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Abstract—Pseudonoise (PN) sequences are widely used as preamble se-
quences to establish timing synchronization in military wireless communi-
cation systems. At the receiver, searching and detection techniques, such as
the full parallel search (FPS) and the serial search (SS), are usually adopted
to acquire correct timing position. However, the synchronization sequence
has to be very long to combat jamming that reduces the signal-to-noise
ratio (SNR) to an extremely low level. In this adverse scenario, the FPS
scheme becomes too complex to implement, whereas the SS method suffers
from the drawback of long mean acquisition time (MAT). In this paper,
a fast timing acquisition method is proposed, using the multilayer syn-
chronization sequence based on cyclical codes. Specifically, the transmitted
preamble is the Kronecker product of Bose–Chaudhuri–Hocquenghem
(BCH) codewords and PN sequences. At the receiver, the cyclical nature of
BCH codes is exploited to test only a part of the entire sequence, resulting
in shorter acquisition time. The algorithm is evaluated using the metrics
of MAT and detection probability (DP). Theoretical expressions of MAT
and DP are derived from the constant false-alarm rate (CFAR) crite-
rion. Theoretical analysis and simulation results show that our proposed
scheme dramatically reduces the acquisition time while achieving similar
DP performance and maintaining a reasonably low real-time hardware
implementation complexity, in comparison with the SS scheme.

Index Terms—Bose–Chaudhuri–Hocquenghem (BCH) code, code
acquisition, hierarchical preamble, pseudonoise (PN) sequence, timing
synchronization.
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I. INTRODUCTION

For a wireless communication system, timing synchronization is the
first key operation at the receiver. To combat with the situations of
extremely low SNR caused by adverse jamming, such as in military
wireless systems, very long pseudonoise (PN) sequences are usually
used as preamble sequences because of their good correlation property
[1]. At the receiver, correlation and search are performed to acquire
the phase of the incoming sequence. This is often accomplished in
two stages: acquisition and tracking. At the acquisition stage, a coarse
timing alignment of the locally generated replica with the received
signal is performed to guarantee that the phase of the incoming
sequence is within the locking range of the tracking stage. In this paper,
we focus on the first stage, i.e., the acquisition problem.

Conventional acquisition methods include full parallel search (FPS),
serial search (SS), and hybrid search (HS). FPS is not suitable for
antijamming communication applications due to its excessive real-
time hardware implementation complexity [2]. On the other hand, SS
is simple to implement but suffers from the drawback of long mean
acquisition time (MAT) [3], [4]. The difficulty associated with SS
becomes intolerable when the synchronization sequence is very long
[5]. An HS scheme may be viewed as a search method that attempts
to strike a compromise between the FPS and SS, in terms of a tradeoff
between hardware complexity and MAT performance [6].

To improve the MAT performance, in [7] and [8], acquisition
schemes in which the preamble sequences are viewed as codewords are
proposed, and the acquisition problem is reformulated as a decoding
problem. An iterative message passing (IMP) algorithm or a soft-
in–soft-output decoding algorithm can be then used to decode the
information bits from the received sequence. The problem associated
with this approach is that the IMP method is usually stuck at the local
optima because of the cyclical and regular nature of the constructed
tanner graph. The real-time hardware implementation complexity of
this approach is also extremely high because iterative soft decoding
has to be implemented [9].

In this paper, a fast and low-complexity code-acquisition method is
proposed. The proposed method is well suited for military systems,
but it is equally applicable to other communication systems where
a long PN code is needed and where fast acquisition is required.
Instead of using PN sequences, a multilayer preamble code design
is advocated. The proposed code is the Kronecker product of a
Bose–Chaudhuri–Hocquenghem (BCH) code and a PN sequence. The
initial phase of the received sequence can be computed by partial corre-
lation and hard-decision decoding. Consequently, the acquisition time
of our algorithm is greatly reduced, compared with the conventional
SS algorithm, whereas our algorithm achieves a significantly lower
real-time hardware implementation complexity, in comparison with
the HS algorithm. The proposed method is also different from the
one used in the Third Generation Partnership Project [10], where the
acquisition is based on hierarchical matched filtering. In our proposed
acquisition method, instead of searching for the maximum peak in all
the correlation values, hard-decision decoding is used to compute the
initial phase of the received sequence. Taking advantage of the cyclical
characteristic of BCH codes, only a part of the positions needs to be
tested, and this results in low-complexity implementation of timing
acquisition.

