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Abstract—Successive-relaying-aided (SR) cooperative multi-
carrier (MC) space–time shift keying (STSK) is proposed for
frequency-selective channels. We invoke SR to mitigate the typ-
ical 50% throughput loss of conventional half-duplex relaying
schemes and MC code-division multiple access (MC-CDMA) to
circumvent the dispersive effects of wireless channels and to re-
duce the SR-induced interference. The distributed relay terminals
form two virtual antenna arrays (VAAs), and the source node
(SN) successively transmits frequency-domain (FD) spread signals
to one of the VAAs, in addition to directly transmitting to the
destination node (DN). The constituent relay nodes (RNs) of each
VAA activate cyclic-redundancy-checking-based (CRC) selective
decode-and-forward (DF) relaying. The DN can jointly detect the
signals received via the SN-to-DN and VAA-to-DN links using
a low-complexity single-stream-based joint maximum-likelihood
(ML) detector. We also propose a differentially encoded coop-
erative MC-CDMA STSK scheme to facilitate communications
over hostile dispersive channels without requiring channel esti-
mation (CE). Dispensing with CE is important since the relays
cannot be expected to altruistically estimate the SN-to-RN links
for simply supporting the source. Furthermore, we propose soft-
decision-aided serially concatenated recursive systematic con-
volutional (RSC) and unity-rate-coded (URC) cooperative MC
STSK and investigate its performance in both coherent and
noncoherent scenarios.

Index Terms—Coherent and noncoherent detection, decode-
and-forward (DF), frequency-selective channel, multicarrier
code-division multiple access (MC-CDMA), space–time shift key-
ing (STSK), successive relaying (SR).

I. INTRODUCTION

THE concept of space–time shift keying (STSK) [1]–[3]
was recently developed, which drew its motivation from

the extremely simple architecture of spatial modulation (SM)
[4] and space shift keying (SSK) [4]. STSK complemented the
simplicity of SM and SSK by the rate versus diversity tradeoffs
provided by linear dispersion codes (LDCs) [5], [6]. LDCs con-
stitute a generic family subsuming both space–time block codes

Manuscript received April 23, 2012; revised January 28, 2013; accepted
February 4, 2013. Date of publication February 12, 2013; date of current
version July 10, 2013. This work was supported in part by the Commonwealth
Scholarship Commission in the U.K., by the Research Councils U.K. under
the auspices of the India–U.K. Advanced Technology Centre, by the European
Union under the Concerto Project, and by the European Research Council
under the Advanced Fellow Grant. The review of this paper was coordinated by
Prof. W. A. Hamouda.

The authors are with the School of Electronics and Computer Science, Uni-
versity of Southampton SO17 1BJ, U.K. (e-mail: mik1g09@ecs.soton.ac.uk;
ll5e08@ecs.soton.ac.uk; sqc@ecs.soton.ac.uk; lh@ecs.soton.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2013.2246800

[7] and the Bell Laboratories layered space–time (BLAST) [8]
and vertical-BLAST (V-BLAST) [9], [10] schemes and are ca-
pable of outperforming both, albeit at the cost of higher decod-
ing complexity. On the other hand, SM and SSK simply activate
only one of the transmit antenna elements, hence resulting in a
low-complexity detector. Against this background, STSK was
designed to activate a single one from Q dispersion matrices
(DMs) along with the conventional phase-shift keying (PSK)
or quadrature amplitude modulation (QAM) symbols. Thus,
STSK is capable of attaining the benefits of LDCs while relying
on a low-complexity design and decoding principle [11].

On the other hand, the concept of cooperative space–time
processing [12], [13] has also become popular in recent years,
owing to its benefits accruing from the geographically dis-
tributed nature of relay nodes (RNs), where the relays may
be viewed as the distributed elements of a multiple-input–
multiple-output (MIMO) system, with each element experienc-
ing uncorrelated fading. Recently, the concept of cooperative
STSK [14] has been proposed for frequency-flat Rayleigh
fading channels to benefit from cooperation, although naturally,
this scheme suffers from the usual throughput loss imposed
by the relaying strategy employed. The introduction of suc-
cessive relaying (SR) [15], on the other hand, is potentially
capable of recovering the half-duplex multiplexing loss; hence,
it was successfully used in [16] as a near-capacity cooperative
space–time coding architecture. Furthermore, a noncoherent-
detection-based scheme employing both multiple-symbol dif-
ferential sphere decoding and SR was conceived in [17] and
[18]. However, the SR regime imposes additional interference
both at the RNs and at the destination nodes (DNs) [15],
namely, the interrelay interference (IRI) and the cochannel
interference (CCI), which limit its performance. A differential-
STSK-aided (DSTSK) successive-relay-assisted decode-and-
forward (DF) scheme was proposed for cooperative multiuser
code-division multiple-access (CDMA) systems [19], which
mitigates the throughput loss imposed by half-duplex relaying.
However, this scheme is applicable only to the nondispersive
MIMO system.

To exploit the diversity benefits of cooperative schemes and
to circumvent the channel-induced dispersion while mitigating
the throughput loss imposed by half-duplex relaying, we pro-
pose a novel SR-based DF cooperative multicarrier (MC) STSK
scheme. The novel contributions of this paper are as follows.

1) We intrinsically amalgamate for the first time MC
transmissions with a cooperative STSK system to
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communicate reliably over hostile multipath channels.
More particularly, we propose MC-CDMA-based coop-
erative STSK for achieving an improved diversity gain
to recover the original input sequence. Although orthog-
onal frequency-division multiplexing/multiple access
(OFDM/OFDMA) or single-carrier frequency-division
multiple access (SC-FDMA) can be employed for miti-
gating the channel-induced dispersion in our STSK-based
system [20], [21], MC-CDMA is capable of providing
the additional benefit of frequency-domain (FD) diversity.
The incorporation of MC-CDMA has the further benefit
of substantially reducing both the IRI and CCI, when
employing the specific SR regime of [17].

2) We propose a SR-aided cyclic-redundancy-checking-
based (CRC) selective DF cooperative STSK scheme.
The SR invoked in this context helps to recover
the multiplexing loss of conventional half-duplex
relaying schemes.

3) We also propose a new modality for the joint de-
tection [14], [17] of the FD-despread signals gleaned
from two successively arriving frames at the DN via
the source node (SN)-to-DN and virtual antenna array
(VAA)-to-DN links by using the single-stream-based
maximum-likelihood (ML) detector of [22]. The joint
detector takes advantage of the interstream interference-
free nature of STSK schemes since always a single DM
is activated.

4) We demonstrate that the coherent SR-aided MC-CDMA
STSK scheme performs well, but it might be unrealistic
to expect that the RNs altruistically estimate the SN-to-
RN channels. As a potential remedy, a new noncoherent
cooperative MC STSK arrangement using unitary DMs,
rather than using the nonlinear Cayley transform [2], [23],
is proposed.

