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Abstract—The development of evolutionary algorithms (EAs),
such as genetic algorithms (GAs), repeated weighted boosting
search (RWBS), particle swarm optimization (PSO), and differ-
ential evolution algorithms (DEAs), have stimulated wide interests
in the communication research community. However, the quanti-
tative performance-versus-complexity comparison of GA, RWBS,
PSO, and DEA techniques applied to the joint channel estimation
(CE) and turbo multiuser detection (MUD)/decoding in the con-
text of orthogonal frequency-division multiplexing/space-division
multiple-access systems is a challenging problem, which has to
consider both the CE problem formulated over a continuous
search space and the MUD optimization problem defined over a
discrete search space. We investigate the capability of the GA,
RWBS, PSO, and DEA to achieve optimal solutions at an afford-
able complexity in this challenging application. Our study demon-
strates that the EA-assisted joint CE and turbo MUD/decoder
is capable of approaching both the Cramér–Rao lower bound
of the optimal CE and the bit error ratio (BER) perfor-
mance of the idealized optimal maximum-likelihood (ML) turbo
MUD/decoder associated with perfect channel state information,
respectively, despite imposing only a fraction of the idealized turbo
ML-MUD/decoder’s complexity.

Index Terms—Differential evolution algorithm (DEA), evolu-
tionary algorithms (EAs), genetic algorithm (GA), joint channel
estimation (CE) and turbo multiuser detection (MUD)/decoding,
orthogonal frequency-division multiplexing (OFDM), particle
swarm optimization (PSO), repeated weighted boosting search
(RWBS), space-division multiple access (SDMA).

I. INTRODUCTION

THE BEST possible exploitation of the finite available
spectrum in light of the increasing demand for wireless
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services has been at the center of wireless system optimiza-
tion. In recent years, multiple antennas have been employed
both at the transmitter and/or the receiver, which leads to the
concept of multiple-input–multiple-output (MIMO) systems.
MIMO systems may be designed for achieving various design
goals, such as maximizing the achievable diversity gain, the
attainable multiplexing gain, or the number of users supported
[1], [2]. Orthogonal frequency-division multiplexing (OFDM)
[3], [4] has found its way into numerous recent wireless
network standards, owing to its virtues of resilience to
frequency-selective fading channels. Both the modulation and
demodulation operations of an OFDM system facilitate conve-
nient low-complexity hardware implementations with the aid
of the inverse fast Fourier transform (IFFT) and fast Fourier
transform (FFT) operations. In an effort to further increase
the achievable system capacity, space-division multiple-access
(SDMA) communication systems were conceived [5], [6],
where several users, roaming in different geographical locations
and sharing the same bandwidth and time slots (TSs), are
differentiated by their unique user-specific “spatial signature,”
i.e., by their unique channel impulse responses (CIRs). As one
of the most widespread MIMO types, OFDM/SDMA systems
[7], [8] exploit the advantages of both OFDM and SDMA.

In the uplink (UL) of an OFDM/SDMA system, the trans-
mitted signals of several single-antenna mobile stations (MSs)
are simultaneously received by an array of antennas at the base
station (BS). Multiuser detection (MUD) techniques are in-
voked at the BS for separating the signals of the different MSs,
based on their unique user-specific CIRs. A state-of-the-art
turbo MUD/decoder exploits the error correction capability of
the channel code by exchanging extrinsic information between
the MUD and the channel decoder [9]. Naturally, for a turbo
MUD/decoder to achieve an optimal or near-optimal perfor-
mance, the CIRs have to be accurately estimated [1], [4]. Inten-
sive research efforts have been devoted to developing efficient
approaches for channel estimation (CE) in multiuser OFDM/
SDMA systems [1], [8], [10], [11]. To achieve a near-optimal
performance, joint CE and turbo MUD/decoding has recently
received significant research attention [12]. Naturally, ap-
proaching the performance of the optimal solution, namely,
that of the maximum-likelihood (ML) joint CE and turbo
MUD/decoding solution, is highly desired. However, in prac-
tice, one often has to settle for suboptimal solutions due to
the excessive computational complexity of the optimal ML
solution, particularly for systems with a high number of users/
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antennas and employing high-order quadrature amplitude mod-
ulation (QAM) signaling [13]. Fortunately, evolutionary algo-
rithms (EAs) offer potentially viable alternatives for achieving
optimal or near-optimal joint CE and turbo MUD/decoding at
an affordable complexity.

EAs have found ever-increasing applications in communi-
cation and signal processing, where creating globally or near-
globally optimal designs at affordable computational costs is
critical. The family of the most popular EAs1 includes genetic
algorithms (GAs) [16], [17], repeated weighted boosting search
(RWBS) [18], [19], particle swarm optimization (PSO) [20],
[21], and differential evolution algorithms (DEAs) [22], [23].
Significant advances have been made in applying these EAs
in single-user joint channel and data estimation [18], [24]–
[26], in CE and MUD for the multiuser code-division multiple-
access UL [27]–[30], in the SDMA-aided OFDM UL [31]–[34],
in joint CE and data detection for MIMO systems [35]–[37],
and in a diverse range of other applications. However, there
is paucity of contributions on EA-aided joint CE and turbo
MUD/decoding schemes designed for OFDM/SDMA systems.
An exception is our previous work [38], which applies a DEA
for supporting the joint CE and turbo MUD/decoding process.
Iterative joint CE and turbo MUD/decoding for OFDM/SDMA
represents an ideal benchmark application for evaluating vari-
ous EAs. The ML-MUD optimization is NP-hard, and the joint
ML CE and turbo MUD/decoding solution is computationally
prohibitive in general. Furthermore, within the iterative CE
and turbo MUD/decoding optimization, the CE optimization
problem is defined over a continuous search space, whereas the
MUD optimization problem is defined over a discrete search
space. Thus, both discrete-valued and continuous-valued EAs
are required. While individual EAs may have been tested in
this challenging iterative joint CE and turbo MUD/decoding
optimization, to the best of our knowledge, no performance-
versus-complexity comparisons of a group of EA techniques
have been presented in the literature in the context of joint CE
and turbo MUD/decoding.

Against this background, in this paper, we design and
characterize four EAs, namely, the GA, RWBS, PSO, and
DEA, under the challenging framework of joint CE and turbo
MUD/decoding in OFDM/SDMA systems, in terms of their
achievable performance, computational complexity, and con-
vergence characteristics. More specifically, continuous-valued
EAs are employed in solving the associated CE optimization,
whereas the discrete-binary versions of EAs are employed for
finding the ML or near-ML solution for the MUD. In the pro-
posed EA-aided iterative scheme conceived for joint blind CE
and turbo MUD/decoding, the EA-aided turbo MUD/decoder
feeds back ever more reliable detected data to the EA-based
channel estimator. Likewise, a more accurate channel estimate
will result in an increased-integrity MUD/decoder. We demon-
strate the power and efficiency of this EA-aided iterative CE
and turbo MUD/decoder in our extensive simulation study. Our
obtained results confirm that the channel estimate and the bit

1There are numerous other EAs, for example, the ant colony optimization
[14], [15]; however, given our limited space, we concentrate on only four
algorithms in this paper.

error ratio (BER) performance of our EA-assisted iterative CE
and turbo MUD/decoder scheme approach the Cramér–Rao
lower bound (CRLB) of the optimal CE [39] and the optimal
ML turbo MUD/decoding performance associated with per-
fect channel state information (CSI), respectively, while only
imposing a fraction of the complexity of the idealized turbo
ML-MUD/decoder.

The remainder of this paper is organized as follows: The
multiuser OFDM/SDMA UL model is described in Section II,
which provides the necessary notations and defines the as-
sociated optimization problems of the joint CE and turbo
MUD/decoding. Section III characterizes the four EAs, i.e.,
the GA, RWBS, PSO, and DEA, which are used for solving
the joint CE and turbo MUD/decoding optimization. Both the
continuous-valued EAs invoked for solving the CE optimiza-
tion and their discrete versions used for solving the ML MUD
optimization are detailed in this section. Section IV is devoted
to the structure of the proposed EA-aided iterative CE and
turbo MUD/decoder as well as to its computational complexity
analysis. Our simulation results are presented in Section V,
whereas our conclusions are offered in Section VI.

II. MULTIUSER MIMO OFDM/SDMA SYSTEM

The multiuser MIMO system considered supports U MSs
simultaneously transmitting in the UL to the BS, as shown in
Fig. 1. Each user is equipped with a single transmit antenna,
whereas the BS employs an array of Q antennas. A time-
division multiple-access protocol organizes the available time-
domain (TD) resources into TSs. All the U MSs are assigned to
every TS, and thus, they are allowed to simultaneously transmit
their streams of OFDM-modulated symbols to the SDMA-
based BS [4], [7] for the sake of exploiting the available re-
sources. Consequently, the users’ signals can only be separated
with the aid of their unique CIRs.

A. System Model

For the multiuser OFDM/SDMA UL shown in Fig. 1, all
the users simultaneously transmit their data streams, which
are denoted by bu for 1 ≤ u ≤ U . The information bits, i.e.,
bu, are first encoded by the user-specific forward error cor-
rection (FEC) encoder. The bit stream after the FEC encoder,
which is denoted as bu

C , is passed through an interleaver
∏

to yield an output bit stream bu
I , which is then grouped into

blocks of log2 M bits as a unit and modulated onto a stream
of M -QAM symbols. The modulated data X̃u are serial-to-
parallel (S/P) converted, and the pilot symbols are embedded to
yield the frequency-domain (FD) OFDM symbol, i.e., Xu[s, k],
1 ≤ k ≤ K, where s denotes the OFDM symbol index, and
K is the number of subcarriers. The FD pilot symbols and
their allocation are known at the receiver and, hence, can be
exploited for initial CE. The parallel modulated data are fed to
a K-point IFFT-based modulator to generate the TD-modulated
signal xu[s, k]. After concatenating the cyclic prefix (CP) of
Kcp samples, the resultant sequence is transmitted through the
MIMO channel and contaminated by the receiver’s additive
white Gaussian noise (AWGN). The length of the CP must
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Fig. 1. UL system model for multiuser MIMO OFDM/SDMA. The notation L denotes the log-likelihood ratio. The subscripts m and c of L are associated with
the MUD and the channel decoder, respectively, whereas subscripts pr, po, and e are used for representing the a priori, a posteriori, and extrinsic information,
respectively. For notational conciseness, OFDM symbol index s is omitted in Xu[k].

be chosen as Kcp ≥ Lcir, where Lcir denotes the length of
the CIRs.