The rest of this paper is organized as follows. Section II describes
our proposed preamble design and timing acquisition algorithm,
whereas Section III provides the detailed performance analysis of our
acquisition algorithm. Section IV presents the performance evaluation
of our proposed design using simulation, whereas our conclusions are
summarized in Section V.

0018-9545 © 2013 IEEE
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II. PROPOSED DESIGN

A. Synchronization Sequence

The generation of the synchronization sequence includes two steps.
First, a (n, k) BCH codeword is selected, which is known to both the
transmitter and the receiver. Denote the generator matrix of this BCH
code as G. The transmitted codeword can be written as ct = xtG,
where xt = [x0, x1, . . . , xk−1], xi ∈ GF (2) for 0 ≤ i ≤ k − 1, and
ct = [c0, c1, . . . , cn−1]. The binary phase-shift keying (BPSK) mod-
ulated sequence of ct is denoted by

st = [s0, s1, . . . , sn−1] (1)

with si = (−1)ci , 0 ≤ i ≤ n− 1. The second step is to spread the
modulated symbols with a PN sequence. We use a maximum-
length feedback shift register generated sequence (m-sequence)
as the spreading sequence, which can be written as w =
[w0, w1, . . . , wM−1] with wi ∈ {−1, 1} for 0 ≤ i ≤ M − 1. The
synchronization sequence can therefore be written as K(st,w), where
K(·) denotes the Kronecker product operator. It can be seen that this
synchronization sequence has a length of L = nM .

Assuming that the synchronization sequence is repeatedly sent, the
transmitted synchronization sequence signal can be written as [11]

s(t) =

∞∑
j=0

n−1∑
i=0

√
Ecsi

M−1∑
k=0

wkgc(t− iMTc − kTc − jnMTc)

(2)

where wk is the kth chip of the m-sequence, Ec is the chip power,
Tc is the chip period, and gc(t) is the chip shaping pulse. It can be
seen that the preamble signal s(t) is periodic with period LTc, where
L = nM . If the communication link can be modeled as an additive
white Gaussian noise (AWGN) channel, the received preamble signal
can be written as

r(t) = s(t− τ) + ε(t) (3)

where τ is the time delay to be estimated, and ε(t) is the channel’s
AWGN with power spectral density N0/2. When jamming is present in
the link, the received jamming signal can be also modeled as Gaussian
noise as the jamming signal will be despread to the whole frequency
band after the correlation process [1], [11], [12].

The sampling period at the receiver is assumed to be Ts = Tc/N ,
where N indicates the oversampling rate. At the acquisition stage,
however, the receiver observes the received signal at a time interval
of Tc with the step of Ts, i.e., sampling r(t) at period Tc and when the
acquisition fails, shifting the sampling position by Ts. As the locking
range of the tracking loop is usually Tc/2, a successful acquisition
can be declared if the estimated time delay τ̂ satisfies |τ̂ − τ | ≤ Tc/2.
The perfect sampling position can be estimated at the tracking stage,
provided that there is a sufficient number of samples per chip, i.e., N
is sufficiently large [13]. Therefore, it is reasonable to assume that the
sampling position is perfect in the acquisition stage to simplify the
analysis.