5) We propose a powerful serially concatenated turbo-
principle-based channel-coded cooperative MC scheme,
where the DN iteratively exchanges soft information be-
tween the component decoders before finally outputting
the estimated source information. The performance of
the scheme is evaluated both in the context of the co-
herent and differential schemes and compared against
the corresponding maximum achievable capacity bench-
mark, using our extrinsic-information-transfer (EXIT)-
chart-based semi-analytical method.

The remainder of this paper is organized as follows. In
Section II, we present an overview of the proposed system.
The joint detection of the signals arriving from the SN–DN
and VAA–DN links is discussed in Section III. The proposed
differential MC cooperative STSK and the channel-coded soft-
decision-based MC cooperative STSK schemes are outlined in
Sections IV and V, respectively. In Section VI, the performance
of the proposed scheme is investigated. Finally, we conclude the
paper in Section VII.

II. SYSTEM OVERVIEW OF THE COHERENT SCHEME

The typical four-node network topology and transmission
protocol of the classic SR scheme [15] is portrayed in Fig. 1,

Fig. 1. Transmission protocol of SR-aided cooperation during different time
slots.

whereas the overall system architecture of our proposed scheme
is depicted in Fig. 2, where the SN, DN, and the two VAAs
taking part in SR are explicitly labeled. Additionally, for the
sake of enabling the CRC at the RNs, frame-based rather than
symbol-based transmissions are adopted. We assume that the
distances between the different RNs of the same VAA are
negligible with respect to the distance between the SN and
the DN (or between the SN and the VAA). Accordingly, a
VAA is assumed to exhibit a unitary nature, when consider-
ing the geometric relationship among SN s, the ith VAA vi,
and DN d. The average path-loss gains of the SN–VAA and
VAA–DN links with respect to the SN–DN links are denoted
by Gsvi

= (Dsd/Dsvi
)α, i = 1, 2, and Gvid = (Dsd/Dvid)

α,
i = 1, 2, respectively, where α is the path-loss exponent, and
Daa′ , a, a′ ∈ {s, vi, d} represents the distance between nodes
a and a′. Furthermore, we assume a symmetric structure, where
Dsv1

, Dv1d, Gsv1
, and Gv1d are identical to Dsv2

, Dv2d, Gsv2
,

and Gv2d, respectively. Furthermore, all the possible channel
paths are assumed to be frequency-selective Rayleigh fading
channels.

A. SN’s Transmission Model

The SN first attaches the CRC bits to its information bits
and transmits them both to the M RNs of a VAA and to the
DN in each of its broadcast phases, as shown in Fig. 2. To
be specific, the CRC-protected bits are first mapped to the L′-

PSK or L′-QAM symbol blocks [14] according to Ss(k)
Δ
=

[s1(k), . . . , sb(k)]
T ∈ C

b×1, where k (1, 2, . . .) represents the
block index and each block carries (b · log2 L′) bits. Let us
also define the frame length Lf as the number of (b · log2 L′)-
bit signal blocks transmitted in each frame; hence, the block
index k is related to the lf th block of the nth frame by k =
(n× Lf + lf ).

We divide all the frames into two sets. The frame being
broadcast when VAA1 of Fig. 1 is receiving is referred to
as frame-A, which is spread by the spreading sequence Cu

A

for user u, (u = 1, 2, . . . , U). By contrast, the frame being
broadcast when VAA2 is receiving is referred to as frame-B,
which is spread by Cu

B , where both Cu
A = [Cu

A(1), C
u
A(2),

. . . , Cu
A(Sf )] and Cu

B = [Cu
B(1), C

u
B(2), . . . , C

u
B(Sf )] have a

spreading factor of Sf . Both the spreading sequences Cu
A and

Cu
B are Sf -length vectors whose chips are denoted by Cu

A(sf ),
sf = 1, 2, . . . , Sf , and Cu

B(sf ), sf = 1, 2, . . . , Sf ,, respec-
tively. The block index k (1, 2, . . .) of the signal block Ss(k)
is related to the index k′ (1, 2, . . .) of the spread blocks, e.g.,
Sc(k

′) = [Cu
A(sf )Ss(k)] ∈ C

b×1 by k′ = k × Sf + sf sf =
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Fig. 2. Transmission model of SR-aided STSK employing FD-spreading/despreading and IFFT/FFT-based MC-CDMA modem. Each of the two VAAs consists
of M number of RNs, which activate relaying depending on the outcome of CRC. The chip-waveform-based spread–despread paradigm overcomes SR induced
interference, whereas the scheme is benefitted from the joint single-stream-based ML detector.

1, 2, . . . , Sf , whereas the spread blocks are generated using the
spreading sequence Cu

A(sf ) or Cu
B(sf ), depending on whether

frame-A or frame-B is being transmitted. We assume that a par-
ticular spread block is transmitted over b time intervals and the
fading envelope during the transmission of a block of b symbols
remains constant. For the sake of readability, we omit the user
index u in the following, except in (30) and in (31), shown
below where the multiuser scenario is specifically considered.
The different users are separated by their mutually orthogonal
user-specific spreading sequences, albeit the multiuser scenario
is not explicitly shown in Fig. 2 for avoiding obfuscation.
Assuming the spread frame length (Lf × Sf ) to be a multiple
of the number Nc of subcarriers, whereas Nc is equal to or a
multiple of Sf , each frame is mapped to the Nc subcarriers
using the Nc-point inverse discrete Fourier transform (DFT).
Then, the cyclic prefixes (CPs), which are designed to be longer
than the channel’s delay spread, are attached to avoid any
intersymbol interference (ISI). The linear convolution between
the time-domain (TD) channel input signals and the channel
impulse response (CIR) is transformed into scalar multiplica-
tion in the FD [24]. Hence, the FD signals Y A

sd(k
′) ∈ C

b×1 and
Y B

sd(k
′) ∈ C

b×1 received at the DN from the direct SN–DN
link of a particular user and Y m

svi
(k′) ∈ C

b×1, i = 1, 2 at

the mth RN of each VAA are given, after CP removal and
DFT, by

Y m
sv1

(k′) =
√

Gsv1
h̃m
sv1

(k′) [CA(sf )Ss(k)] + Ñ
m

v1
(k′)

(Frame-A) (1)

Y m
sv2

(k′) =
√

Gsv2
h̃m
sv2

(k′) [CB(sf )Ss(k)] + Ñ
m

v2
(k′)

(Frame-B) (2)

Y A
sd(k

′) = h̃sd(k
′) [CA(sf )Ss(k)] + Ñd(k

′)

(Frame-A) (3)

Y B
sd(k

′) = h̃sd(k
′) [CB(sf )Ss(k)] + Ñd(k

′)

(Frame-B) (4)

where h̃m
svi

and h̃sd denote the FD channnel coefficients be-
tween the SN and the mth RNs of VAA i and between the
SN and the DN, respectively, obeying the complex-valued
Gaussian distributions of CN (0, σ2

svi
) and CN (0, σ2

sd), respec-

tively. Each component of the noise vectors Ñ
m

vi
and Ñd in

(1)–(4) is a complex-valued Gaussian variable of CN (0, N0),
with N0 representing the noise variance.
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B. VAA