At the BS, the received signals yq for 1 ≤ q ≤ Q are parallel-
to-serial (P/S) converted, and the CPs are discarded from every
OFDM symbol. The resultant signals are fed into the K-point
FFT-based receiver. The signal Yq[s, k] received by the qth
receiver antenna element in the kth subcarrier of the sth OFDM
symbol can be expressed as [4]

Yq[s, k] =
U∑

u=1

Hu
q [s, k]X

u[s, k] +Wq[s, k] (1)

where Hu
q [s, k] denotes the FD channel transfer function

(FD-CHTF) coefficient of the link between the uth user and
the qth receiver antenna in the kth subcarrier of the sth OFDM
symbol, whereas Wq[s, k] is the associated FD AWGN having
the power of 2σ2

n. Let hu
q [s] ∈ C

Lcir×1 be the CIR vector of
the link between the uth user and the qth receive antenna
element during the sth OFDM symbol period, which contains
Lcir significant CIR coefficients. Then, the FD-CHTF vector
Hu

q [s] ∈ C
K×1 is the K-point FFT of hu

q [s] defined by

Hu
q [s] =

[
Hu

q [s, 1] Hu
q [s, 2] · · ·Hu

q [s,K]
]T

= Fhu
q [s] (2)

where F ∈ C
K×Lcir denotes the FFT matrix [4]. As a benefit

of the CP, the OFDM symbols do not overlap, and SDMA
processing can be applied on a per-carrier basis.

Arrange the received data at each receive antenna in a column
vector Yq[s] ∈ C

K×1, i.e.,

Yq[s]=[Yq[s, 1]Yq[s, 2] · · ·Yq[s,K]]T, 1 ≤ q ≤ Q (3)

which hosts the subcarrier-related signals Yq[s, k], and the
transmitted data of each user in a diagonal matrix Xu[s] ∈
C

K×K , i.e.,

Xu[s] = diag {Xu[s, 1], Xu[s, 2], . . . , Xu[s,K]} (4)

with Xu[s, k] as its diagonal elements, for 1 ≤ u ≤ U . Fur-
thermore, let us define the CIR vector hq[s] ∈ C

ULcir×1 cor-

responding to the qth receive antenna during the sth OFDM
symbol period as

hq[s]=
[(
h1
q[s]
)T(

h2
q[s]
)T · · ·

(
hU
q [s]
)T]T

, 1≤q≤Q. (5)

The operations of the BS receiver can be summarized as fol-
lows: Given the received data {Yq[s]}Qq=1, find the channels

{hq[s]}Qq=1 and the transmitted data {Xu[s]}Uu=1. Ultimately,
the receiver is responsible for recovering the users’ transmitted
information bit streams {bu}Uu=1. The turbo MUD/decoder
exchanges soft extrinsic information between the soft-in–soft-
out (SISO) MUD and the SISO channel decoder [9], which
effectively mitigates both the noise and multiuser interference.
As a result, it is capable of achieving an accurate recovery
of the users’ information bit streams. We defer the discussion
on the per-carrier-based turbo MUD/decoder [7] in Fig. 1 to
Section IV and concentrate on the basic operations of joint CE
and MUD at the BS receiver to highlight our motivation for
applying EAs to this challenging application.

B. Optimization Problems in Joint CE and MUD

Denote the overall system’s CIR vector by h[s] ∈ C
UQLcir×1

and all the users’ transmitted data matrix X[s] ∈ C
UK×K ,

respectively, as

h[s] =
[
hT
1 [s]h

T
2 [s] · · ·hT

Q[s]
]T

(6)

X[s] =
[
X1[s]X2[s] · · ·XU [s]

]T
. (7)

The optimal solution of the joint CE and MUD problem is
achieved by maximizing the probability of all the received data
{Yq[s]}Qq=1 conditioned on h[s] and X[s]. Noting that this
conditional distribution is Gaussian, this joint optimization is
equivalent to the one that minimizes the log-likelihood cost
function (CF) formulated as

J (h[s],X[s]) =

Q∑
q=1

∥∥Yq[s]−XT[s]Fhq[s]
∥∥2 (8)
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where the block diagonal matrix F ∈ C
UK×ULcir is given by

F = diag{F,F, . . . ,F︸ ︷︷ ︸
U

}. (9)

Thus, the joint ML CE and MUD solution is defined as(
ĥ[s], X̂[s]

)
= arg min

h[s],X[s]
J (h[s],X[s]) . (10)

Joint ML optimization (10) is defined in an extremely high-
dimensional space with both discrete- and continuous-valued
decision variables, and therefore, it is computationally pro-
hibitive. The complexity of this optimization process may be
reduced to a more tractable level by invoking an iterative
search loop that is carried out first over the continuous space
of the legitimate channels h[s] and then over the discrete set
of all the possible transmitted data X[s]. The iterative loop
between the CE and the MUD encapsulates two optimization
problems. CE optimization can be performed when the data
X[s] are available, either as the known pilot symbols at the
start or, more generally, as the detected data fed back from
the MUD and FEC-decoder unit. The MUD can be carried out
with the estimated CIRs provided by the channel estimator. The
iterative procedure exchanging extrinsic information between
the decision-directed channel estimator and the MUD based
on the estimated CIRs gradually improves both solutions, and
typically, only a few iterations are required for approaching the
joint ML CE and MUD solution of (10).

1) ML CE: With the detected data X̂[s] fed back from the
MUD/decoder, the ML CE solution is obtained by minimizing
the CF Jce(h[s]) = J(h[s], X̂[s]). Since the CIRs hq[s], 1 ≤
q ≤ Q, are only related to the received signals Yq[s] recorded at
the qth receiver antenna, the ML CE solution ĥ[s] is given as the
solutions of the following Q smaller minimization problems:

ĥq[s] = arg min
hq [s]

Jce (hq[s]) , 1 ≤ q ≤ Q (11)

where the CE CF is expressed as

Jce (hq[s]) =
∥∥∥Yq[s]− X̂T[s]Fhq[s]

∥∥∥2 . (12)

Since hq[s] ∈ C
ULcir×1, the search space for the CE optimiza-

tion is a continuous-valued (2ULcir)-element space. As the
detected data contain erroneous decisions, error propagation
imposes a serious problem. The OFDM symbol index [s] will
be omitted during our forthcoming discourse.

The standard least squares (LS) channel estimator [40] may
provide the solutions of (11), which, however, is computation-
ally very expensive as it requires the inverse of the Q very
large (ULcir)× (ULcir) complex-valued correlation matrices
to obtain ĥq for 1 ≤ q ≤ Q. A low-complexity simplified LS
channel estimator was provided in [40]. However, this simpli-
fied LS estimator only works for optimally designed pilots to
ensure all the correlation matrices are diagonal. This simplified
LS channel estimator performs poorly even given with the
correct error-free transmitted data, and clearly, it cannot be
applied in decision-directed mode.

2) ML MUD: As a benefit of the CP, the OFDM symbols
do not overlap, and receiver processing can be applied on a

per-carrier basis [1], [7]. Let us define the received data vector
Y[s, k] ∈ C

Q×1 of Q antennas and the transmitted signal vector
X[s, k] ∈ C

U×1 of U users in the kth subcarrier of the sth
OFDM symbol, respectively, as

Y[s, k] = [Y1[s, k]Y2[s, k] · · ·YQ[s, k]]
T (13)

X[s, k] =
[
X1[s, k]X2[s, k] · · ·XU [s, k]

]T
. (14)

Furthermore, denote the FD-CHTF matrix linking X[s, k] to
Y[s, k] as H[s, k] ∈ C

Q×U , whose qth row and uth column
element is Hu

q [s, k]. Given the FD-CHTF matrix estimate

Ĥ[s, k], the MUD recovers the transmitted signals X[s, k] from
the received signals Y[s, k]. Since each element Xu[s, k] of
X[s, k] belongs to the finite M -QAM alphabet S of size |S| =
M , there are MU possible candidate solutions for X[s, k], and
the optimal ML MUD solution is defined as

X̂[s, k] = arg min
X[s,k]∈SU

Jmud (X[s, k]) (15)

with the MUD optimization CF expressed as

Jmud (X[s, k]) =
∥∥∥Y[s, k]− Ĥ[s, k]X[s, k]

∥∥∥2 . (16)

Optimization (15) is well known to be NP-hard. Since each
Xu[s, k] contains A = log2 M bits, the bit-stream represen-
tation of Xu[s, k] is bu[s, k] = [bu1 [s, k]b

u
2 [s, k] · · · buA[s, k]]

T,
where each element or bit bui [s, k] ∈ {0, 1}. Thus, the bit-
stream representation of X[s, k] is

b[s, k] =
[
b11[s, k] · · · b1A[s, k]b21[s, k] · · · b2A[s, k]

· · · bU1 [s, k] · · · bUA[s, k]
]T

(17)

and the MUD optimization CE is equivalently denoted as
Jmud(b[s, k]) = Jmud(X[s, k]). The OFDM index and the sub-
carrier index [s, k] will be omitted in the sequel.