Assuming that the time delay is τ=dTc, and letting p=�(d/M)�
and q=d−pM , the observed sequence has the form of

ri = [r(iLTc), r ((iL+ 1)Tc) , . . . , r ((iL+M − 1)Tc)

r ((iL+M)Tc) , . . . , r ((iL+ L− 1)Tc)]

= [a0, a1, . . . ,an−1] (4)

where al, 0 ≤ l ≤ n− 1 is the vector of length M given by

al = [r ((iL+ lM)Tc) , r ((iL+ lM + 1)Tc)

. . . , r ((iL+ lM +M − 1)Tc)] . (5)

Since r(t) = s(t− τ) + n(t) and s(t) is periodic with the period LTc,
we have

al = [s ((lM − d)Tc) , s ((lM + 1 − d)Tc)

. . . , s (((l + 1)M − (d+ 1))Tc)]

+ [ε(lMTc), ε ((lM + 1)Tc) ,

. . . , ε (((l+ 1)M − 1)Tc)]

= sl + εl (6)

where

sl = Ec [sl−pwq, sl−pwq+1, . . . , sl−pwM−1, sl−p+1w0

sl−p+1w1, . . . , sl−p+1wq−1] . (7)

B. Acquisition Algorithm

As we aim for a rapid timing acquisition, a coherent detection
approach is assumed for simplicity [14]. The diagram of the proposed
synchronization scheme is shown in Fig. 1. The key idea of our design
is to break up the filtering computation into partial correlation. Unlike
the design used in [10], the second-layer sequence of our design is
the BCH code. Therefore, the BCH decoder is adopted, instead of
a second-layer matched filter, as used in [10]. Due to the cyclical
property of BCH codes, the decoding will be successful once the first
layer sequence is aligned.

The decision variable for each symbol is generated by correlating al

with w. Denote the decision variable for the lth symbol as vl, where
0 ≤ l ≤ n− 1. We have

vl = alw
T = slw

T + zl (8)

where (·)T denotes the transposition operator, and zl = εlw
T is

a Gaussian-distributed random variable with zero mean and vari-
ance MN0. The decision variables for ri can be written as v =
[v0, v1, . . . , vn−1]. Substituting (7) into (8) leads to

vl =
√

Ec

M−q−1∑
k=0

sl−pwk+qwk

+
√

Ec

M−1∑
k=M−q

sl−p+1wk−M+qwk + zl. (9)

Noting that τ = dTc and q = d− pM , and utilizing the autocorrela-
tion property of w, we have

vl =

{
M

√
Ecsl−p + zl, τ = pMTc

BM

√
Ec + zl, otherwise.

(10)

BM is a binomial-distributed random variable, whose probability mass
function is

P (BM = M − 2i) =

(
M

i

)(1
2

)M

, i ∈ {0, 1, . . . ,M} (11)

where
(
M
i

)
denotes the number of combinations when selecting i

elements from a set of M . We use P (·) to denote the probability
density function for a continuous random variable and the probability
mass function for a discrete random variable.
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Fig. 1. System diagram of the proposed timing acquisition algorithm at receiver.

Note that the discrete binomial-distributed random variable BM

can be approximated by a continuous random variable with normal
distribution [15] when M is sufficiently large, e.g., M ≥ 20. From (9),
it can be seen that the mean value of BM

√
Ec is 0, and its variance is

MEc. When the testing cell satisfies condition τ = pMTc, i.e., q = 0,
it is referred to as an in-phase cell; otherwise, it is called an out-of-
phase cell.

Denote cr = [ĉ0, ĉ1, . . . , ĉn−1], where ĉl is the hard-decision bit
estimated according to

ĉl =
{

0, vl > 0
1, otherwise.

(12)

It is easily seen that cr takes the form of

cr=[cn−p, cn−p+1, . . . ,cn−1, c0, c1, . . . ,cn−p−1]

+ [e0, e1, . . . , en−1]. (13)

The first part of cr is a cyclically shifted version of ct given by

ρ(ct, p)=[cn−p, cn−p+1, . . . , cn−1, c0, c1, . . . , cn−p−1]. (14)

According to the cyclical properties of BCH codes, ρ(ct, p) is also
a legal codeword of the chosen (n, k) BCH code. The second part
of cr is an error pattern. The number of nonzero elements in e =
[e0, e1, . . . , en−1] is the number of the errors occurred, which is
denoted by Ne. Let the number of correctable errors for the chosen
BCH code be Nc. All the errors in cr can be corrected, as long as Ne ≤
Nc. Denote the BCH decoded codeword by cd = [c̃0, c̃1, . . . , c̃n−1].
Suppose that the testing cell is an in-phase cell and that the BCH
decoding succeeds. Then, we have cd = ρ(ct, p).