As aforementioned, each of the two VAAs taking part in
the SR paradigm is composed of M RNs and operates on the
principle of the CRC-enabled selective DF strategy of [14] and
[25]. The signal received at each RN of a VAA is decoded
following FD MC-CDMA despreading. For a scenario support-
ing multiple users, the source information on different users
are jointly detected by a ML multiuser detector (ML-MUD),
as discussed in [26]. If the signal at any RN of the VAA
is deemed to be correctly decoded by the CRC, then that
specific RN is allowed to engage in relaying. The same RN
reencodes the decoded bits, similarly to the classic STSK
structure of [2]. Explicitly, according to the relationship of
b · log2 L′ = log2(L ·Q), the log2 L bits of source information
are mapped to an L-PSK or L-QAM symbol s(k), whereas the
remaining log2 Q bits select the mth row vector am

q (k) of the
qth matrix from the set of Q preassigned DMs Aq ∈ C

M×T ,
(q = 1, 2 . . . , Q). The DMs are generated under the power con-
straint, as detailed in [2] and [27], i.e., tr(AH

q Aq) = T , (q =
1, 2 . . . , Q), where T represents the number of time slots used
in the specific STSK structure considered and tr(•) and •H
denote the trace and the Hermitian transpose of the matrix “•,”
respectively. Specifically, the mth RN maps the decoded bits
to a symbol vector Sm

vi
(k) ∈ C

1×T , i = 1, 2, which is given by
Sm

vi
(k) = s(k)am

q (k). Additionally, the activation/deactivation
of the mth RN may be represented by the parameter
αm ∈ {0, 1}, where we have αm = 0 if a decoding error is
identified by the CRC, hence resulting in the termination of
relaying, and we have αm = 1 if otherwise. Furthermore, the
resultant cooperative scheme will be unambiguously referred
to as a coherent cooperative MC STSK (M,T,Q) scheme in
conjunction with the associated L-PSK or L-QAM modulation.

C. Receiver Model at Destination

With the aid of the double-frame matched filter1 of [17] for a
particular user u, and considering the FD representations of the
signals and the FD channel response rather than the CIR,
the signal received at the DN from the VAA–DN link during
the frame-A and frame-B transmissions are given by [14], [17]

Y A
v2d

(k′)=
M∑

m=1

[√
Gv2dαmh̃m

v2d
(k′)
[
CB(sf )S

m
v2
(k−Lf )

]]
+ Ñ

′
v2d

(k′)

=
√

Gv2dH̃
′
v2d

(k′) [CB(sf )Aq(k−Lf )s(k−Lf )]

+ Ñ
′
v2d

(k′) (5)

Y B
v1d

(k′)=
M∑

m=1

[√
Gv1dαmh̃m

v1d
(k′)
[
CA(sf )S

m
v1
(k−Lf )

]]
+ Ñ

′
v1d

(k′)

=
√

Gv1dH̃
′
v1d

(k′) [CA(sf )Aq(k−Lf )s(k−Lf )]

+ Ñ
′
v1d

(k′) (6)

1A filter matched to Cu
A is employed during frame-A, whereas a filter

matched to Cu
B is employed during the next consecutive frame-B transmission.

Application of this strategy helps to detect signals during a particular frame,
considerably suppressing the SR-induced interference.

where we have

H̃
′
vid

(k′)
Δ
=
[
α1h̃

1
vid

(k′), . . . , αM h̃M
vid

(k′)
]
∈ C

1×M

i = 1, 2 (7)

Aq(k − Lf ) =

⎡
⎢⎣

a1
q(k − Lf )

...
aM
q (k − Lf )

⎤
⎥⎦ ∈ C

M×T . (8)

The FD channel coefficients h̃m
vid

(k′) and the noise components

Ñ
′
vid

(k′) for i = 1, 2 and m = 1, 2, . . . ,M obey the complex-
valued Gaussian distributions of CN (0, σ2

vid
) and CN (0, N0),

respectively.
Applying the vectorial stacking operation vec(·) to both sides

of (5) and (6), we arrive at the linearized VAA–DN link output
signals, which is similar to the LDCs of [6]

Ȳ
A
v2d

(k′) =
√

Gv2dH̄
′
v2d

(k′)CB(sf )χK(k − Lf )

+ N̄
′
v2d

(k′) (9)

Ȳ
B
v1d

(k′) =
√

Gv1dH̄
′
v1d

(k′)CA(sf )χK(k − Lf )

+ N̄
′
v1d

(k′) (10)

where we have

Ȳ
A
v2d

(k′) = vec
(
Y A

v2d
(k′)
)
∈ C

T×1 (11)

Ȳ
B
v1d

(k′) = vec
(
Y B

v1d
(k′)
)
∈ C

T×1 (12)

χ
Δ
= [vec(A1), . . . , vec(AQ)] ∈ C

MT×Q (13)

H̄
′
vid

(k′)
Δ
=
√

Gvid

[
IT ⊗ H̃

′
vid

(k′)
]
∈ C

T×MT

i = 1, 2 (14)

K(k − Lf )
Δ
=

⎡
⎢⎣0, . . . , 0︸ ︷︷ ︸

q−1

, s(k − Lf ), 0, . . . , 0︸ ︷︷ ︸
Q−q

⎤
⎥⎦
T

∈ C
Q×1

(15)

N̄
′
vid

(k′) = vec
(
Ñ

′
vid

(k′)
)
∈ C

T×1, i = 1, 2. (16)

Here, the equivalent signal vector K(k − Lf ) has only a
single nonzero symbol component s(k − Lf ) placed in the
qth position, IT ∈ C

T×T is the identity matrix, ⊗ represents
the Kronecker product, and •T denotes the transpose of the
matrix “•.”

The combined received signal at the DN during both frame-A
and frame-B transmissions is constituted by the superposition
of the signals arriving from the SN–DN link and VAA–DN
links, which can be expressed as [17]

Y A(k′)= h̃sd(k
′)CA(sf )Ss(k)+Ñd(k

′)

+
√

Gv2dH̃
′
v2d

(k′)CB(sf )Aq(k−Lf )s(k−Lf )

+ Ñ
′
v2d

(k′) (17)

Y B(k′)= h̃sd(k
′)CB(sf )Ss(k)+Ñd(k

′)

+
√
Gv1dH̃

′
v1d

(k′)CA(sf )Aq(k−Lf )s(k−Lf )

+ Ñ
′
v1d

(k′). (18)
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Fig. 3. Proposed SR-based cooperative STSK protocol to conceive the joint ML detector using the different transmitted and received symbol blocks of the
corresponding frames. The solid box represents that the related node is transmitting, whereas signal reception at a particular node is indicated by the dashed box.