Various alternative solutions to the NP-hard ML solution
of optimization (15) are available, which trade off perfor-
mance with complexity. The examples of low-complexity
suboptimal solutions include the minimum-mean-square-error
MUD, successive-interference-cancelation MUD, and parallel-
interference-cancelation MUD. Sphere-detection-based MUD,
on the other hand, offers a near-optimal solution with more af-
fordable computational complexity. Moreover, EAs have been
demonstrated to be capable of solving this ML optimization
problem with complexity that is a fraction of the full-optimal
ML complexity [27]–[30], [33]–[38].

III. EAs FOR ITERATIVE CE AND MUD

The continuous versions of the GA, RWBS, PSO, and DEA
are adopted to aid in CE optimization, which are denoted
as the continuous-GA-assisted CE (CGA-CE), continuous-
RWBS-assisted CE (CRWBS-CE), continuous-PSO-assisted
CE (CPSO-CE), and continuous-DEA-assisted CE (CDEA-
CE). By contrast, the discrete-binary versions of these four
EAs are adopted for MUD optimization, which are referred
to as the discrete-binary GA-assisted MUD (DBGA-MUD),
discrete-binary RWBS-assisted MUD (DBRWBS-MUD),
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discrete-binary PSO-assisted MUD (DBPSO-MUD), and
discrete-binary DEA-assisted MUD (DBDEA-MUD).

A. GA for Iterative CE and MUD

1) CGA-CE: The CGA-CE evolves the population of the
Ps candidate solutions over the entire solution space, where
Ps is known as the population size. These candidate solutions
represent the estimates of the CIR coefficient vector hq , where
the psth individual of the population in the gth generation is
readily expressed as

ĥq,g,ps
=
[
ĥ1
q,g,ps,1

· · · ĥ1
q,g,ps,Lcir

ĥ2
q,g,ps,1

· · · ĥ2
q,g,ps,Lcir

· · · ĥU
q,g,ps,1

· · · ĥU
q,g,ps,Lcir

]T
(18)

in which ĥu
q,g,ps,l

represents an estimate of the lth coefficient in
CIR vector hu

q for the channel linking user-u to antenna-q. The
search space for CE optimization is specified by (−1 − j,+1 +
j)ULcir , with j =

√
−1. Referring to Fig. 2, we now specify this

CGA-CE.

Algorithm 1: CGA-CE.

1) Initialization. Set the generation index to g = 1 and ran-
domly generate the initial population, i.e., {ĥq,1,ps

}Ps
ps=1,

over the search space (−1 − j,+1 + j)ULcir .
2) Selection. The fitness value of an individual ĥq,g,ps

is
related to its CF value by f(ĥq,g,ps

) = J−1
ce (ĥq,g,ps

). The
roulette wheel selection operator [17] in Fig. 2 is adopted
for selecting high-fitness individuals, where the selection
ratio of rs decides how many individuals are to be se-
lected into the mating pool from the total Ps individuals.
The value of rs is defined by rs = (Npool/Ps), where
Npool is the size of the mating pool.

3) Crossover. For each pair of parents randomly chosen
from the mating pool, the pair of integers u∗ and l∗ is ran-
domly generated in the ranges of {1, 2, . . . , U} and {1, 2,
. . . , Lcir}, respectively. The parents selected for the
crossover operation can be expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ĥq,g,mum=
[
ĥ1
q,g,mum,1 · · · ĥu∗

q,g,mum,l∗−1ĥ
u∗
q,g,mum,l∗

ĥu∗
q,g,mum,l∗+1 · · · ĥU

q,g,mum,Lcir

]T
ĥq,g,dad=

[
ĥ1
q,g,dad,1 · · · ĥu∗

q,g,dad,l∗−1ĥ
u∗
q,g,dad,l∗

ĥu∗
q,g,dad,l∗+1 · · · ĥU

q,g,dad,Lcir

]T
.

(19)

As indicated in Fig. 2, the two new offsprings are pro-
duced as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ĥq,g,os1 =
[
ĥ1
q,g,mum,1 · · · ĥu∗

q,g,mum,l∗−1ĥ
u∗
q,g,os1,l∗

ĥu∗
q,g,os1,l∗+1 · · · ĥU

q,g,os1,Lcir

]T
ĥq,g,os2 =

[
ĥ1
q,g,dad,1 · · · ĥu∗

q,g,dad,l∗−1ĥ
u∗
q,g,os2,l∗

ĥu∗
q,g,os2,l∗+1 · · · ĥU

q,g,os2,Lcir

]T
(20)

Fig. 2. Flowchart of the continuous-GA-assisted CE.

with⎧⎨⎩ ĥu∗
q,g,os1,l = ĥu∗

q,g,mum,l − β
(
ĥu∗
q,g,mum,l − ĥu∗

q,g,dad,l

)
ĥu∗
q,g,os2,l = ĥu∗

q,g,dad,l + β
(
ĥu∗
q,g,mum,l − ĥu∗

q,g,dad,l

) (21)

for l∗ ≤ l ≤ Lcir, where β is a random value uniformly
chosen in the range of (0, 1).

4) Mutation. As shown in the operation of Step 4) Mutation
in Fig. 2, an element or gene ĥu

q,g,ps,l
of the individual

ĥu
q,g,ps

is mutated according to

h̆u
q,g,ps,l

= ĥu
q,g,ps,l

+ γ(αm + jβm) (22)

where both αm and βm are randomly generated in the
range (−1, 1), whereas γ is a mutation parameter. The
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number of genes that will mutate is governed by mutation
probability Mb.

5) Termination. If g > Gmax, where Gmax defines the max-
imum number of generations, the procedure is curtailed.
Otherwise, we set g=g+1, and go to 2) Selection.

The key algorithmic parameters of this CGA-CE are popu-
lation size Ps, selection ratio rs, mutation probability Mb, and
mutation parameter γ.

2) DBGA-MUD: A discrete-binary GA has similar basic
operations as a continuous GA, which are shown in Fig. 2. This
GA evolves a population of the Ps (UA)-element binary-valued
candidate vectors, and each individual represents an estimate of
the bit sequence b defined in (17). The psth individual of the
population in the gth generation is expressed as

b̂g,ps
=
[
b̂1g,ps,1

· · ·̂b1g,ps,A
b̂2g,ps,1

· · ·̂b2g,ps,A
· · ·̂bUg,ps,1

· · ·̂bUg,ps,A

]T
.

(23)

Each binary-valued individual b̂g,ps
is related to a signal X̂g,ps

transmitted by the M -QAM modulator that represents a can-
didate solution of MUD optimization (15). The CGA-CE is
specified as follows.

Algorithm 2: DBGA-MUD.

1) Initialization. Set the generation index to g = 1 and
randomly generate the initial population of the Ps binary-
valued individuals {b̂1,ps

}Ps
ps=1.

2) Selection. The fitness value of an individual b̂g,ps
is

related to its CF value by f(b̂g,ps
) = J−1

mud(b̂g,ps
). The

selection ratio rs specifies the percentage of the Ps

individuals that are selected to form the mating pool, and
we also adopt the roulette wheel selection operator.

3) Crossover. We opt for employing the uniform crossover
algorithm [17], where a crossover point is randomly
selected between the first bit and the last bit of the parent
individuals, and the bits are then exchanged between the
selected pair of parents.

4) Mutation. Given mutation probability Mb, �MbPsUA�
bits are randomly selected from the total number of
(PsUA) bits in the Ps individuals for mutation, where
�•� denotes the integer floor operator. A bit is mutated by
toggling its value from 1 to 0, and vice versa.

5) Termination. Optimization is stopped when the prede-
fined maximum number of generations Gmax is reached.
Otherwise, set g = g + 1, and go to 2) Selection.

The key algorithmic parameters of this DBGA-MUD are pop-
ulation size Ps, selection ratio rs, and mutation probability Mb.

B. RWBS for Iterative CE and MUD

The operations of the RWBS algorithm [18], [19] are shown
in Fig. 3, which consists of the generation-based outer loop and
the weighted boosting search (WBS) inner loop.

Fig. 3. Flowchart depicting the operations of both the continuous and discrete-
binary RWBS algorithms.

1) CRWBS-CE: Given an initial estimate ĥq,0,best, which
can be either randomly generated in the search space (−1 − j,
+1 + j)ULcir or chosen as the initial-training-based channel
estimate with the aid of the simplified LS channel estimator
in [40], the CRWBS-CE is initialized by setting the generation
index to g = 1 and then following the operations given in
Algorithm 3.

Algorithm 3: CRWBS-CE.

1) Generation initialization. The CIRs {ĥq,g,ps
}Ps
ps=1 are

initialized according to: ĥq,g,1 = ĥq,g−1,best

ĥq,g,ps
= ĥq,g−1,best + γ (GrvULcir

(0, 1)

+ jGrvULcir
(0, 1)) , 2 ≤ ps ≤ Ps (24)

where GrvULcir
(0, 1) denotes the (ULcir)-element vec-

tor, whose elements are drawn from the normal distribu-
tion with zero mean and unit variance, ĥq,g−1,best denotes
the best individual found in the previous generation, and
γ is referred to as the mutation rate.