There are two ways to estimate p if the transmitted codeword is
known to the receiver. The basic idea is to locate xt in cd = ρ(ct, p).
Once xt is located, p can be determined according to (14). For a
systematic BCH code, xt = [c0, c1, . . . , ck−1], and the first kth
symbol in ρ(ct, p) uniquely indicates p. Therefore, the position of
p can be simply determined by shifting and comparison. The other
method is to use a lookup table (LUT). The first method is simple but
requires a small amount of processing time that will not exceed nTc.

The second method does not need extra processing time, but ROM
is required to implement the LUT. However, since only n positions
need to be looked into, the size of this ROM is negligible. Therefore,
the LUT approach may be favorable when rapid synchronization is
required.

To confirm that there is a preamble signal, the correlation between
the decoded signal and the received signal is calculated. The local
template is generated as y=K(sd,w), where sd=[s̃0, s̃1, . . . , s̃n−1]

with s̃i = (−1)̃ci for 0 ≤ i ≤ n− 1. The correlation value between y
and ri is given by

R = riy
T . (15)

The state of acquisition is declared when the following condition
is met:

R > Rth (16)

where Rth is the threshold value calculated according to the required
constant false-alarm rate (CFAR). When the testing cell is an in-phase
cell and cd is correctly decoded, this is a true acquisition. However,
when the testing cell is an out-of-phase cell, each element in sd
randomly takes the value from {−1, 1}. Then, condition (16) gives
a false confirmation of acquisition. We will further address the FAR,
the probability of detection, and the choice of the threshold value Rth

in the following.
If the decoding process fails or the confirmation of preamble signal

fails, the observed sequence will be cyclically shifted by Ts, and
the decoding process or the correlation is repeated. If the incoming
sequence is a preamble sequence, a successful timing acquisition
should be declared with at most MTc/Ts shifts. Therefore, if no
acquisition can be declared after MTc/Ts shifts, it is considered as
a failed acquisition.

III. PERFORMANCE ANALYSIS

Here, the detection probability (DP) and the FAR of the proposed
timing acquisition scheme are analyzed based on the Neyman–Pearson
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criterion [16]. We will also derive the MAT and complexity of our
algorithm and discuss the choice of the threshold value Rth in the
acquisition confirmation.

A. FAR and DP

The false alarm happens when the testing cell is out of phase but is
mistaken as an in-phase cell. In this case, the decision variable vl for
the lth symbol takes the form of

vl = BM + zl (17)

where BM can be modeled as a Gaussian random variable with zero
mean and variance MEc. Therefore, vl can be modeled by a Gaussian
random variable with zero mean and variance of MEc +MN0.
The hard decision s̃l for the lth symbol has the probability mass
function of

P (s̃l = −1) = P (s̃l = 1) = P (vl > 0) =
1
2

(18)

since s̃l takes the value randomly from {−1, 1}. Therefore, the false
alarm happens when this random sequence v is decoded as ct or
ρ(ct, j), and the condition R > Rth holds. The FAR for the first part
is given as

Pfd = 2k−n

Nc∑
i=0

(
n

i

)
(19)

where Nc is the number of errors that can be corrected by the BCH
decoding. According to the central limit theorem, R can be modeled as
a Gaussian random variable with zero mean and variance σ2 = LEc +
LN0. Therefore, under the assumption that the two events, i.e., v is
decoded as ρ(ct, j) and R > Rth holds, are independent, the overall
FAR is given by

Pfa = Pfd

∞∫
Rth

1√
2πσ2

exp

(
− x2

2σ2

)
dx

=Pfd · 1
2
erfc

(
Rth√

2(LEc + LN0)

)
(20)

where the complementary error function erfc(x) is defined by

erfc(x) =
2√
π

∞∫
x

e−τ2
dτ. (21)

It is important to point out that, in the CFAR scenario, it is required
that Pfa < Cfa, where Cfa is a very small constant (e.g., 10−5). In this
case, when Pfd < Cfa, there is no need to confirm by correlation as it
is guaranteed that Pfa ≤ Pfd < Cfa.