Now, employing the double-frame matched-filter-based de-
spreading and defining the equivalent SN–DN channel transfer
function by

h̄sd(k)
Δ
=

1
Sf

[
h̃sd(k

′)+h̃sd(k
′ + 1) + · · ·+ h̃sd(k

′ + Sf−1)
]

(19)

and the equivalent VAA2-DN channel matrix by

H̄v2d(k)
Δ
=

1
Sf

[
H̄

′
v2d

(k′) + H̄
′
v2d

(k′ + 1) + · · ·

· · ·+ H̄
′
v2d

(k′ + Sf − 1)
]

(20)

where k is related to k′ by k = �k′/Sf�, and �·� denotes the
ceiling (·) operator. The pair of despread signals that gleaned
from the SN–DN and the VAA2-DN links can be extracted from
Y A(k′) during the transmission of frame-A, which is given by

zA
s (k) = h̄sd(k)Ss(k) + Iv2

(k) +Nd(k) (21)

z̄A
v2
(k) = H̄v2d(k)χK(k − Lf ) + Is(k) +Nv2d(k). (22)

Similarly, the despread signals from Y B(k′) during
frame-B’s transmission may be expressed as

zB
s (k) = h̄sd(k)Ss(k) + Iv1

(k) +Nd(k) (23)

z̄B
v1
(k) = H̄v1d(k)χK(k − Lf ) + Is(k) +Nv1d(k) (24)

where z̄A
v2
(k) and z̄A

v2
(k) are the vectorially stacked despread

signal from the VAA–DN links; Is(k), Iv1
(k), and Iv2

(k) are
the interference terms that are substantially mitigated by the
specific spread–despread regime, particularly at a high Sf and

Nd(k); Nv1d(k) and Nv2d(k) are the additive white Gaussian
noise (AWGN) terms imposed on the corresponding signals.

III. JOINT SINGLE-STREAM MAXIMUM-LIKELIHOOD

DETECTION OF THE PROPOSED COOPERATIVE SCHEME

The joint single-stream ML detector of our scheme detects
the source information from the signals received from both the
SN–DN and VAA–DN links, as detailed in [13] and [14], but
takes the delay of the relayed frame due to both SR and the
double-frame FD despreading [17] into account.

The different stages of the joint detection procedure appro-
priately combining the components of the transmitted, received,
and despread signals during the different transmission frames
are visualized in Fig. 3. It is plausible that due to the inherent
nature of SR, the two replicas of the same frame, which are
broadcast through the direct SN–DN link during the broadcast
phase, with its counterpart forwarded by the VAA through the
VAA–DN link in the consecutive cooperative phase, cannot
arrive at the DN at the same time. Hence, as shown in Fig. 3,
the joint detection of the transmitted information has to be
carried out over two consecutive frames of the FD despread
received signals.

Thus, the joint detection of the source information on a user
that is broadcasted by the SN during Frame-A is performed
by combining the two replicas mentioned previously. This
combination yields the Frame-A received sequence ZA(k),
which may be formally expressed as [13], [14]

ZA(k)
Δ
=

[
zA
s (k)

z̄B
v1
(k + Lf )

]
=HA

J (k)S̄s(k) +NJ(k) ∈ C
(b+T )×1 (25)
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where we have

S̄s(k)
Δ
=

[
Ss(k)
K(k)

]
∈ C

(b+Q)×1 (26)

NJ(k) =

[
Iv2

(k) +Nd(k)
Is(k + Lf ) +Nv1d(k + Lf )

]
∈ C

(b+T )×1 (27)

and the combined FD channel transfer matrix, i.e.,

(28)

has two submatrices expressed by h̄sd(k)Ib ∈ C
b×b and

H̄v1d(k + Lf )χ ∈ C
T×Q, respectively, and two zero matrices.

Additionally, the equivalent transmit signal vector of
the kth block K(k) in (26) using the qth DM and the
lth constellation symbol sl may be expressed by Kl, q =
[0, . . . , 0︸ ︷︷ ︸

q−1

, sl, 0, . . . , 0︸ ︷︷ ︸
Q−q

]T ∈ C
Q×1.

If the SR-imposed interference components Iv2
and Is are

approximated by noise processes, the equivalent noise process
NJ can be assumed to be Gaussian distributed having the same
variance as Iv2

and Is.
The joint ML detector conceived for our cooperative scheme

estimates the source information during Frame-A transmission
of a particular user based on the FD despread direct SN–DN
frame and on the FD despread frame arriving via the VAA1–DN
link, which may be formulated as [14], [22][
q̂(k), l̂(k)

]

= argmin
q, l

{∥∥∥ZA(k)−HA
J (k)S̄

q, l
s

∥∥∥2}

= argmin
q, l

{∥∥zA
s (k)− h̄sd(k)S

q, l
s

∥∥2

+
∥∥∥z̄B

v1
(k + Lf )−sl

(
H̄v1d(k + Lf )χ

)
q

∥∥∥2}

(29)

where ‖ • ‖ represents the Euclidean norm of the matrix “•,”
Sq, l

s and S̄
q, l
s are the legitimate values of the symbol blocks

Ss(k) and S̄s(k) specified by the indices (q, l), and (H̄v1d(k +
Lf )χ)q indicates the qth column of H̄v1d(k + Lf )χ. As
shown in Fig. 3, the joint ML detector for the next consecutive
frame can be formulated from zB

s (k + Lf ) and zA
v2
(k + 2Lf ).

Since the signal vectors received from the RNs during the
VAA’s cooperation phase are composed of the row vectors from
a single DM, the joint detection scheme remains immune to the
interstream interference.

In a multiuser scenario, the received sequence will be the
superposition of the sequences corresponding to the individual
users. Since the orthogonality of the spreading sequences of dif-
ferent users is destroyed by the dispersive channels, multiuser

interference (MUI) is imposed. Upon reinstating the user index
u, we can formulate the superposed destination signal with the
aid of (3) and (10) in a form similar to (25), which has the
additional MUI term as follows:

Y A(k′)

=

U∑
u=1

[
Y A,u

sd (k′)

Ȳ
B,u
v1d

(k′ + Lf · Sf )

]

= HA,v
J ′ (k′)S̄

v
c (k

′)︸ ︷︷ ︸
desired user′s signal

+
U∑

u=1
u�=v

HA,u
J ′ (k′)S̄

u
c (k

′)

︸ ︷︷ ︸
MUI

+ Nu
J(k

′)︸ ︷︷ ︸
additive noise

(30)

where S̄
u
c (k

′), Nu
J(k

′), and HA,u
J ′ (k′) are defined similar to

S̄s(k), NJ (k), and HA
J (k) in (26), (27) and (28), respectively,

but refer to the transmission of the spread symbol block indexed
by k′ of user u. Furthermore, the desired user has been denoted
by v, the generalized user by u, and u �= v represents the
interfering user.

