X̂[s, k]. However, as to the M -QAM scheme, there
are M/2 signals, whose mB th bit position of the uth user’s

3Note that normalization was applied for Lu,mB as that in [4, p. 238]
L̃u,mB = min{Lu,mB , P × U}, where P × U represents the normalization
factor.
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signal is 0 or 1. We select the most likely signal based on
the following criterion given in (24), shown at the bottom of
the page, where MU

u,mB ,b denotes the specific constellation
subset associated with the uth user. More explicitly, MU

u,mB ,b is
constituted by those specific trial vectors, whose uth element’s
mB th bit has a value of b, which is expressed as (25), shown
at the bottom of the page, where MC denotes the constellation
set containing the 2m legitimate complex-valued constellation
points associated with the specific M -QAM scheme employed,
and “∩” is the intersection operation. Explicitly, (25) suggests
that the (mB)th bit of X̂u[s, k] has a value of b. Still referring
to (25), m denotes the number of bits per M -QAM symbol.

IV. DISCUSSIONS ON COMPUTATIONAL

COMPLEXITY AND CONVERGENCE

A. Computational Complexity

The computational complexity of the proposed scheme is
predominantly determined by the population size Ps, by the
number of generations G̃ required to approach convergence,
and by the number of boosting search steps Tbs at each gen-
eration. Given the population size Ps and a fixed number of
Tbs boosting search steps at each generation of the RWBS
algorithm, the number of CF evaluations (CF-Evals.) required
at each generation is equal to [(Ps − 1) + 2Tbs], where (Ps −
1) is the number of CF-Evals. outside the boosting search, and
2Tbs is the number of CF-Evals. in the boosting search. Hence,
the total CF-Evals. required to detect the users’ transmitted
signals at each subcarrier of each OFDM symbol is equal to
[(Ps − 1) + 2Tbs] × G̃. We denote the computational complex-
ity of the RWBS-based MUD as O([(Ps − 1) + 2Tbs] × G̃).
We can see that the computational complexity of the pro-
posed DRWBS-JCEMUD scheme is independent of the order
M of M -QAM and the number of users U . To explicitly
quantify the complexity of the RWBS-based optimization al-
gorithm, we compare it with that of the MMSE-MUD and
the optimum ML-MUD. The computational complexity of
the MMSE-MUD is dominated by the matrix inversion of a
(U × U)-element matrix; hence, its computational complexity
can be approximated as O(U3). The computational complex-
ity of the ML-MUD using exhaustive search is equivalent to
MU for a U -user SDMA/OFDM system employing M -QAM,
i.e., O(MU ). We will show that the DRWBS-JCEMUD scheme
is capable of attaining near-optimum performance at a lower
computational complexity than the optimum ML-MUD, partic-
ularly for high-order M -QAM scenarios.

It is worth pointing out that the proposed RWBS generat-
ing the aforementioned soft outputs in the form of LLRs for
multiple users imposes only a modest complexity increase in
comparison with the single-user ML detection scenario. This is
because the search space required for finding the best potential
signal of user-u according to (24) is the same as that of a single-
user scenario, which is an explicit benefit of employing the
maximum approximation in [3]. The resultant output LLRs can
then be directly fed to the channel decoder in Fig. 1 to improve
the multiuser MIMO SDMA/OFDM system’s performance.

B. Convergence

Similar to any other stochastic optimization algorithm, such
as GAs and evolutionary algorithms, the convergence of the
RWBS algorithm is characterized by its probability of conver-
gence, which is defined as [17]

lim
g→+∞

Pr
(∣∣∣ĥ(g)

p,best[s] − hp[s]
∣∣∣ > ε

)
= 0 (26)

where Pr(·) represents the probability of the event considered,
and ε is a small positive value. Equation (26) suggests that the
solutions are located outside the ε-neighborhood of hp[s] with
a probability of zero as the RWBS proceeds.