On the other hand, a successful detection will happen only when
the decoding succeeds and the correlation test R > Rth is true. In this
case, we have ri = y+ εi, where εi = [ε0, ε1, . . . , εL−1], and each
element of εi is a white Gaussian random variable with variance N0.
As a result, we have R = L

√
Ec + zr , where zr is a Gaussian random

variable with zero mean and variance LN0. Therefore, the DP can be
written as

Pd =Pdec

∞∫
Rth

1√
2πLN0

exp

(
− (x− L

√
Ec)

2

2LN0

)
dx

=Pdec ·
1
2
erfc

(
Rth − L

√
Ec√

2LN0

)
(22)

where Pdec is the probability of successful BCH decoding. As decod-
ing will succeed only when there are no more than Nc errors in cr,
Pdec can be expressed as

Pdec =

Nc∑
j=0

(
n

j

)
(Pe)

j(1 − Pe)
n−j (23)

where Pe is the symbol error rate (SER) in making the hard decision
(12). As the modulation scheme (1) is the BPSK, the SER can be
written as

Pe =
1
2
erfc

(√
MEc

N0

)
. (24)

Under the CFAR requirement of Pfd < Cfa, the DP will be simplified
as Pd = Pdec.

Incidentally, the threshold value Rth is set or chosen according
to the given CFAR. More specifically, given the required FAR Cfa,
Rth is simply chosen so that the overall FAR defined in (20) satisfies
Pfa < Cfa.

B. MAT and Complexity

Noting that the channel-induced time delay τ in (3) can be view as a
uniformly distributed random variable in (0, nMTc) and the proposed
algorithm declares whether timing acquisition is successful or not with
at most M operational steps, the MAT of the proposed algorithm can
be derived as follows, based on the same analysis approach of [17]:

E{TPro.
acq } =

∞∑
k=0

(
knM +

M∑
i=1

M − i

M

)
Pd(1 − Pd)

k. (25)

As a comparison, the operational procedure flowchart of the SS
algorithm can be found in [4], and the MAT of the conventional SS
algorithm is given by [4]

E{T SS
acq} =

∞∑
k=0

(
kL+

L∑
i=1

L− i

L

)
Pd(1 − Pd)

k. (26)

Considering the most optimistic case of Pd = 1, the MAT for our
proposed algorithm is M + 1/2, and the acquisition time of the SS
algorithm is nM/2, whereas the acquisition time of the FPS algorithm
is of course 1 [7], but its implementation complexity can be excessive.

We evaluate the hardware implementation complexity of an acqui-
sition algorithm by the number of required logic units, denoted by
NL, which includes all required two-input AND gates, two-input OR

gates, and inverters. We further assume that an addition is implemented
by eight-bit adder, which requires at least 40 logic units to construct,
whereas a multiplication is implemented by a six-bit multiplier, which
needs 180 logic units to construct [18]. We now detail the hardware
implementation complexity for the proposed algorithm, the SS, the
FPS using the fast Fourier transform (FFT), and the HS with Np = n
parallel correlators.

1) The proposed algorithm. As shown in Fig. 1, the main required
hardware modules for the proposed algorithm are the correlator
and the BCH decoder, and the complexity of the other modules
is negligible. All the operations of the correlator are additions as
multiplying by ±1 is equivalent to adding. Thus, this correlator
of length nM requires nM adders, which needs 40 nM logic
units to construct. According to [19], the upper bound of logic
units needed in BCH decoder is (45N2

c + 4Ncn)(log2 n)
2, for

(n, k) BCH codes. Therefore, the total complexity of the pro-
posed algorithm is NL = 40nM + (45N2

c + 4Ncn)(log2 n)
2.
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TABLE I
COMPARISON OF ACQUISITION TIME, MAT, AND HARDWARE

COMPLEXITY IN TERMS OF THE NUMBER OF LOGIC UNITS REQUIRED NL.
THE FFT USED IN THE FPS IS RADIX-8 512 FFT. THE NUMERICAL VALUES

IN BRACKETS CORRESPOND TO THE TYPICAL VALUES IN THE CASE OF

n = 31 AND M = 15, AND Nc = 7 IN THE (n = 31, k = 6) BCH CODE

2) The SS. The SS algorithm is implemented by the correlator of
length nM ; therefore, its complexity is simply given by NL =
40 nM .