A MUD [26], [28] combined with the single-stream ML
detector in [1] and [2] may be used in the multiuser scenario
for jointly detecting the information on the different users.
Since the source information on the users in the kth symbol
block Su

s (k) is spread over Sf blocks from Y A(kSf + 1) to
Y A([k + 1]Sf ), the ML-MUD may be formulated as in (31),
shown below, to jointly estimate the set of indices for the
DM, i.e., q(k) = {q0(k), . . . , q(U−1)(k)}, and the constellation
symbol, i.e., lc(k) = {l0c(k), . . . , l

(U−1)
c (k)}. In (31), the trans-

mitted indices for the uth user are represented by qu and luc ,
respectively; suluc denotes the luc th constellation symbol of user
u; and (•)qu indicates the quth column of the matrix “•.”

Equations (30) and (31) explicitly portray the MUI, but
the MUD complexity escalates upon increasing the number of
users, despite the fact that each user activates a single DM
at a time, as indicated by the quth column of the dispersion
characterizing matrix χ in(

q̂(k), l̂c(k)
)

= argminq,lc

Sf∑
sf=1

{∥∥∥∥∥Y A,u
sd (k · Sf + sf )

−
U∑

u=1

h̃u
sd(k · Sf + sf )C

u
A(sf )S

qu,luc
s

∥∥∥∥∥
2

+

∥∥∥∥∥Ȳ B,u
v1d

([k + Lf ] · Sf + sf )

−
U∑

u=1

Cu
B(sf )s

u
luc

×
(
H̄

u
v1d

([k + Lf ] · Sf + sf )χ
)
qu

∥∥∥∥∥
2}

(31)
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IV. DESIGN OF A COOPERATIVE NONCOHERENT

MULTICARRIER SPACE-TIME SHIFT

KEYING SCHEME

Here, we introduce our differentially encoded and noncoher-
ently detected MC cooperative STSK scheme relying on SR
dispensing with any channel estimation (CE). This arrangement
retains all the benefits of its coherent counterpart but typically
requires a 3-dB higher power.

Regarding our differential encoding scheme, the following
points are worth mentioning with special emphasis.

1) The DMs we use for the differential cooperative STSK
scheme are directly generated unitary matrices Aq (q =
1, . . . , Q), which allow us to avoid the nonlinear Cayley
transform of [2].

2) The differential encoding requires satisfying the STSK-
related condition of relying on M = T , so that the resul-
tant STSK signaling blocks are (T × T )-element square
matrices.

3) Differential encoding of the MC-based system can be
performed either in the TD (differential encoding across
the consecutive symbols of the same subcarrier) or in
the FD (differential encoding across the symbols of the
adjacent subcarriers of the same MC-CDMA block). We
opted for invoking the TD approach because our scheme
was conceived for frequency-selective channels, which
exhibit flat fading for the individual subcarriers, whereas
the FD channel envelope of the adjacent subcarriers might
be different.

In the differential scheme, we utilize L′-differential PSK
modulation at the SN. The spread blocksSc(k

′)=[sc,1(k
′), . . . ,

sc,b(k
′)]T are obtained from Ss(k) by Sc(k

′)=[CA(sf )Ss(k)]
or by Sc(k

′) = [CB(sf )Ss(k)], where sf = 1, 2, . . . , Sf and
k′ = k × Sf + sf , depending on which frame is being trans-
mitted. The consecutive spread blocks under the same sub-
carrier are placed Nc blocks apart in any transmission frame,
where Nc is the number of subcarriers. Hence, the differentially
encoded transmit block S′

s(k
′) ∈ C

b×1 for k′ = −(Nc − 1),
. . . , 0, 1, 2, . . . , SfLf at the SN of each transmission frame is
related to Sc(k

′) by

S′
s(k

′) =

⎧⎨
⎩

[s′1(k
′), . . . , s′b(k

′)]T , k′ = 1, 2, . . . , SfLf

[1, 1, . . . , 1︸ ︷︷ ︸
b

]T , k′ = −(Nc − 1), . . . , 1, 0

(32)

where s′j(k
′) = s′j(k

′ −Nc)sc,j(k
′), j = 1, 2, . . . , b. Taking

differential decoding into consideration, the FD received sig-
nals Y A

sd(k
′) ∈ C

b×1 and Y B
sd(k

′) ∈ C
b×1 at the DN from the

direct SN–DN link during Frame-A and Frame-B transmissions
are then

Y ′
A(k

′) =HA
sd(k

′) [CA(sf )Ss(k)] + Ñd(k
′) (33)

Y ′
B(k

′) =HB
sd(k

′) [CB(sf )Ss(k)] + Ñd(k
′) (34)

respectively, where we make the substitutions HA
sd(k

′) =
diag{Y ′

A(k
′−Nc)[1], . . . , Y ′

A(k
′−Nc)[b]}∈C

b×b and HB
sd(k

′)=
diag{Y ′

B(k
′ −Nc)[1], . . . , Y ′

B(k
′ −Nc)[b]} ∈ C

b×b, Y ′
A(k

′ −
Nc)[1], . . . , Y ′

A(k
′ −Nc)[b] are the b symbols of the re-

ceived block Y ′
A(k

′ −Nc), and notation diag{a[1], . . . , a[b]}
represents a (b× b) diagonal matrix with diagonal entries
a[1], . . . , a[b].

The RN m of VAA i transmits only the mth row
of the differentially encoded STSK codeword, whereas the
STSK signaling block X(k) = s(k)Aq(k) ∈ C

T×T is created
from the correctly decoded bits at the RN by activating
a single DM, i.e., Aq(k)(q = 1, . . . , Q) for the transmis-
sion of the L-PSK or L-QAM symbol, i.e., s(k) = sl. The
STSK space–time codeword X(k) is further FD spread
to X̃(k′) = CA(sf )X(k) ∈ C

T×T sf = 1, 2, . . . , Sf or to
X̃(k′) = CB(sf )X(k) ∈ C

T×T sf = 1, 2, . . . , Sf , depending
on which frame is being transmitted, where k = �k′/Sf�
and sf = (k′ modSf ) (“mod” denotes the modulo operator).
Therefore, for the VAA–DN link, we have the differentially
encoded codeword Svi

(k′) ∈ C
T×T expressed by

Svi
(k′)=

{
Svi

(k′−Nc)X̃(k′), k′=1, 2, . . . , SfLf

IT , k′=−(Nc−1), . . . , 1, 0
(35)

for each transmit frame, where IT ∈ C
T×T denotes the

identity matrix.
Defining the signals received via the VAA–DN links

Y A
v2d

(k′) ∈ C
1×T and Y B

v1d
(k′) ∈ C

1×T in terms of the relay
activation parameter αm as in (5) and (6), we have

Y A
v2d

(k′) =Y A
v2d

(k′ −Nc)CB(sf )X(k − Lf )

+ N̄
′
v2d

(k′) (36)

Y B
v1d

(k′) =Y B
v1d

(k′ −Nc)CA(sf )X(k − Lf )