2) CF evaluation. Calculate the CF values associated with
the population according to Jg,ps

= Jce(ĥq,g,ps
), 1 ≤

ps ≤ Ps. Each individual ĥq,g,ps
is initially assigned an

equal weight δps
(0) = (1/Ps), where 1≤ps≤Ps. Then,

set the WBS iteration index to t = 1.
3) WBS. This consists of boosting the weights and updating

the population.
• Stage 1. Boosting. The relative merits of the individ-

uals are used to adapt the weights for guiding the
search. Let us define the best and worst individuals,



1210 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 3, MARCH 2014

i.e., ĥq,g,pbest
and ĥq,g,pworst

, in the population, where
we have pbest = argmin1≤ps≤Ps

Jg,ps
and pworst =

argmax1≤ps≤Ps
Jg,ps

.
i) Normalize the CF values J̄g,ps

= Jg,ps
/
∑Ps

j=1 Jg,j ,
1 ≤ ps ≤ Ps, and compute weighting factor β(t) ac-
cording to

β(t) =
η(t)

1 − η(t)
with η(t) =

Ps∑
ps=1

δps
(t− 1)J̄g,ps

. (25)

ii) Adapt the weights for 1 ≤ ps ≤ Ps as follows:

δ̃ps
(t) =

{
δps

(t− 1) (β(t))J̄g,ps , β(t) ≤ 1

δps
(t− 1) (β(t))1−J̄g,ps , β(t) > 1

(26)

and normalize them as δps
(t) = δ̃ps

(t)/
∑Ps

j=1 δ̃j(t),
1 ≤ ps ≤ Ps.

• Stage 2. Updating. This population updating stage
consists of

i) Convex combination of {ĥq,g,ps
}Ps
ps=1 constructs a new

individual as follows:

ĥq,g,Ps+1 =

Ps∑
ps=1

δps
(t)ĥq,g,ps

. (27)

Intuitively, as the individuals of low CF values have
high weights, (27) is capable of producing a new in-
dividual, which may have an even lower CF value.
A “mirror image” of ĥq,g,Ps+1 is produced as
ĥq,g,Ps+2 = ĥq,g,pbest

+ (ĥq,g,pbest
− ĥq,g,Ps+1).

ii) Compute Jce(ĥq,g,Ps+1) and Jce(ĥq,g,Ps+2) and find
p∗=argmini=Ps+1,Ps+2Jce(ĥq,g,i). The new individ-
ual ĥq,g,p∗ then replaces ĥq,g,pworst

in the population.
4) WBS termination. If t > Twbs, where Twbs defines the

maximum number of WBS iterations Twbs, exit the WBS
inner loop. Otherwise, set t = t+ 1 and go to 3)WBS.

5) Generation termination. Stop when the maximum num-
ber of generations Gmax is reached. Otherwise, set g =
g + 1, and go to 1) Generation initialization.

The key algorithmic parameters of this CRWBS-CE are the
population size Ps, the mutation rate γ and the maximum
number of WBS iterations Twbs.

2) DBRWBS-MUD: Given a randomly generated initial
binary-valued estimate b̂0,best, the DBRWBS-MUD com-
mences by setting the generation index to g = 1, and it then
follows the operations given in Algorithm 4.

Algorithm 4: DBRWBS-MUD.

1) Generation initialization. Initialize the population
{b̂g,ps

}Ps
ps=1 as: set b̂g,1 = b̂g−1,best, while the remain-

ing Ps − 1 individuals b̂g,ps
, 2 ≤ ps ≤ Ps, are generated

by randomly muting a certain percentage of the bits
in b̂g−1,best, the best individual found in the previous

generation. The percentage of bits mutated is governed
by the mutation probability Mb.

2) CF evaluation. The CF values associated with the pop-
ulation are calculated according to Jg,ps

= Jmud(b̂g,ps
),

1 ≤ ps ≤ Ps. Each individual b̂g,ps
is initially assigned

an equal weight δps
(0) = (1/Ps), where 1 ≤ ps ≤ Ps.

Then set the WBS iteration index to t = 1.
3) WBS. Again, this is composed of the weight boosting and

population updating stages.
• Stage 1. Boosting. The operations are identical to those

of i) and ii) in Stage 1. of the CRWBS-CE, which yields
the set of weights, δps

(t) for 1 ≤ ps ≤ Ps.
• Stage 2. Updating. Given the Ps individuals’ weights

δps
(t) for 1 ≤ ps ≤ Ps, define{

Δδ0(t) = 0
Δδps

(t) = Δδps−1(t) + δps
(t), 1 ≤ ps ≤ Ps.

(28)

Then the four (or a different user-defined number)
new individuals b̂g,Ps+i, 1 ≤ i ≤ 4, are generated as
follows: for 1 ≤ a ≤ A and 1 ≤ u ≤ U ,

b̂ug,Ps+i,a = b̂ug,ps,a
, if Δδps−1(t)

<rand(0, 1) ≤ Δδps
(t) (29)

where rand(0, 1) denotes the random number genera-
tor which randomly returns a value from the interval
[ 0, 1). The newly generated individuals replace the
worst individuals in the population, whose CF values
are larger than theirs.

4) WBS termination. The WBS iterative procedure is ter-
minated, when the maximum number of WBS iterations
Twbs is reached. Otherwise, set t = t+ 1 and go to 3)
WBS.

5) Generation termination. The procedure is terminated,
when the maximum number of generations Gmax is
reached. Otherwise, set g = g + 1, and go to 1) Gener-
ation initialization.

The key algorithmic parameters of this DBRWBS-MUD are
population size Ps, mutation probability Mb, and the maximum
number of WBS iterations Twbs.

C. PSO for Iterative CE and MUD

In a PSO algorithm, individuals of the population are known
as particles, and the population is referred to as the swarm. The
flowchart of the PSO algorithm adopted is shown in Fig. 4.

1) CPSO-CE: The position of the psth particle in the gth
generation of the population, i.e., ĥq,g,ps

, is defined in (18). As-
sociated with each ĥq,g,ps

, there is a velocity vector vq,g,ps
∈

(−1 − j,+1 + j)ULcir . Each particle ĥq,g,ps
remembers its

best position visited so far, denoted by ĥci
q,g,ps

, which pro-
vides the so-called cognitive information. Every particle also
knows the best position visited so far by all particles of the
entire swarm, denoted by ĥsi

q,g, which provides the so-called
social information. Algorithm 5 details the operations of the
CPSO-CE.
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Fig. 4. Flowchart depicting the operations of both the continuous and discrete-
binary PSO algorithms.

Algorithm 5: CPSO-CE.

1) Initialization. Set the generation index to g = 1.
Then, randomly generate the initial population, i.e.,
{ĥq,1,ps

}Ps
ps=1, in the search space (−1 − j,+1 + j)ULcir ,

and the associated initial velocities, i.e., {vq,1,ps
}Ps
ps=1, in

the velocity space (−1 − j,+1 + j)ULcir .
2) Swarm evaluation. For each particle ĥq,g,ps

, compute
its CF value Jce(ĥq,g,ps

). For 1 ≤ ps ≤ Ps, update the
cognitive information according to the following: If
Jce(ĥq,g,ps

) < Jce(ĥ
ci
q,g−1,ps

), set ĥci
q,g,ps

= ĥq,g,ps
;

otherwise, set ĥci
q,g,ps

= ĥci
q,g−1,ps

. Given p∗s =

argmin1≤ps≤Ps
Jce(ĥ

ci
q,g,ps

), the swarm’s social

information is then updated as follows: If Jce(ĥci
q,g,p∗

s
) <

Jce(ĥ
si
q,g−1), set ĥsi

q,g = ĥci
q,g,p∗

s
; otherwise, set

ĥsi
q,g = ĥsi

q,g−1.
3) Swarm updating. The individuals’ velocities and posi-

tions are updated according to

vq,g+1,ps
=ωvq,g,ps

+ c1 rand(0, 1)
(
ĥci
q,g,ps

− ĥq,g,ps

)
+ c2 rand(0, 1)

(
ĥsi
q,g − ĥq,g,ps

)
(30)

ĥq,g+1,ps
= ĥq,g,ps

+ vq,g+1,ps
(31)

for 1 ≤ ps ≤ Ps, where ω is the inertia weight, whereas
c1 and c2 are known as the cognitive learning rate and the
social learning rate, respectively.

4) Termination. Optimization is terminated, when the max-
imum number of generations Gmax is reached. Other-
wise, set g = g + 1, and go to 2) Swarm evaluation.

The key algorithmic parameters of this CPSO-CE are pop-
ulation size Ps, cognitive learning rate c1, and social learning
rate c2.

DBPSO-MUD: In the population of the gth generation, the
psth individual’s position, i.e., b̂g,ps

, is given by (23), and its
associated velocity is expressed as

vg,ps
=
[
v1g,ps,1

· · · v1g,ps,A
v2g,ps,1

· · · v2g,ps,A

· · · vUg,ps,1
· · · vUg,ps,A

]T
. (32)

The velocity space is defined as (0, 1)UA, i.e., vg,ps
∈ (0, 1)UA

[41]. Associated with b̂g,ps
, there are two bit-toggling probabil-

ity vectors given, respectively, by

v0
g,ps

=
[
v1,0g,ps,1

· · · v1,0g,ps,A
b2,0g,ps,1

· · · v2,0g,ps,A

· · · vU,0
g,ps,1

· · · vU,0
g,ps,A

]T
(33)

v1
g,ps

=
[
v1,1g,ps,1

· · · v1,1g,ps,A
b2,1g,ps,1

· · · v2,1g,ps,A

· · · vU,1
g,ps,1

· · · vU,1
g,ps,A

]T
(34)

where vu,0g,ps,l
represents the probability of the bit b̂ug,ps,l

being

changed to 0, whereas vu,1g,ps,l
represents the probability of the

bit b̂ug,ps,l
being changed to 1. The cognitive information on the

psth individual is denoted as b̂ci
g,ps

, and the social information

on the swarm is expressed as b̂si
g . The DBPSO-MUD algorithm

is presented as follows.

Algorithm 6: DBPSO-MUD.