3) The FPS using FFT. The algorithm requires two FFTs [one FFT
and one inverse FFT (IFFT)] and one correlator of length nM
(to multiply the FFT of the received signal with the FFT of
the local template). As the numbers of adders and multipliers
needed for implementing FFT depend on the size of FFT and
how FFT is computed, we assume that the FFT implemented
in the FPS algorithm is the Radix-8 512 FFT. According to
[20], the number of adders required for Radix-8 512 FFT is
12◦420, and the number of multipliers needed is 3204. Note that
the correlator of the FPS requires nM multipliers and not nM
adders. Therefore, the complexity of the FPS algorithm is given
by NL = 180nM + 40 × 2 × 12 420 + 180 × 2 × 3204.

4) The HS with Np = n. With the n parallel correlators, each
having the length nM , the complexity of the HS algorithm is
given by NL = 40 n2M .

Table I compares the hardware implementation requirements of the
four algorithms. The MAT of each algorithm normalized by the chip
duration Tc is also summarized in Table I. We also present the typical
values of the MAT and NL of each algorithm corresponding to the
case of n = 31 and M = 15 in brackets. The FPS algorithm can
achieve timing acquisition within the single period of Tc. However, its
hardware implementation complexity is too high. It is shown in Table I
that the MAT of the SS scheme is unacceptably long, but its hardware
implementation complexity is very favorable. Our proposed timing
acquisition algorithm is n times faster than the SS algorithm while
maintaining a reasonably low hardware implementation complexity.
In comparison with the HS scheme that has a similar MAT, the
proposed algorithm significantly reduces the hardware implementation
complexity for timing acquisition.

IV. SIMULATION RESULTS

A simulation study is carried out to compare the achievable perfor-
mance of the proposed timing acquisition algorithm with those of the
SS algorithm presented in [3]. In the simulation, the SNR is defined
as SNR = 2Ec/N0. The MATs of the two schemes are compared in
Fig. 2, where the proposed algorithm uses a (31, 5) BCH code, and
the length of the spreading sequence is chosen to be M = 15 and 31,
respectively, whereas the length of the preamble sequence used in the
SS is set to 465 and 961, respectively, for fair comparison. The results
of both theoretical analysis and numerical simulation are presented in
Fig. 2, which confirm that the MAT obtained by simulation agrees with
the theoretical analysis. Equations (25) and (26) indicate that, when
Pd = 1 (the optimistic case), the acquisition time depends on the initial
phase of the received sequence. Since the initial phase is uniformly

Fig. 2. Comparison of the MATs achieved by the proposed timing acquisition
algorithm and the serial search algorithm, where Cfa is set to 10−5. The length
of the simulated preamble is set to 465 and 961, respectively, whereas the SNR
is defined as SNR = 2Ec/N0.

Fig. 3. Comparison of the theoretical DP and the DP obtained by the proposed
algorithm in simulation with different choices of n and M for the given L ≈
500 (more precisely 465 and 441, respectively), where the SNR is defined as
SNR = 2Ec/N0.

distributed over [0, nMT ], for the SS acquisition, the MAT is nM/2
at the optimistic case. By contrast, the MAT of the proposed method
is M/2 at the optimistic case. Both methods will converge to their
respective optimistic MAT values, when the SNR becomes sufficiently
large. In the case of the preamble sequence length L = 456, the
proposed scheme has a longer MAT in comparison with the SS scheme
for SNR ≤ −13 dB, whereas the MAT of our algorithm becomes
shorter than that of the SS algorithm for SNR > −13 dB. In practice, it
is required that Pd > 90%. Otherwise, the bit error rate or throughput
performance will be unsatisfactory because of an unacceptable number
of packet losses. It can be shown that SNR ≤ −13 dB corresponds to
the situation of Pd ≤ 0.9, which is undesirable for a practical system
to operate. For the preamble sequence length L = 961, our proposed
algorithm achieves faster MAT than the SS algorithm over the range
of SNR values SNR ≥ −18 dB tested, as shown in Fig. 2.