+ N̄
′
v1d

(k′) (37)

where N̄
′
v2d

(k′) ∈ C
1×T and N̄

′
v1d

(k′) ∈ C
1×T are the corre-

sponding AWGN vector.
Replacing Y A

v2d
(k′ −Nc) and Y B

v1d
(k′ −Nc) by Hv2d(k

′)
and Hv1d(k

′), respectively, for the differential scheme, the
equivalent received signals Ȳ A

v2d
(k′) = vec[Y A

v2d
(k′)] ∈ C

T×1

and Ȳ
B
v1d

(k′) = vec[Y B
v1d

(k′)] ∈ C
T×1 may be expressed as

Ȳ
A
v2d

(k′) =Hv2d(k
′)CB(sf )χK(k − Lf ) + N̆

′
v2d

(k′) (38)

Ȳ
B
v1d

(k′) =Hv1d(k
′)CA(sf )χK(k − Lf ) + N̆

′
v1d

(k′) (39)

where Hv2d(k
′)=
√
Gvid[IT⊗Hv2d(k

′)]∈CT×MT , Hv1d(k
′)=

IT ⊗Hv1d(k
′)]∈C

T×MT , N̆
′
v2d

(k′)=vec[N̄
′
v2d

(k′)]∈C
T×1,

N̆
′
v1d

(k′) = vec[N̄
′
v1d

(k′)] ∈ C
T×1, and M = T .

Applying FD double-frame matched-filter-based despread-
ing at the DN, we obtain

zA
s (k) = H̄

A
sd(k)Ss(k) + Iv2

(k) +Nd(k) (40)

z̄A
v2
(k) = H̆v2d(k)χK(k − Lf )

+ Is(k) +Nv2d(k) (41)

zB
s (k − Lf ) = H̄

B
sd(k − Lf )Ss(k − Lf )

+ Iv1
(k − Lf ) +Nd(k − Lf ) (42)

z̄B
v1
(k + Lf ) = H̆v1d(k + Lf )χK(k)

+ Is(k + Lf ) +Nv1d(k + Lf ) (43)
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Fig. 4. Transmission model of the near-capacity RSC and URC-aided SN and RNs of the cooperative MC scheme between two VAAs.

Fig. 5. Three-stage iterative detector at the destination.

where H̄
A
sd(k), H̄

B
sd(k), H̆v1d(k), and H̆v2d(k) are related to

HA
sd(k

′), HB
sd(k

′), Hv1d(k
′), and Hv2d(k

′), respectively, in a
similar manner, as in (19) and (20).

The joint ML detector of (29) can be now applied, employing
zA
s (k), z̄

B
v1
(k + Lf ), H̄

A
sd(k), and H̆v2d(k + Lf ) to estimate

the Frame-A information. For the estimation of Frame-B signal,
the joint ML detector of (29) has to be applied employing
zB
s (k − Lf ), z̄A

v2
(k), H̄B

sd(k − Lf ), and H̆v2d(k).

V. CHANNEL-CODED SOFT-DECISION SUCCESSIVE

RELAYING-AIDED MULTICARRIER COOPERATIVE

SPACE-TIME SHIFT KEYING

Here, we propose the powerful channel-coded cooperative
scheme shown in Figs. 4 and 5, which employs soft-decision-
based iterative detection. As demonstrated in Fig. 4, our trans-
mitter consists of a three-stage serially concatenated recursive

systematic convolutional (RSC) and unity-rate-coding-aided
(URC) L-PSK/QAM mapper followed by the MC-CDMA
FD spreader plus the inverse fast Fourier transform (IFFT)-
module-based modulator. At each of the RNs of each VAA, the
same two-component serially concatenated RSC-URC scheme
is amalgamated with our MC-based STSK despread/spread and
de/encode regime. The blocks Πs and Πr in Fig. 4 represent the
random bit interleavers used both at the SN and at each RN of
each VAA. Our soft-decision-based scheme can be employed
for both the coherent and differential cooperative MC STSK
arrangements, where the latter has a differential encoding block
before the transmit antenna. The differential encoding block is
shown as a dotted line in Fig. 4.

The iterative receiver of the destination in our three-stage
cooperative arrangement is portrayed in Fig. 5. The signals
received after FFT and FD despreading during phase n at the
DN are iteratively detected. Except for the first and last phases
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of the (N + 1)-phase relaying protocol, the DN jointly detects
the information on phase n gleaned from the signals received
from the SN, in addition to that acquired via the VAA during
phase (n+ 1). As such, the relayed signal of frame (n+ 1) is
jointly detected with the SN’s signal of frame n, whereas that
from the relayed frame n is treated as interference.

The conditional probability p(ZA(k) | S̄q, l
s ,HJ(k)) can be

deduced according to the system model described by (25) as

p
(
ZA(k) | S̄q,l

s ,HJ(k)
)
=

1
(πN0)b+T

e−
‖ZA(k)−HA

J
(k)S̄

q,l
s ‖2

N0

(44)
where∥∥∥ZA(k)−HA

J (k)S̄
q, l
s

∥∥∥2
=

∥∥∥∥
[

zA
s (k)

z̄B
v1
(k + Lf )

]
−
[

h̄sd(k)S
q, l
s

H̄v1d(k + Lf )χKl,q

]∥∥∥∥2 (45)

and Sq, l
s (k) and S̄

q, l
s (k) represent the symbol blocks, as dis-

cussed in Section III and specified by indices (q, l). For the
differential scheme, the substitutions detailed in Section IV
have to be made.

We note that, if at stage n, the equivalent FD received signal
zA
s (k) received directly from the SN carries B channel-coded

bits b = [b1, b2, . . . , bB ], then the extrinsic log-likelihood ratio
(LLR) of bits bk, k = 1, . . . , B gleaned from the demapper can
be expressed as [27], [29]

L1,E(bk) = ln

∑
Sq,l

s ∈S1

e
−‖zA

s (k)−h̄sd(k)S
q, l
s ‖2

N0
+
∑
j �=k

bjL1, A(bj)

∑
Sq,l

s ∈S0

e
−‖zA

s (k)−h̄sd(k)S
q, l
s ‖2

N0
+
∑
j �=k

bjL1, A(bj)

(46)

where S1 and S0 represent the subsets of the legitimate signal
vectors transmitted directly by the SN–DN link Ss(k) corre-
sponding to bits bk = 1 and bk = 0, respectively, and L1,A(bj)
is the a priori LLR corresponding to the “inner” decoder
bits bj .

Similarly, the (n+ 1)-stage LLRs acquired from the VAA
demapper for the same bits bk, k = 1, . . . , B obtained from
zB
v1
(k + Lf ) can be formulated as (47), shown at the bottom

of the page, where K1 and K0 represent the subspaces of the
possible equivalent transmit vectors K for bk = 1 and bk = 0,
respectively, and L2,A(bj) is the a priori LLR of the “outer”
decoder corresponding to bits bj .