1) Initialization. Set the generation index to g = 1. Ran-
domly generate the initial population {b̂1,ps

}Ps
ps=1 and

randomly generate the two initial sets of the bit-toggling
probability vectors, i.e., {v0

1,ps
}Ps
ps=1 and {v1

1,ps
}Ps
ps=1,

over the probability space [0, 1]UA.
2) Swarm evaluation. For each b̂g,ps

, compute its CF value
Jmud(b̂g,ps

). Then, update the cognitive information
{b̂ci

g,ps
}Ps
ps=1 and the swarm’s social information b̂si

g .
3) Swarm updating. The two sets of the bit-toggling prob-

ability vectors are updated according to [42]

v0
g+1,ps

=ωv0
g,ps

+ c1 rand(0, 1)
(
1UA − 2b̂ci

g,ps

)
+ c2 rand(0, 1)

(
1UA − 2b̂si

g

)
(35)

v1
g+1,ps

=ωv1
g,ps

+ c1 rand(0, 1)
(

2b̂ci
g,ps

− 1UA

)
+ c2 rand(0, 1)

(
2b̂si

g − 1UA

)
(36)

for 1 ≤ ps ≤ Ps, where 1UA is the UA-element vector,
whose elements are all equal to 1; ω is the inertia weight;
and c1 and c2 are the cognitive learning rate and the social
learning rate, respectively. The velocities associated with
b̂g,ps

, for 1 ≤ ps ≤ Ps, are calculated as follows. Define
the intermediate velocity of the bit b̂ug,ps,l

, where 1 ≤ l ≤
A and 1 ≤ u ≤ U , as [42]

ṽug+1,ps,l
=

{
vu,1g+1,ps,l

, if b̂ug,ps,l
= 0

vu,0g+1,ps,l
, if b̂ug,ps,l

= 1
(37)
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which is then used to generate the velocity associated
with b̂ug,ps,l

according to [41]

vug+1,ps,l
=

1

1 + e−ṽu
g+1,ps,l

. (38)

Next, the individuals are updated as follows:

b̂ug+1,ps,l
=

{
b̂ug,ps,l

, if rand(0, 1) ≤ vug+1,ps,l

1 − b̂ug,ps,l
, if rand(0, 1) > vug+1,ps,l

(39)

for 1 ≤ ps ≤ Ps, 1 ≤ u ≤ U , and 1 ≤ l ≤ A.
4) Termination. Optimization is terminated, when the max-

imum number of generations Gmax is reached. Other-
wise, set g = g + 1, and go to 2) Swarm evaluation.

The key algorithmic parameters of this DBPSO-MUD are
population size Ps, cognitive learning rate c1, and social learn-
ing rate c2.

D. DEA for Iterative CE and MUD

1) CDEA-CE: The operations of the CDEA-CE are shown
in Fig. 5. More explicitly, the CDEA-CE scheme is elaborated
in Algorithm 7.

Algorithm 7: CDEA-CE.

1) Initialization. Set g = 1 and randomly generate the ini-
tial {ĥq,g,ps

}Ps
ps=1. The mean of crossover probability Cr

is initialized to μCr
= 0.5, whereas the location param-

eter of scaling factor λ is initialized to μλ = 0.5. The
archive of the DEA is initialized to be empty.

2) Population evaluation. For each ĥq,g,ps
, where 1 ≤

ps ≤ Ps, evaluate the CF value Jce(ĥq,g,ps
). The archive

of DEA contains the Ps best solutions that the population
has found, and it is updated every generation by adding
the �Ps · p� parent solutions that are in the top 100·p% of
high fitness to it, where p is known as the greedy factor. If
the archive size exceeds Ps, some solutions are randomly
removed from it.

3) Mutation. As shown in Step 3) of Fig. 5, the mutation
perturbs the candidate solutions by adding randomly se-
lected and appropriately scaled difference-vectors to each
base population vector ĥq,g,ps

as follows:

h̃q,g,ps
= ĥq,g,ps

+ λps
(ĥp

q,g,best,r1
− ĥq,g,ps

)

+ λps
(ĥq,g,r2 − ĥq,g,r3) (40)

where scaling factor λps
∈ (0, 1] is a positive number,

which is randomly generated for each individual accord-
ing to the normal distribution having a mean of μλ and
a standard deviation of 0.1; ĥp

q,g,best,r1
is a randomly

selected archive value; and r2 and r3 are two random inte-
ger values fetched from the set {1, 2, . . . , (ps − 1), (ps +
1), . . . , Ps}.

4) Crossover. A trial vector ȟq,g,ps
is generated upon re-

placing certain elements of the target vector ĥq,g,ps
by

the corresponding elements of the related donor vector

Fig. 5. Flowchart of the continuous-DEA-assisted CE.

h̃q,g,ps
, which is illustrated in Step 4) of Fig. 5. Specifi-

cally, the (u, l)th element of the psth trial vector ȟq,g,ps
,

ȟu
q,g,ps,l

, is given by

ȟq,g,ps,l =

{
h̃u
q,g,ps,l

, rand(0, 1) ≤ Crps

ĥu
q,g,ps,l

, otherwise
(41)

where Crps
∈ [0, 1] is the randomly generated crossover

probability for each individual according to the Cauchy
distribution with location parameter μCr

and scale param-
eter 0.1.

5) Selection. If Jce(ȟq,g,ps
) ≤ Jce(ĥq,g,ps

), the trial vector
survives to the next generation and ĥq,(g+1),ps

= ȟq,g,ps
.

Otherwise, the target vector survives and ĥq,(g+1),ps
=

ĥq,g,ps
.

6) Adaptation. The mean of crossover probability μCr
and

the location parameter of scaling factor μλ are updated
according to [23]

μCr
=(1 − c) · μCr

+ c ·meanA(SCr
) (42)

μλ =(1 − c) · μλ + c ·meanL(Sλ) (43)
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where c ∈ (0, 1] is the adaptive update factor, meanA(·)
and meanL(·) denote the arithmetic-mean and Lehmer-
mean [23] operators, and SCr

and Sλ denote the sets of
successful crossover probabilities Cri and scaling factors
λi in generation g.

7) Termination. The procedure is terminated, when the
maximum number of generations Gmax is reached. Other-
wise, set g = g + 1, and go to 2) Population evaluation.

The key algorithmic parameters of this CDEA-CE are popu-
lation size Ps, greedy factor p, and adaptive update factor c.

2) DBDEA-MUD: The DBDEA-MUD is described as
follows.

Algorithm 8: DBDEA-MUD.

1) Initialization. With the generation index set to g = 1,
randomly generate the initial population {b̂g,ps

}Ps
ps=1. Set

μCr
= 0.5 and μλ = 0.5.

2) Population evaluation. For each b̂g,ps
, where 1 ≤ ps ≤

Ps, evaluate the CF value Jmud(b̂g,ps
) = Jmud(X̂

b
g,ps

),

where X̂b
g,ps

is the M -QAM symbol vector generated

from b̂g,ps
. The archive, which contains the Ps best

solutions that the population has explored, is updated
every generation by adding the �Ps · p� parent solu-
tions that are in the top 100 · p% of high fitness to the
archive, where again, p is the greedy factor. If the archive
size exceeds Ps, some solutions are randomly removed
from it.

3) Mutation. The mutant version of base vector b̂g,i is
created according to

v̂g,i = b̂g,i ⊕
(
zbi ⊗

(
b̂p
g,best,r1

⊕ b̂g,i

))
⊕
(
zbi ⊗

(
b̂g,r2 ⊕ b̂g,r3

))
(44)

where b̂p
g,best,r1

is randomly chosen from the archive,

b̂g,r2 and b̂g,r3 with r2 �= i and r3 �= i are randomly
selected from the current population, zbi is a randomly
generated (U ×A)-length binary vector known as the bit-
scaling factor, ⊕ denotes the bitwise exclusive-OR opera-
tor, and ⊗ denotes the bitwise exclusive-AND operator.

4) Crossover. With the uniform crossover, each element of
the trial vector has the same probability of inheriting
its value from a given vector. Specifically, the (u, j)th
element of the psth trial vector t̂g,ps

at the gth generation,
i.e., t̂ug,ps,j

, is given by

t̂ug,ps,j
=

{
v̂ug,ps,j

, rand(0, 1) ≤ Crps
or j = jrand

b̂ug,ps,j
, otherwise

(45)

where crossover probability Crps
∈ [0, 1] is randomly

generated according to the normal distribution having a
mean of μCr

and a standard deviation of 0.1, whereas
jrand is a randomly chosen integer in the range of
{1, 2, . . . , Ps}.

5) Selection. Let X̂b
g,ps

and X̂t
g,ps

be the M -QAM sym-

bol vectors generated from b̂g,ps
and t̂g,ps

, respectively.
If Jmud(X̂

t
g,ps

) ≤ Jmud(X̂
b
g,ps

), then we set b̂g+1,ps
=

t̂g,ps
. Otherwise, we set b̂g+1,ps

= b̂g,ps
.

6) Adaptation. Given the adaptive update factor c ∈ (0, 1]
specified by the designer, μCr

and μλ are adapted accord-
ing to (42) and (43).

7) Termination. Optimization is terminated, when the max-
imum number of generations Gmax is reached. Other-
wise, set g = g + 1, and go to 2) Population evaluation.

The key algorithmic parameters of this DBDEA-MUD are
population size Ps, greedy factor p, and adaptive update
factor c.

IV. EA-AIDED ITERATIVE CE AND

TURBO MUD/DECODER

A. Iterative CE and Turbo MUD/Decoder

The iterative joint CE and turbo MUD/decoder is constituted
by the continuous-EA-aided CE and the discrete-binary EA-
assisted SISO MUD, followed by U parallel single-user SISO
channel decoders, as shown within the dotted-line box at the
right-hand side in Fig. 1. The operations of the EA-aided
iterative CE and turbo MUD/decoder are outlined as follows.

1) Initialization. The training-based channel estimator uses
the pilot symbols to provide an initial channel estimate
for activating the iterative procedure of joint CE and turbo
MUD/decoder. Set the iteration index of the joint CE and
turbo MUD/decoder to loop = 1.