Figs. 3 and 4 show the DP achieved by the proposed algorithm with
the preamble sequence length L set to approximately 500 and 1000,
respectively, where Cfa is chosen to be 10−5. Both the theoretical
DP calculated using (22) and the DP obtained by the simulation are
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Fig. 4. Comparison of the theoretical DP and the DP obtained by the proposed
algorithm in simulation with different choices of n and M for the given L ≈
1000 (more precisely 961 and 945, respectively), where the SNR is defined as
SNR = 2Ec/N0.

Fig. 5. Comparison of the DP performance of the proposed algorithm with
the serial search algorithm, where the SNR is defined as SNR = 2Ec/N0. The
spreading sequence used in companion is a Zadoff–Chu sequence and not a PN
sequence.

shown in Figs. 3 and 4, where it can be seen that the theoretical DP
and the simulated DP agree with each other well. This confirms the
accuracy of the theoretical performance analysis. For a given preamble
sequence length L, there are several different combinations of the
BCH codeword length n and the spreading sequence length M , which
trade off error correction ability with spreading gain. In terms of DP
performance, we observe in Figs. 3 and 4 that the optimal choice of n
is n = 31 for both the cases of L ≈ 500 and L ≈ 1000.

Fig. 5 compares the DP performance of the proposed algorithm
with that of the SS algorithm. The BCH code length in the proposed
algorithm is set to n = 31. The spreading sequence used is a
Zadoff–Chu sequence [21], which is a type of constant amplitude
zero–autocorrelation waveforms. The simulation results show that the
DP of the proposed algorithm is slightly worse than the SS algorithm,
particularly in the case of the short preamble length of L ≈ 500. Fig. 5
also shows that doubling the preamble sequence length results in a gain
of approximately 3 dB in the SNR for the both algorithms. Moreover,
the DP performance gap between the two algorithms reduces as the

preamble sequence length increases, and the DP performance of the
proposed algorithm becomes similar to that of the SS algorithm for
long preamble sequence. Thus, by choosing appropriate code length
and spreading sequence length, the proposed approach can attain a
similar DP performance to the SS with the benefits of greatly reduced
acquisition time.

V. CONCLUSION

A preamble design has been proposed, which adopts a novel mul-
tilayer sequence generated by the Kronecker product of the BCH
code and the PN sequence as the synchronization sequence, for fast
low-complexity timing acquisition under extremely low SNR environ-
ments. At the receiver, the channel time delay can be estimated by first
partially correlating the received sequence with the local spreading se-
quence, followed by decoding using a simple hard-decision decoding
algorithm. The cyclical property of BCH codes is exploited to accel-
erate the time acquisition process. Theoretical analysis and simulation
investigation demonstrate that our proposed method dramatically re-
duces the acquisition time, while achieving a similar DP performance
and maintaining low implementation complexity, compared with the
widely used serial search timing acquisition scheme.
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Outage Analysis of Orthogonal Space–Time Block Code
Transmission in Cognitive Relay Networks

With Multiple Antennas
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Abstract—The outage performance of cognitive relay networks (CRNs)
for a decode-and-forward (DF) protocol in a spectrum sharing scenario
with orthogonal space–time block code (OSTBC) transmission is presented
in this paper. Both the exact formulas of the outage probability and its
approximation in a high-SNR region are derived over Rayleigh fading
channels. The theoretical results are validated by simulations. It shows
that there is an outage saturation phenomenon due to both the maximum
transmit power limit and the interference power constraint, which is
similar to CRNs with a single antenna. Meanwhile, our results also show
that increasing the number of antennas may not improve the outage per-
formance when the interference power constraint or the transmit power
constraint is very small; however, it will significantly improve the outage
performance when the number of antennas is large enough. Through the
asymptotic analysis, it shows that the CRN where the source and the relay
are both equipped with N antennas can achieve full degree of diversity,
i.e., 2N -order diversity.