There exists a probability pg > 0 at each generation that the
individuals in the parental populations generate an offspring
ĥ(g)

p,best[s] belonging to the ε neighborhood of hp[s]. These pg ,
g = 1, 2, · · · values may be different at different generations.
As a benefit of the elitism, the best individuals of the next
generation are at least as good as or better than its counterpart in
the current generation, which indicates that the probability pg is
monotonically increasing for g = 1, 2, · · ·. Hence, this feature
will lead to the following proposition:

lim
g→+∞

Pr
(∣∣∣ĥ(g)

p,best[s] − hp[s]
∣∣∣ < ε

)
= 1 (27)

which indicates that the populations will convergence to the ε
neighborhood of hp[s] with a unity probability as the RWBS
proceeds.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we will investigate the achievable perfor-
mance of the multiuser MIMO SDMA/OFDM system using
the proposed DRWBS-JCEMUD scheme. As an example, a
simple four-path Rayleigh fading channel model is employed

X̂u,mB ,b[s, k] = arg

{
min

X̂[s,k]∈MU
u,mB,b

∥∥∥Y[s, k] − Ĥ[s, k]X̂[s, k]
∥∥∥2

}
, b = 0, 1 (24)

MU
u,mB ,b =

{
X̂[s, k] =

[
X̂1[s, k], X̂2[s, k], . . . , X̂U [s, k]

]T ∣∣∣{X̂u[s, k] ∈ MC

}
∩ {bu,mB

= b}
}

(25)
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TABLE I
BASIC SIMULATION PARAMETERS USED IN OUR SIMULATIONS

for each transmit-antenna–receive-antenna link, and each path
has a U-shaped Doppler spectrum for its diffuse component.
Each of the paths experiences independent Rayleigh fading
having the same Doppler frequency of FD = fdTs normalized
to the OFDM symbol rate, where fd and Ts are the maximum
Doppler frequency and the OFDM symbol duration including
the CP. The average path gains are [0; −5; −10; −15] dB,
whereas the delays of each path are 0, 1, 2 and 3, which have
been normalized to the sample duration of the input signals.
Moreover, a half-rate r = 1/2 binary low density parity check
(LDPC) code having a block length of LLDPC = 1152 is
employed. The modulation scheme is 16-QAM for all users.
The BS has an array of P = 4 UL receiver antennas while
supporting U = 4 UL MSs simultaneously transmitting their
data. The algorithmic parameters of the DRWBS-JCEMUD
scheme used in our simulations are summarized in Table I.

A. Channel Estimation Performance

Fig. 3 shows the evolution of the mean square error (MSE)
of the estimated CIRs versus the generation index for different
values of Eb/N0, respectively. We can see from Fig. 3 that the
MSE is reduced upon increasing the generation index, and it
approaches the noise floor.

As the DRWBS-JCEMUD scheme is an iteration-based algo-
rithm, the number of generations used is an important parameter
directly determining the complexity of the proposed DRWBS-
JCEMUD scheme. In Fig. 4, we portray the average number of
CF-Evals. that are required to approach convergence versus the
population sizes Ps and mutation parameters μ. It can be seen
from Fig. 4 that the number of generations required decreases
upon increasing the population size at a certain fixed mutation
parameter. With regard to the effect of the mutation parameter
μ, we can see from Fig. 4 that a larger mutation parameter
typically necessitates more CF-Evals., but by contrast, the
number of CF-Evals. required for convergence slowly increases
when μ < 0.04. By contrast, it steeply increases for μ > 0.04,
and there is a ridge at Ps = 80 in Fig. 4.

Fig. 3. MSE performance against the repeated generations required for con-
vergence of the proposed DRWBS-JCEMUD scheme.

Fig. 4. Average number of generations required for the convergence of the
proposed DRWBS-JCEMUD scheme versus the population size Ps and the
mutation parameter μ at Eb/N0 = 20 dB.

To provide further insights, in Fig. 5, we portray the his-
togram of the number of generations required for approach-
ing convergence at Eb/N0 = 20 dB. The parameters used in
these investigations are given in the caption of the figure.
These results were obtained from the statistical evaluation of
288 independent CIR estimation events based on the RWBS
algorithm. The x-axis represents the number of generations
required for the RWBS-based CIR estimator to converge,
whereas the “Ratio” on the y-axis shows what proportion of the
independent CIR estimation events required the particular
number of generations shown on the x-axis. As an example,
about 11% or 32 independent CIR estimation events required
69 generations for the RWBS algorithm to acquire the con-
verged estimate of the CIR, which is represented by the height
of the bar seen in Fig. 5.