2) Iterative CE and turbo MUD/decoder.
2.1) Initialization of turbo MUD/decoder. Forward the

channel estimates provided by the “Continuous-
EA-aided CIR estimator” block in Fig. 1 to the
MUD, and set the iteration index of the turbo MUD/
decoder to Iter = 1.

3) Turbo MUD/decoder. The discrete-binary EA-aided
ML-MUD, which is shown by the central rectangle in
Fig. 1, detects the users’ data.
Step-3.1). The SISO MUD delivers the a posteriori in-

formation on bit bu(i) expressed in terms of its log-
likelihood ratio (LLR) as [2]

Lm,po,bu(i) = ln
Pr
{
X̂u
∣∣bu(i) = 0

}
Pr
{
X̂u
∣∣bu(i) = 1

} + ln
Pr {bu(i) = 0}
Pr {bu(i) = 1}

=Lm,e,bu(i) + Lm,pr,bu(i) (46)

where bu(i) is the ith bit in the bit stream that is
mapped to the M -QAM symbol stream of user u.
The second term in (46), i.e., Lm,pr,bu(i), represents
the a priori LLR of the interleaved and encoded
bits bu(i), whereas the term Lm,e,bu(i) in (46) is the
extrinsic information delivered by the SISO MUD,
based on the received signal Y and the a priori in-
formation about the encoded bits of all users, except
for the ith bit of user u.
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Step-3.2). As shown in the receiver in Fig. 1, the extrinsic
information output by the SISO MUD is then dein-
terleaved and fed into the uth user’s SISO channel
decoder as its a priori information, which is denoted
as Lc,pr,bu(i). The uth SISO channel decoder then
delivers the a posteriori information on decoded bits
in terms of LLRs Lc,po,bu(i) [9], which can be ex-
pressed as Lc,po,bu(i) = Lc,e,bu(i) + Lc,pr,bu(i). The
extrinsic information output by the SISO decoder,
which is denoted by Lc,e,bu(i), will then be inter-
leaved to provide the a priori information for the next
iteration of the SISO MUD.

Step-3.3) Turbo MUD/decoder convergence test. If
Iter < Itb, where Itb defines the maximum number
of turbo iterations,2 set Iter = Iter + 1 and go to
Step-3.1). Otherwise, the turbo MUD/decoder has
converged, and the detected and decoded bit streams
are encoded by the channel encoders, interleaved by
the interleavers, and then mapped to the correspond-
ing M -QAM symbol streams, which will be used by
the continuous-EA-based CE.

4) Decision-directed channel estimator.
Step-4.1) Continuous-EA-aided CE. The “Continuous-

EA-aided CIR estimator” blocks in Fig. 1 use the
re-encoded and remodulated data {X̃u}Uu=1 to per-
form CIR estimation. The resultant CIR estimate
ĥ is transformed to the FD-CHTF matrix estimate
Ĥ by the FFT, which will then be used by the
turbo MUD/decoder so that the iterative process can
continue.

Step-4.2) CE and turbo MUD/decoder convergence
test. If loop < Ice, where Ice defines the maximum
number of joint CE and turbo MUD/decoder itera-
tions in Fig. 1, set loop = loop+ 1 and go to 2.1).
Otherwise, the iterative CE and turbo MUD/decoder
has converged.

The a posteriori information on the turbo ML-MUD associ-
ated with bit bu(i) is given by [2]

LML
m,po,bu(i)

= ln
Pr {Y, bu(i) = 0}
Pr {Y, bu(i) = 1}

= ln

∑
∀X∈SU :bu(i)=0

e
− ‖Y−HX‖2

2σ2
n

U∏
u=1

A∏
j=1

Pr {bu(j)}

∑
∀X∈SU :bu(i)=1

e
− ‖Y−HX‖2

2σ2
n

U∏
u=1

A∏
j=1

Pr {bu(j)}
(47)

where the probability Pr{bu(j)} of bu(j) is given by

Pr {bu(j)}= 1
2

(
1+sgn

(
1
2
−bu(j)

)
tanh

(
LML
m,pr,bu(j)

2

))
.

(48)

2A turbo iteration represents one exchange of extrinsic information between
the discrete-binary EA-assisted SISO MUD and the SISO channel decoder, as
described in Step 3.1) and Step 3.2) and shown in Fig. 1.

Note from (47) that the MU = |S|U legitimate candidate so-
lutions of the U users are partitioned into the two subsets
conditioned on bu(i) = 0 and bu(i) = 1, respectively, and the
complexity of calculating LML

m,po,bu(i) exponentially increases
with the size of M -QAM signaling and the number of users U .

By contrast, the discrete-binary EA-aided turbo MUD is
capable of reducing the complexity of the a posteriori infor-
mation calculation to that of a near-single-user scenario, once
the transmitted data X are detected by the discrete-binary EA-
aided MUD. Specifically, the a posteriori information on the
discrete-binary EA-aided turbo MUD associated with bit bu(i)
is given as

LEA
m,po,bu(i)=ln

∑
∀Xu∈S:bu(i)=0

e
−‖Y−HX̃‖2

2σ2
n

A∏
j=1

Pr{bu(j)}

∑
∀Xu∈S:bu(i)=1

e
−‖Y−HX̃‖2

2σ2
n

A∏
j=1

Pr{bu(j)}
(49)

where Pr{bu(j)} is also calculated using (48) by replacing
LML
m,po,bu(i) with LEA

m,po,bu(i), and X̃ = [X̂1 · · · X̂u−1XuX̂u+1

· · · X̂U ]T, with Xu assuming values from the M -QAM symbol
set S and X̂v, v=1, . . . , u−1, u+1, . . . , U being acquired by
the discrete-binary EA-aided MUD at the first turbo iteration.
Following the first turbo iteration, X̂v for v �= u is given by

X̂v = max
Xv∈S

Pr{Xv} = max
Xv∈S

A∏
j=1

Pr [bv(j)] . (50)

Observe in (49) that the number of legitimate candidate so-
lutions is M = |S| for each user, since the transmitted signal
of user v (v �= u) is given by (50). Thus, the computational
complexity of the a posteriori information’s calculation has
been reduced to M · U .

B. Convergence Discussion and Complexity Analysis

To characterize the convergence behavior of the population
{X̂g,ps

}Ps
ps=1, as generation g evolves,3 we may adopt the

probability of convergence, which is defined as [43]

lim
g→+∞

Pr
{∥∥∥X̂g,ps

−XML

∥∥∥ > ε
}
= 0, ∀ps (51)

where XML denotes the optimal ML solution, and ε is an
arbitrary positive value. The probability of convergence de-
fined in (51) requires that the solutions are located outside the
ε-neighborhood of XML with a probability of zero, as the popu-
lation evolves. Generally, there exists a probability p(g) > 0 at
each generation g that the individuals in the parental population
will generate an offspring belonging to the ε-neighborhood of
XML. As a benefit of the elitism, the individuals of the next
generation are as good as or better than their counterparts in
the current generation, which indicates that sequence {p(g)} is
monotonically increasing. This leads to [43]

lim
g→+∞

Pr
{∥∥∥X̂g,ps

−XML

∥∥∥ < ε
}
= 1, ∀ps. (52)

3Although the discussion only refers to the discrete-binary EA-assisted
MUD, it also makes sense for the continuous-EA-aided CE.
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The given proposition indicates that the population will con-
verge to the ε-neighborhood of XML with a probability of 1, but
does not address the vital question of convergence speed. As we
use an EA to solve an NP-hard optimization problem, whose
optimal solution by the “brute force” exhaustive ML search
imposes an exponentially increasing complexity in the problem
size. Vast amounts of empirical results found in the literature
have demonstrated that appropriately tuned EAs are capable of
approaching the globally optimal solutions even for the most
challenging optimization problems at affordable complexity.
Moreover, the theoretical analysis of EAs has made significant
progress in the past few years [44]. Specifically, many NP-hard
problems can be turned into the so-called EA-easy class [44],
implying that they can be solved by a well-tuned EA algorithm
at complexity at most polynomial in the problem size.

Given the CSI, i.e., h, the computational complexity of a
turbo MUD/decoder is given by

Cturbo = Itb · CMUD + Itb · Cdec (53)

where CMUD and Cdec are the complexity of the turbo MUD
and that of the channel decoder, respectively. The second term
in (53) remains the same for both the turbo ML-MUD/decoder
and the turbo EA-aided MUD/decoder. Furthermore, the second
term in (53) is significantly smaller than the first term. The
complexity CML

MUD of the turbo ML-MUD/decoder imposed by
detecting a frame of S OFDM symbols, each having K subcar-
riers, can be shown to be (54), shown at the bottom of the page,
whereas the complexity CEA

MUD of the turbo EA-aided MUD/
decoder can be shown to be (55), shown at the bottom of the
page.

The total complexity of the EA-assisted joint CE and turbo
MUD/decoder is given by

CEA
joint = Ice · (CEA

turbo + CEA
one−mud + CEA

ce ). (56)

In (56), CEA
ce denotes the complexity of the continuous-

EA-based CE, which is specified by the number N ce
CF−EVs of

Jce(•) CF evaluations and the complexity per CF evaluation.
Given the population size P ce

s and the maximum number of
generations Gce

max, we have N ce
CF−EVs ≈ P ce

s ·Gce
max for all the

four continuous-EA-based CEs,4 whereas the complexity per
Jce(•) CF evaluation may be derived according to (12) as{

4KS(ULcir + U + 1) multiplications
KS(5ULcir + 3U + 3) additions.

(57)

4For the CRWBS-CE, Nce
CF−EVs = ((P ce

s − 1) + 2Twbs) ·Gce
max. The

approximation is met by appropriately choosing Twbs.