Equations (46) and (47) can be rewritten using the
approximate-logarithmic-maximum a posteriori (Approx-log-
MAP) algorithm [30], [31] as

L1,E(bk) = jac
Sq, l

s ∈S1

[d1]− jac
Sq, l

s ∈S0

[d1], (48)

and

L2,E(bk) = jac
Kl,q∈K1

[d2]− jac
Kl,q∈K0

[d2], (49)

respectively, where jac [•] represents the Jacobian logarithm of
the expression ‘•’ and d1 and d2 are given by

d1 = −
∥∥zA

s (k)− h̄sd(k)S
q,l
s

∥∥2
N0

+
∑
j �=k

bjL1,A(bj), (50)

and

d2 = −
∥∥zB

v1
(k + Lf )− H̄v1d(k + Lf )χKl,q

∥∥2
N0

+
∑
j �=k

bjL2,A(bj), (51)

respectively. We repeat here that the substitutions detailed in
Section IV have to be made for the differential scheme.

Now the exchange of extrinsic information takes place be-
tween the DN’s demapper-URC-RSC decoder processing frame
n (which may be referred to as the “inner” decoder) and the
STSK demapper-URC block detecting the VAA frame (n+ 1)
(treated as the “outer” decoder). The extrinsic LLR is appro-
priately interleaved and deinterleaved by the SN and by the
VAA interleavers and deinterleavers Πs, Π−1

s , Πr, and Π−1
r ,

respectively, for the sake of generating the appropriate a priori
LLRs for the next iteration. During the last “outer” iteration,
the LLR values L1, p(u1) of the original information bits u1

are passed to the hard-decision block of Fig. 5 to estimate the
source information. The source information on the next frame
is detected in the same manner, processing the frame received
directly from the SN by the DN and the relayed frame received
during the consecutive cooperative frame from the other VAA.
This process continues, until the detection of the last frame
is completed.

VI. PERFORMANCE OF THE PROPOSED SCHEME

Here, the performance of our cooperative MC STSK scheme
relying on the parameters of Table I is investigated and com-
pared with that of our benchmark schemes. The performance of

L2,E(bk) = ln

∑
Kl,q∈K1

exp

[
−‖zB

v1
(k+Lf )−H̄v1d(k+Lf )χKl,q‖2

N0
+
∑
j �=k

bjL2,A(bj)

]

∑
Kl,q∈K0

exp

[
−‖zB

v1
(k+Lf )−H̄v1d(k+Lf )χKl,q‖2

N0
+
∑
j �=k

bjL2,A(bj)

] (47)



KADIR et al.: SR-AIDED DF COHERENT VERSUS NONCOHERENT COOPERATIVE MC STSK 2553

TABLE I
MAIN SIMULATION PARAMETERS

the STSK-based scheme, particularly its diversity–multiplexing
tradeoff, depends mainly on the specific objective function
(OF) used for the optimization of the DMs utilized [1]. More
explicitly, the preassigned spreading matrices can be optimized
using different OFs, as detailed in [6] and [27]. We have
employed an exhaustive search over 106 candidate DM sets
for minimizing the pairwise symbol error probability under
the power constraint as mentioned in Section II-B for the
optimization of the DMs used in our proposed scheme. Further
detailed discussions on the spreading matrix design can be
found in [33]–[35].

Fig. 6 shows the bit-error-rate (BER) performance of the
coherent cooperative MC STSK (2, 2, 4) scheme employing
QPSK modulation and compares the performances of different
DF schemes in the dispersive typical urban scenario charac-
terized by the COST 207-TU12 channel model. The detailed
power and delay profile of the 12 taps that determine the
coherence bandwidth and/or delay spread of this channel model
may be found in [32] and [36, App. E]. The delay spread
of the channel is found to be στ = 1.0 μs, which determines
the coherence bandwidth according to [37] Bc = 1/(α · στ ) =
1/((2π) · στ ) ≈ 160 KHz, where the value of the constant α =
2π is assumed according to [38]. These channel parameters and
the overall system’s symbol duration of Ts = 500 ns demon-
strate that the individual subchannels experience frequency-flat
fading, and the length of cyclic prefixes adopted in Table I
ensures the absence of ISI. The different DF schemes compared
in our investigations, however, are 1) the perfect DF scheme,
2) the proposed scheme assuming perfect interference cancela-
tion, 3) the proposed SR scheme employing CRC-based selec-
tive DF, and 4) the conventional DF scheme. The perfect DF
scheme represents the proposed scheme, assuming perfect de-
coding at the RNs, i.e., where all the RNs of each VAA take part
in cooperation, whereas the conventional DF schemes allow
retransmissions from the VAA RNs without checking whether
any decoding error has occurred at the RNs or not. Finally, the
perfect-interference-cancelation-oriented scheme assumes that

Fig. 6. BER performance of our single-user selective SR MC cooperative
coherent STSK (2, 2, 4) QPSK scheme with Sf = 16 in the dispersive
COST207-TU12 channel and other parameters, as shown in Table I, compared
against different scenarios, such as the perfect DF scheme, CRC-based scheme
assuming perfect interference cancelation, cooperative DF scheme without
CRC activation, and the noncooperative QPSK scenario.

no SR-induced interference is imposed. The BER performance
of the noncooperative scenario employing QPSK modulation
and the same parameters is also shown in Fig. 6. We observe
that the proposed CRC-activated scheme can benefit from a
higher diversity gain than either the conventional DF or the
noncooperative schemes and attains an increased throughput as
a benefit of using SR.

To investigate the performance of the interference mitiga-
tion process using a double-frame matched filter, the scheme
was further studied using spreading codes having different
spreading factors. To be specific, the investigations were carried
out using the CRC-activated cooperative MC STSK (2, 2, 2)
scheme employing binary PSK (BPSK) modulation relying
on Sf = 16, 64, 256 and the parameters of Table I. The cor-
responding performance results are presented in Fig. 7. The
performance of the proposed scheme is again compared against
those of the four different DF schemes as in Fig. 6 and of
the noncooperative BPSK scenario. Observe in Fig. 7 that our
MC-CDMA-based scheme succeeds in circumventing the
channel-induced dispersion and exhibits an improved perfor-
mance upon increasing the spreading factor. Upon increasing
Sf , the scheme provides additional FD diversity gains, and the
specific FD despreading mitigates the SR-induced interference.

The performance of the proposed cooperative MC-CDMA
STSK scheme associated with Sf = 256 and recorded for
different geographical positions of the VAAs is shown in
Fig. 8, together with the achievable multiuser performance. The
shapes of the performance curves in single-user scenarios were
observed to be shifted toward higher or lower SNRs, owing
to the location-related reduced or increased channel gains,
respectively. The performance achieved when supporting U =
4 users and an SN–VAA distance of one third relative to the
direct SN–DN link is shown in Fig. 8, which is observed to be
degraded by MUI. The performance erosion may, however, be
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Fig. 7. Achievable BER performance of the proposed (2, 2, 2) scheme in
conjunction with BPSK modulation having Sf = 16, 64, 256 single users in
dispersive COST 207-TU12 channel compared against those with the perfect
DF cooperation and with the scheme having complete interference cancelation.
The noncooperative benchmarker having the same parameters and the same
throughput is also shown.