Fig. 6 examines the effects of different population sizes Ps

and mutation parameters μ on the achievable MSE at Eb/N0 =
20 dB. Observe in Fig. 6 that the population size has an insignif-
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Fig. 5. Histogram of the number of generations required for the proposed
DRWBS-JCEMUD scheme to converge at Eb/N0 = 20 dB, where fdTs =
0.003, Ps = 40, and μ = 0.01.

Fig. 6. Achievable MSE performance versus population size Ps and mutation
parameter μ at Eb/N0 = 20 dB.

icant impact on the achievable MSE when μ < 0.04. However,
ironically, larger population sizes perform worse than smaller
population sizes for μ > 0.04. As regards to the mutation
parameter, smaller mutation parameters typically outperform
the larger parameters.

B. Bit Error Rate (BER) Performance
of the RWBS-Based MUD

In Fig. 7, we characterize the BER versus complexity behav-
ior of the proposed solution, where the complexity is increased
by increasing the number of generations. We set Eb/N0 = 10
and 20 dB and consider population sizes of Ps = 20, 40, 60,
and 80. The lower bound of the achievable BER is given by the
optimal ML-MUD. Note that for Eb/N0 = 20 dB, the optimal
ML-MUD attains an infinitesimally low BER. It can be seen
from Fig. 7 that the proposed schemes exhibit a performance
gap to the lower-bound BER of the optimal ML-MUD at
Eb/N0 = 10 dB due to the residual multiuser interference and
the high-level noise. By contrast, they converge rapidly at
Eb/N0 = 20 dB, hence accurately detecting the transmitted

Fig. 7. BER performance against the number of generations required for the
proposed DRWBS-JCEMUD scheme, assuming that 16-QAM modulation and
half-rate LDPC channel codes of 1152 is employed by all U = 4 users.

signals. Furthermore, the proposed RWBS-based MUD re-
quires less generations at larger population sizes compared with
its counterpart associated with smaller population sizes, which
indicates that the RWBS algorithm has a higher “convergence
speed.”

Monte Carlo simulations of 100 independent runs were
carried out to examine the stability of the proposed DRWBS-
JCEMUD scheme for a set of fixed but differently ap-
portioned computational complexities of [(Ps − 1) + 2Tbs] ×
G = 8000, where we set Tsb = 20 in our simulations. Observe
from Fig. 8 that the system’s BER spreads across the range of
9.0 × 10−4 and 5.0 × 10−3. Naturally, the highest probability
BER values represented by the highest bars in Fig. 8 dominate
the overall performance. Furthermore, it can be seen that the
proposed DRWBS-JCEMUD scheme exhibits the lowest bar
spread for the parameter combinations of Ps = 40, G = 100
and Ps = 50, G = 90, which allows us to infer the loose rela-
tionship of (Ps + 2Tbs) ≈ G. In the following section, we will
investigate the overall performance of the proposed DRWBS-
JCEMUD scheme.

C. JCEMUD Performance

In Fig. 9, the average MSE of the CIR estimation achieved by
the proposed DRWBS-JCEMUD scheme at different number of
iterations is evaluated. The “include FEC” scenario exploited
the error correction capability of the LDPC code of Table I
during each iteration, as seen in Fig. 1. By contrast, “exclude
FEC” represents the case when the data output by the RWBS-
based MUD is directly fed back to the RWBS-based CIR
estimator without the LDPC code’s assistance. Observe from
Fig. 9 that the MSE performance of the CIR estimator is
beneficially improved at Iter = 14 when we exploit the error

4More specifically, Iter = 1 implies that the classic decision-directed
process is invoked for feeding back all the data output by the FEC-decoder
to the RWBS-based channel estimator, where all the received data are used as
pilot symbols.
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Fig. 8. Histogram of the BER for the proposed DRWBS-JCEMUD scheme,
where fdTs = 0.003 and Eb/N0 = 12 dB. The number of boosting search
is set as Tsb = 20 in our simulations. The quantity “Ratio” on the z-axis
represents the proportion of experiments having a certain value of the system’s
BER from a total of 100 independent Monte Carlo simulations.