Index Terms—Cognitive relay networks (CRNs), orthogonal space–time
block code (OSTBC), outage performance.

I. INTRODUCTION

Cognitive radio is a promising technique to improve the utilization
of the scarce radio spectrum [1]. In an underlay spectrum sharing
scenario [2], secondary users (SUs) are allowed to access the licensed
spectrum as long as the interference to primary users (PUs) is below a
tolerable threshold (e.g., an underlay approach can be utilized).

Recently, cooperative communication has been also considered as
an effective means to combat channel fading by providing cooperative
diversity [3]. Inspired by cooperative relaying techniques, cognitive
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relay networks (CRNs) [5], [6] have been proposed to improve the
SUs’ transmission performance. In [7], the exact outage probability of
the CRN that adopt the selection decode-and-forward (DF) protocol
has been derived.

As another approach to combat fading, multiple-input–multiple-
output technology has attracted much attention. It can offer antenna
diversity without additional bandwidth or transmit power. Based
on Alamouti’s two-branch transmit diversity scheme [8], orthogonal
space–time block codes (OSTBCs) for an arbitrary number of antennas
have been proposed in [9]. OSTBC transmission is a simple way to
obtain multiantenna diversity gain. It reduces the complexity of the
receiver, at which only linear processing is needed. Up to now, to
the best of our knowledge, there has been very little research into
CRNs employing OSTBC transmission in a spectrum sharing scenario.
Performance analysis for OSTBC transmission in a nonspectrum
sharing scenario with a DF relay and with an amplify-and-forward
(AF) relay has been presented in [10] and [11], respectively. In [4], the
performance of distributed OSTBCs is analyzed in an AF cooperative
cognitive networks.

In this paper, we investigate a DF CRN with OSTBC transmission
under both the maximum transmit power limit and the interference
power constraint in an underlay spectrum sharing scenario. We assume
that the secondary source (SS) and the secondary relay (SR) are
equipped with multiple antennas, whereas the secondary destination
(SD) has only one antenna due to the size and cost limitations. This
configuration corresponds to the scenario where the base station (i.e.,
SS) communicates with the user (i.e., SD) with the help of relay nodes
(i.e., SR), and due to the size and complexity, the base station and
relay nodes can have multiple antennas for better performance. Based
on this scenario and our previous study [6], [7], [11], the exact outage
probability of the secondary system is derived over Rayleigh fading
channels. Asymptotic analysis in a high-SNR regime is also presented.
Specifically, the major contributions of this paper are summarized as
follows.

• Exact and approximated outage probabilities are derived
over Rayleigh fading channels, which are validated through
simulations.

• Similar to the single-antenna scenario in [7], an outage saturation
phenomenon is also found due to both the maximum transmit
power limit and the interference power constraint.

• Increasing the number of antennas will not improve the outage
performance when the transmit power constraint and the interfer-
ence power constraint are very small, whereas when the power
constraint is large enough, the number of transmit antennas have
a great impact on the outage performance.

The remainder of this paper is organized as follows. In Section II,
we present the system model for the analysis of CRNs with multiple
antennas. Then, based on this model, in Section III, the exact outage
probability is derived over Rayleigh fading channels to study the
performance with variant antennas. Meanwhile, the asymptotic outage
probability for a large-system SNR is derived to study the diversity
order in such a system. In Section IV, simulation results are given and
compared. Finally, we conclude this paper in Section V.

II. SYSTEM MODEL

The system model we considered in this paper is shown in Fig. 1.
For the secondary system, the SS node SS is equipped with Ns

antennas, the SR node SR is equipped with Nr antennas, and the
SD node SD has only one antenna, which coexists with a PU in
an underlay approach. The SR adopts a DF cooperative protocol to

0018-9545 © 2013 IEEE
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