Fig. 8. Performance of the single-user scheme under different SN–VAA
distances relative to the direct SN–DN distance. Achievable performance em-
ploying different MC systems, namely, MC-CDMA with Sf = 256, OFDMA,
SC-FDMA using FD MMSE equalization supporting U = 4 users, and 1/3
relative SN–VAA distance is also shown, together with the MC-CDMA per-
formance of the ML-MUD, as proposed in (31).

mitigated by employing a MUD formulated in (31). The scheme
employing OFDMA and SC-FDMA using FD MMSE equaliza-
tion and localized subcarrier allocation supporting U = 4 users,
on the other hand, exhibits a further degraded performance, as
shown in Fig. 8. This degradation is a consequence of the SR-
induced IRI and CCI, demonstrating the benefits of MC-CDMA
compared with other candidate MC systems.

Fig. 9. BER performance of the proposed MC SR BPSK modulated coherent
and DSTSK (2, 2, 2) scheme with Sf = 256 single users in COST 207-TU12
channel. The differential scheme suffers from −3 dB performance penalty
compared with its coherent counterpart. The effects of the CE errors for the
coherent scheme is characterized by the assumed Gaussian CSI estimation error
SNR of ω = −10 and −5 dB.

The performance of our cooperative DSTSK (2, 2, 2) scheme
relying on BPSK modulation having Sf = 256 is characterized
in Fig. 9, which may be directly compared with its coherent
counterpart. The effects of the channel state information (CSI)
estimation error associated with the coherent scheme are also
investigated. More particularly, we assume the CE errors to be
Gaussian distributed, and the level of CSI errors is quantified
in terms of an equivalent CSI-error SNR of ω = −10 and
−5 dB below the received signal power. For example, the
perfect CSI scenario corresponds to ω = −∞ dB, whereas
ω = −10 dB represents CSI error power, which is one tenth of
the received signal power. Observe in Fig. 9 that the differential
scheme suffers from a performance penalty of about 3 dB
compared with the perfect-CSI-aided coherent scheme, owing
to the inherent noise doubling process of differential encoding.
By contrast, the cooperative coherent scheme’s performance
was severely degraded by the inevitable CSI estimation errors.
The FD spreading renders our scheme less susceptible to CSI
errors because a bit might still become recoverable if some of
the spreading-code chips become corrupted. Nonetheless, the
coherent scheme is seen to exhibit a considerable error floor in
Fig. 9. Moreover, the coherent scheme requires the transmission
of pilot symbols, in addition to the CRC overhead. In the light of
the impediments of the coherent scheme mentioned previously,
the differential MC STSK system may be deemed an attractive
candidate for cooperative MIMO-aided MC communications.

Fig. 10 characterizes the achievable BER performance of
the soft-decision-aided channel-coded cooperative MC-CDMA
STSK (2, 2, 4) QPSK scheme using Sf = 16 in the context
of wideband channels, where we have employed a half-rate
RSC code having a constraint length of k = 2, the genera-
tor polynomials of (gr, g) = (3, 2)8, and two random inter-
leavers of length 2.4 million bits. Both the coherent and the
differential cooperative schemes are benchmarked against the
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Fig. 10. Achievable performance of soft-decision three-stage turbo cooper-
ative MC-CDMA STSK (2, 2, 4) QPSK with Sf = 16 single users commu-
nicating over the COST207-TU12 channel (fd = 0.01). The performance of
both the coherent and differentially encoded SR schemes is provided with that
of the direct noncooperative and half-duplex cooperative benchmarkers. The
maximum achievable rates of the corresponding schemes, computed by the
EXIT-chart-based analysis, are also provided.

noncooperative scheme and against the cooperative arrange-
ment employing no SR schemes. As observed in Fig. 10, the
noncoherent scheme exhibits a slight performance degradation
compared with its coherent counterpart. However, the nonco-
herent scheme has the potential advantage of dispensing with
CE. The noncooperative scheme exhibits a substantially eroded
performance, whereas the half-duplex scheme shows a some-
what better performance, albeit this is achieved at the cost of a
severe throughput loss. The number of inner and outer decoder
iterations was set to Iinner = 2 and Iouter = 6, respectively. The
maximum achievable rates were estimated by evaluating the
area under the EXIT chart of the corresponding inner decoder,
which are shown in Fig. 10. To be more specific, we exploited
using the area property of EXIT charts, as discussed in [39]
and [40], which states that the maximum achievable rate is
determined by the area under the inner decoder’s EXIT curve,
whereas the maximum capacity Cmax may be formulated as

Cmax(SNR) ≈ R ·Ainner(SNR) (52)

where Ainner is the aforementioned area corresponding to a
certain SNR value, and R is the number of bits per symbol.

Fig. 11 shows the EXIT chart of the SR-aided cooperative
MC-CDMA STSK (2, 2, 4) QPSK scheme using Sf = 16 at a
channel SNR of 0 dB. It is shown in Fig. 11 that the inner de-
coder’s EXIT curve reached the point of perfect decoding con-
vergence (1.0, 1.0), which is the explicit benefit of employing
URC precoding [27]. We also observe that an open EXIT tunnel
was formed at SNR = 0 dB, and the EXIT curve at SNR =
0 dB was also confirmed by the corresponding Monte Carlo-

Fig. 11. EXIT trajectory recorded at 0 dB of our three-stage turbo detected
SR-aided cooperative MC-CDMA STSK (2, 2, 4) QPSK with Sf = 16
single users communicating over the COST207-TU12 channel (fd = 0.01),
together with the inner decoder EXIT curves at 0 dB and the outer decoder
EXIT function.

simulation-based staircase-shaped decoding trajectory [41].
Therefore, it may be predicted that an infinitesimally low BER
is achieved at SNR = 0 dB using Iouter = 6 outer iterations.

VII. CONCLUSION

In this paper, we proposed a novel cooperative MC STSK
scheme using selective DF and SR to recover the half-duplex
multiplexing loss. The scheme is capable of striking a flexible
diversity versus multiplexing gain tradeoff with the aid of the
recent STSK concept at low decoding complexity.

The SR regime assists in recovering the half-duplex through-
put loss at the cost of imposing inter-VAA interference and
interstream interference at the DN [15], [16]. The problem of
Inter-VAA interference is eliminated by invoking the proposed
CRC-based selective DF cooperation along with the specific FD
despreading regime used, whereas the interstream interference
is mitigated by using our double-frame-based chip-waveform
matched filter [17] along with the proposed joint single-stream-
based ML decoding.

Furthermore, to overcome the performance degradation im-
posed by CE errors, we proposed a cooperative MC DSTSK
scheme, which retained all the fundamental benefits of the
coherent scheme. As a further advance, we also proposed a
serially concatenated channel-coded and soft-decision-based
iteratively decoded cooperative STSK architecture. In a nut-
shell, the scheme has the inherent design flexibility of adap-
tively selecting the number of RNs in the VAAs and the
ability to strike a flexible rate–diversity tradeoff, depending
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on the near-instantaneous channel conditions while providing
protection against the frequency selectivity of the channel.
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