correction capability of the FEC decoder, approaching that of
the CRLB benchmarker of [18], which is given by

CRLB(h) =
σ2

n

KEs
(28)

where σ2
n represents the noise variance, and Es is the average

power of the transmitted signals. Note that the CRLB in (28)
has been normalized to the number of paths. However, if we do
not exploit the error correction capability of the LDPC decoder,
then the estimator may perform even worse than the initial
estimate, which may be due to error propagation. Similar to the
average MSE performance trends characterized in Fig. 9, the
systems’s BER performance seen in Fig. 10 is also beneficially
improved at Iter = 1, when we include the LDPC decoder
within the iterations.

To provide an overall impression of the attainable system
performance, we evaluate the system’s BER performance in
Fig. 11 for a set of fixed but differently apportioned computa-
tional complexities of [(Ps − 1) + 2Tbs] × G = 8000, where
Tsb = 20 in our simulations. The conventional MMSE-MUD
[3] and the optimal ML-MUD exploiting perfect CIRs are also
included as references. Observe from Fig. 11 that a beneficial it-
eration gain is achieved by exploiting the error correction capa-
bility of the LDPC decoder to iteratively exchange information
between the RWBS-based detector and the RWBS-based chan-
nel estimator. This reduces the performance discrepancy with
respect to the ML-MUD relying on perfect CIRs to less than
1 dB at Iter = 1 at a total computational complexity of (2 ×
8000) = 16, 000. Furthermore, the proposed scheme reduces
the computational complexity to (1 − (Iter × [(Ps − 1) +
2Tbs] × G/MU )) = (1 − (16000/164)) ≈ 0.756 at the cost of
a 1-dB performance penalty, in comparison with the ML-MUD
for Eb/N0 > 9 dB. More specifically, the BER performance of

Fig. 9. MSE performance for the proposed DRWBS-JCEMUD scheme,
which employs 6.25% pilots at Iter = 0. After Iter = 0, decision-directed
channel estimation is used, implying that all of the data output by the RWBS-
based MUD are used as pilots.

Fig. 10. BER performance for the proposed DRWBS-JCEMUD scheme,
which employs 6.25% pilots at Iter = 0. After Iter = 0, decision-directed
channel estimation is used, implying that all of the data output by the RWBS-
based MUD are used as pilots. To be fair, the BER performances of the “exclude
FEC” scenario are also recorded after FEC decoder for each iteration, although
the FEC decoder does not participate into the decision direct iteration.

the proposed DRWBS-JCEMUD scheme remains by and large
the same for all of the configurations considered at a fixed
computational complexity for Eb/N0 values below 6 dB and
above 11 dB. By contrast, a moderate population size combined
with a moderate number of generations, which is given by
(Ps + 2Tbs) ≈ G for the parameter combinations considered,
is found to be more beneficial for 6 dB < Eb/N0 < 11 dB.

VI. CONCLUSION

In this paper, we have proposed a random guided search
scheme for JCEMUD, which was investigated in the context
of MIMO SDMA/OFDM systems. The DRWBS-JCEMUD
scheme is capable of approaching the performance of the
optimal ML-MUD in conjunction with the randomly generated
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Fig. 11. BER versus Eb/N0 performance of the LDPC-coded multiuser
MIMO OFDM/SDMA system. The system supports four MSs simultaneously
transmitting data to the BS, where the BS employs four antennas. The conven-
tional MMSE and the optimal ML MUD with perfect channel knowledge are
also given as references.

initial values. The effects of the algorithmic parameters of the
DRWBS-JCEMUD scheme were explored using Monte Carlo
simulations. The DRWBS-JCEMUD scheme advocated was
capable of generating soft outputs for the channel decoder. As
an example, at Eb/N0 = 10 dB, a complexity reduction factor
of 0.756 was achieved at the cost of a 1-dB performance penalty
in comparison with the ML-MUD.
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