TABLE I
SIMULATION PARAMETERS OF THE MULTIUSER OFDM/SDMA SYSTEM

The term CEA
one−mud represents the complexity imposed by the

discrete-binary EA-aided MUD at each outer iteration loop,
which is specified by the number of Jmud(•) CF evaluations
Nmud

CF−EVs ≈ Pmud
s ·Gmud

max for all the four discrete-binary EA-
aided MUDs,5 where Pmud

s is the population size, and Gmud
max is

the maximum number of generations, as well as the complexity
per Jmud(•) CF evaluation, which can be determined according
to (16) as{

4KSQU multiplications
KS(3QU +Q+ U − 1) additions.

(58)

The ratio of the complexity of the EA-assisted joint CE
and turbo MUD/decoder to that of the idealized turbo
ML-MUD/decoder associated with perfect CSI is expressed by

CEA
joint

CML
turbo

=
Ice ·

(
CEA

turbo + CEA
one−mud + CEA

ce

)
Itb ·

(
CML

MUD + Cdec

)
≈

Ice ·
(
Itb · CEA

MUD + CEA
one−mud + CEA

ce

)
Itb · CML

MUD

(59)

where the approximation is obtained by omitting the second
term in (53).

V. EXPERIMENTAL PERFORMANCE RESULTS

The parameters of our simulated multiuser SDMA/OFDM
UL are listed in Table I. A four-path Rayleigh fading channel
model was employed for each link, and the delays of the paths
were normalized to the sample duration. At the beginning of
every frame, which contained S = 100 OFDM symbols, a new

5Again, the approximation holds for the DBRWBS-MUD by appropriately
choosing the number of WBS iterations.

{
KS

(
2UMU (2Q log2 M + 2Q+ log2 M) + U log2 M +MU(4 log2 M − 1)

)
multiplications

KS
(
MU (4QU log2 M + 4QU − 2U log2 M −Q) + 2U(M − 1) log2 M

)
additions

(54)

{
KS (MU(4QU(log2 M + 1) + 2U log2 M + 4 log2 M − 1) + U log2 M) multiplications
KS

(
MU(4QU(log2 M + 1)− 2U log2 M −Q) + 2 log2 M)2U log2 M

)
additions (55)
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TABLE II
ALGORITHMIC PARAMETERS FOR THE EA-ASSISTED CE AND MUD

channel tap was generated for each of the four paths according
to the complex-valued white Gaussian process with its power
specified by the corresponding average path gain. Within the
frame, each channel tap experienced independent Rayleigh
fading having the same normalized Doppler frequency of FD =
10−7. A half-rate recursive systematic convolutional code was
employed as the channel code. The default values of the EAs’
algorithmic parameters are listed in Table II. The first OFDM
symbol of each frame was populated with pilots for the initial-
training-based CE, yielding a training overhead of 1%. The
system’s signal-to-noise ratio (SNR) was specified by SNR =
Eb/No in decibels, where Eb denotes the energy per bit, and
No is the power spectral density of the channel AWGN.

A. Efficiency, Reliability, and Convergence Investigation

We first quantified the efficiency and reliability of the
continuous-EA-aided CEs and the discrete-binary EA-based
MUD schemes separately over Ntot = 1000 independent sim-
ulation runs. Perfect CSI was assumed for evaluating the
discrete-binary EA-assisted MUD schemes, while the trans-
mitted data were available, when evaluating the continuous-
EA-aided CE schemes. There was no information exchange
between the MUD and the decoder, i.e., we had Itb = 1, and
the channel’s AWGN had No = 0. For an EA-aided CE scheme,
we declared a “successful” run when the algorithm achieved the
CF value of Jce(ĥq,Gi

max,best
) < 10−4 within the set upper limit

for the number of CF evaluations N
lim
CF−EVs = Ps ·Glim

max =
100 × 1000, where Gi

max denotes the number of generations
in the ith simulation run. Otherwise, the run was declared as
“failed.” Over the Ntot = 1000 simulation runs, we collected
the statistics of the number of successful runs, denoted as
Nsuc; the number of failed runs, denoted as Nfail; the total
number of CF evaluations in the Nsuc successful runs, defined
by N suc

CF−EVs; and the total number of CF evaluations in the
Nfail failed runs, defined by N fail

CF−EVs, using the following:

for run = 1 : Ntot

if (Grun
max ≤ Glim

max) and (Jce(ĥq,Grun
max,best) < 10−4)

Nsuc=Nsuc+1; N suc
CF−EVs=N suc

CF−EVs+Ps ·Grun
max,

else
Nfail=Nfail+1; N fail

CF−EVs=N fail
CF−EVs+Ps ·Glim

max.

After obtaining these statistics, the average number of CF
evaluations per run was given by

N
tot
CF−EVs

=
(
N suc

CF−EVs
+N fail

CF−EVs

)
/Ntot (60)

while the average number of CF evaluations per successful run
was defined by

N
suc
CF−EVs

= N suc
CF−EVs

/Nsuc. (61)

Then, the normalized average number of CF evaluations per run
was formulated as

R
tot
CF−EVs

= N
tot
CF−EVs

/N
lim
CF−EVs

(62)

and the normalized average number of CF evaluations per
successful run was defined as

R
suc
CF−EVs

= N
suc
CF−EVs

/N
lim
CF−EVs

(63)

offered the metrics for quantifying the efficiency of the EA-
aided CE scheme investigated. The smaller R

tot
CF−EVs or

R
suc
CF−EVs, the more efficient the EA-aided CE scheme. On the

other hand, the reliability of the EA-aided CE was measured by
the failure ratio, i.e.,

Rfail = Nfail/Ntot. (64)

The lower Rfail, the more reliable the EA-aided CE scheme.
The efficiency and reliability of the four continuous-EA-
assisted CE schemes are shown in Fig. 6, where it can be seen
that the CDEA-CE outperformed the other three schemes, and
the former always arrived at the target CF value within the
average computational complexity of 15 000 CF evaluations.
The CRWBS-CE came a close second, and it always attained
the target CF value within the average complexity of 22 000
CF evaluations. The CGA-CE was the the worst CE candidate,
having the failure rate of Rfail ≈ 7% and imposing an average
computational complexity of 90 000 CF evaluations.

A similar procedure was carried out for investigating the
efficiency and reliability of the four discrete-binary EA-assisted

MUDs by setting Glim
max = 500 and N

lim
CF−EVs = MU = 164. A

successful detection run was confirmed, if (Grun
max ≤ Glim

max) and
the BER of the best individual X̂Grun

max,best was infinitesimally
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Fig. 6. Histograms of the efficiency and reliability measures, in terms of

R
tot
CF−EVs, R

suc
CF−EVs, and Rfail, for the four continuous-EA-assisted CE

schemes.

Fig. 7. Histograms of the efficiency and reliability measures, in terms of

R
tot
CF−EVs, R

suc
CF−EVs, and Rfail, for the four discrete-binary EA-assisted

MUDs.

low. Otherwise, the run was declared a failure. Note that
N

lim
CF−EVs = MU was the number of CF evaluations required

by the full-search ML MUD. Fig. 7 compares the efficiency
and reliability of the four discrete-binary EA-assisted MUDs.
Observe that the DBGA-MUD was the winner with a zero fail-
ure rate and requiring only 3.2% of the ML-MUD’s complexity.
The DBDEA-MUD came a close second with an extremely low
failure rate and an average complexity that was 3.7% of the
optimal ML-MUD’s complexity.

We then added the channel’s AWGN and considered the
cases of Eb/No = 14 and 20 dB. Fig. 8 compares the con-
vergence behaviors of the four continuous-EA-assisted CE
schemes. The approximate number of CF evaluations required
for the mean square error (MSE) of a continuous-EA-assisted

Fig. 8. MSE versus the number of CF evaluations, which characterizes the
convergence performance of the different continuous-EA-assisted CE schemes.

TABLE III
NUMBERS OF CF EVALUATIONS REQUIRED FOR THE MSES

OF DIFFERENT CONTINUOUS-EA-ASSISTED CE SCHEMES

TO APPROACH THE CRLB

CE scheme to approach the CRLB6 [39] was extracted in Fig. 8
and listed in Table III. It can be seen that the CRWBS-CE and
the CDEA-CE had the fastest convergence speed, whereas the
CGA-CE had the slowest convergence speed. Fig. 9 charac-
terizes the convergence behaviors of the four discrete-binary
EA-assisted MUDs. The approximate number of CF evalua-
tions required for the BER of a discrete-binary EA-assisted
MUD to approach the BER of the optimal ML-MUD was found
in Fig. 9, and it is shown in Table IV. Observe that the DBDEA-
MUD and the DBGA-MUD achieved rapid convergence.
Although the nonturbo DBPSO-MUD failed to approach the
ML-MUD solution in this experiment, by introducing the
powerful turbo iterative procedure, the turbo DBPSO-MUD/
decoder is capable of attaining the optimal solution of the turbo
ML-MUD/decoder, as will be confirmed in Section V-B.

B. Performance of EA-Aided Joint CE and Turbo
MUD/Decoder Schemes

Having examined the individual EA-assisted CE schemes
and the individual EA-aided MUDs, we investigated the four
EA-aided iterative joint CE and turbo MUD/decoder schemes,
as outlined in Section IV, namely, the GA-aided joint CE
and turbo MUD/decoder, the RWBS-aided joint CE and turbo

6The CRLB [39] provides the best attainable MSE performance for the
optimal channel estimator based on the optimally designed pilots, and it is given
by CRLB(h) = (σ2

n/KEs) (e.g., [34]), where Es denotes the average symbol
energy.
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Fig. 9. BER versus the number of CF evaluations, which characterizes the
convergence performance of the different discrete-binary EA-assisted MUDs.
Note that at Eb/No = 20 dB, the optimal ML-MUD attains an infinitesimally
low BER.

TABLE IV
NUMBERS OF CF EVALUATIONS REQUIRED FOR THE BERS

OF DIFFERENT DISCRETE-BINARY EA-ASSISTED MUDS

TO ATTAIN THE BER OF THE OPTIMAL ML-MUD

MUD/decoder, the PSO-aided joint CE and turbo MUD/
decoder, and the DEA-aided joint CE and turbo MUD/decoder.
In an EA-aided joint CE and turbo MUD/decoder, the infor-
mation is exchanged Itb times at the inner turbo loop be-
tween the EA-assisted MUD and the channel decoder, whereas
the information is exchanged Ice times at the outer iterative
loop between the EA-assisted CE scheme and the EA-aided
turbo MUD/decoder. It is worth emphasizing that the EA-
assisted channel estimator is based on the detected data fed
back from the EA-assisted MUD/decoder. The MSE of the
channel estimate obtained by an EA-aided joint CE and turbo
MUD/decoder was compared with the CRLB, whereas the BER
achieved by an EA-aided joint CE and turbo MUD/decoder
was compared with the BER of the idealized turbo ML-
MUD/decoder associated with perfect CSI.

Figs. 10 and 11 compare the MSE and BER performance,
respectively, of the four EA-aided iterative joint CE and turbo
MUD/decoder schemes, when fixing the number of the inner
turbo iterations to Itb = 3, the number of CF evaluations for
EA-aided CE to N ce

CF−EVs = 20 000 (Gmax = 200), and the
number of CF evaluations for EA-aided MUD to Nmud

CF−EVs =
10 000 (Gmax = 100). Observe in Fig. 10 that for loop = 5
outer iterations, the MSEs of the two channel estimates as-
sociated with the RWBS- and DEA-aided joint CE and turbo
MUD/decoder schemes approached the CRLB for Eb/No ≥
10 dB; however, the PSO- and GA-aided joint CE and turbo

Fig. 10. Comparison of the MSE performance for the four EA-aided joint CE
and turbo MUD/decoder schemes recorded at the outer iterations loop = 0 and
loop = 5, respectively, when fixing the number of the inner turbo iterations to
Iter = 3, the number of CF evaluations for EA-aided CE to 20 000, and the
number of CF evaluations for EA-aided MUD to 10 000.

Fig. 11. Comparison of the BER performance for the four EA-aided joint CE
and turbo MUD/decoder schemes recorded at the outer iterations loop = 0 and
loop = 5, respectively, when fixing the number of the inner turbo iterations to
Iter = 3, the number of CF evaluations for EA-aided CE to 20 000, and the
number of CF evaluations for EA-aided MUD to 10 000.

MUD/decoder schemes exhibited divergence. Similarly, it is
shown in Fig. 11 that for five outer iterations, the RWBS-
and DEA-aided joint CE and turbo MUD/decoder schemes
approached the BER performance of the idealized turbo ML-
MUD/decoder; however, the PSO- and GA-aided joint CE and
turbo MUD/decoder schemes failed to find the optimal solution.

From the results in Section V-A, we note that the PSO-
and GA-aided joint CE and turbo MUD/decoder schemes
may be less efficient in comparison to the RWBS- and DEA-
aided schemes, and we surmise that N ce

CF−EVs = 20 000 and
Nmud

CF−EVs = 10 000 may not be sufficient for the PSO- and
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Fig. 12. Comparison of the MSE performance for the four EA-aided joint CE
and turbo MUD/decoder schemes recorded at the outer iterations loop = 0 and
loop = 5, respectively, when fixing the number of the inner turbo iterations to
Iter = 3, the number of CF evaluations for EA-aided CE to 40 000, and the
number of CF evaluations for EA-aided MUD to 20 000.

GA-aided schemes. We then opted for N ce
CF−EVs = 40 000

(Gmax = 400) and Nmud
CF−EVs = 20 000 (Gmax = 200) and

carried out simulations for the four EA-aided joint CE and
turbo MUD/decoder schemes again. Figs. 12 and 13 show
the achievable MSE and BER performance, respectively, for
the four EA-aided joint CE and turbo MUD/decoder schemes.
In Fig. 12, it is shown that the MSEs of the four channel
estimates associated with the four EA-aided joint CE and
turbo MUD/decoder schemes all approached the CRLB with
loop = 5 outer iterations for Eb/No ≥ 10 dB, whereas the
BERs of the four EA-aided schemes all approached the optimal
BER performance of the idealized turbo ML-MUD/decoder
associated with perfect CSI, as shown in Fig. 13.

Our computational complexity comparisons are provided
in terms of the three ratios, namely, CEA

MUD/C
ML
MUD, CEA

turbo/
CML

turbo, and CEA
joint/C

ML
turbo, as shown in Table V. The ratio

CEA
MUD/C

ML
MUD characterizes the complexity of an EA-aided

MUD in comparison to that of the optimal full-search ML
MUD. It can be seen from Table V that all the four EA-aided
MUDs impose only 0.1% of the ML MUD’s complexity. Given
the CSI, the complexity of the RWBS- and DEA-assisted turbo
MUD/decoder algorithms is less than 3.5% of the complexity
of the turbo ML-MUD/decoder, whereas the complexity of the
GA- and PSO-aided turbo MUD/decoder algorithms is less than
6.6% of the turbo ML-MUD/decoder’s complexity, as seen in
the column CEA

turbo/C
ML
turbo of Table V. An EA-aided joint CE

and turbo MUD/decoder involves Ice number of outer iterations
between the EA-aided decision-directed channel estimator and
the EA-assisted turbo MUD/decoder, and it performs blind joint
CE and data detection. Comparing its complexity with that of
the idealized turbo ML-MUD/decoder provided with the perfect
CSI is really “unfair.” Even so, from the column CEA

joint/C
ML
turbo

in Table V, we can see that the total complexity of the RWBS-
and DEA-assisted joint CE and turbo MUD/decoder schemes

Fig. 13. Comparison of the BER performance for the four EA-aided joint CE
and turbo MUD/decoder schemes recorded at the outer iterations loop = 0 and
loop = 5, respectively, when fixing the number of the inner turbo iterations to
Iter = 3, the number of CF evaluations for EA-aided CE to 40 000, and the
number of CF evaluations for EA-aided MUD to 20 000.

is less than 39% of the idealized turbo ML-MUD/decoder’s
complexity, whereas the GA- and PSO-assisted joint CE and
turbo MUD/decoder schemes impose a total complexity that
is less than 77% of the idealized turbo ML-MUD/decoder’s
complexity.

C. Comparing an EA-Aided CE With the Simplified LS CE

In Section II-B, we have pointed out that although the stan-
dard LS channel estimator [40] can also provide the optimal
solution for CE optimization (11), it is computationally very
expensive. Therefore, it is difficult to combine the standard LS
channel estimator with a turbo MUD/decoder to form a joint CE
and turbo MUD/decoder scheme, as this approach will impose
excessive computational complexity. The simplified LS channel
estimator in [40], on the other hand, has low complexity,
but it performs poorly even given with the correct error-free
transmitted data. We now demonstrate this by investigating the
MSE performance of the simplified LS channel estimator using
our OFDM/SDMA simulation system. Fig. 14 shows the MSEs
attained by the simplified LS CE relying on optimally designed
pilots and the true error-free transmitted data, respectively, in
comparison with the MSE performance obtained by the DEA-
aided joint CE and turbo MUD/decoder recorder at loop = 0
and loop = 5.

Observe in Fig. 14 that the simplified LS channel estimator,
given optimally designed pilots, attains the same MSE as the
DEA-aided CE at loop = 0. However, this channel estimator
performs very poorly even given with the true transmitted data,
as shown in Fig. 14. The reason for this poor performance
is that this low-complexity channel estimator requires optimal
pilots, as discussed in [40, Sec. III], where the relative phases of
the training sequences (pilots) for the different users (transmit
antennas) must be carefully designed so that each individual
CIR (linking the ith transmit antenna to the jth receive antenna)
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TABLE V
COMPUTATIONAL COMPLEXITY COMPARISON IN TERMS OF THE RATIO OF THE COMPLEXITY OF AN EA-ASSISTED ITERATIVE JOINT CE
AND TURBO MUD/DECODER TO THE COMPLEXITY OF THE IDEALIZED TURBO ML-MUD/DECODER ASSOCIATED WITH PERFECT CSI

Fig. 14. Comparison of the MSE performance for the DEA-aided joint CE and
turbo MUD/decoder scheme with that of the simplified LS channel estimator
in [40].

can be separately estimated. However, the users’ transmitted
data do not meet this requirement of “optimal pilots.” Hence,
this simplified LS CE cannot benefit from the iterative CE
using the detected users’ data—it cannot even work adequately
using the true users’ data. Therefore, the simplified LS channel
estimator cannot be combined with a turbo MUD/decoder to
form a joint CE and turbo MUD/decoder. By contrast, our
proposed EA-aided CE benefits from the iterative joint CE and
turbo MUD/decoding process and is capable of approaching the
CRLB, as confirmed in Fig. 14.

VI. CONCLUSION

Four EAs, namely, the GA, RWBS, PSO, and DEA, have
been applied to the challenging problem of joint semiblind
CE and turbo MUD/decoding for ODFM/SDMA communica-
tion systems. Extensive results have been provided to demon-
strate that by iteratively exchanging information between a
continuous-EA-aided decision-directed channel estimator and a
discrete-binary EA-assisted turbo MUD/decoder, an EA-aided
joint blind CE and turbo MUD/decoder is capable of ap-
proaching both the CRLB associated with the optimal channel
estimate and the BER of the idealized optimal turbo ML-MUD/
decoder associated with perfect CSI, despite imposing only a
fraction of the idealized turbo ML-MUD/decoder’s complexity.
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