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ABSTRACT

Nonlinear beamforming designed for wireless commu-
nications is investigated. We derive the optimal nonlinear
beamforming assisted receiver designed for binary phase
shift keying (BPSK) signalling. It is shown that this opti-
mal Bayesian beamformer significantly outperforms the
classic linear minimum mean square error (LMMSE)
beamformer at the expense of an increased complexity.
Hence the achievable user capacity of the wireless sys-
tem invoking the proposed beamformer is substantially
enhanced. In particular, when the angular separation be-
tween the desired and interfering signals is below a cer-
tain threshold, a linear beamformer will fail while a non-
linear beamformer can still perform adequately. Block-
adaptive implementation of the optimal Bayesian beam-
former can be realized using a Radial Basis Function net-
work based on the Relevance Vector Machine (RVM) for
classification, and a recursive sample-by-sample adapta-
tion is proposed based on an enhanced κ-means cluster-
ing aided recursive least squares algorithm.

I. INTRODUCTION

Multiple antenna assisted adaptive beamformers have the
potential of substantially increasing the user capacity of wire-
less systems [1]-[3]. Adaptive beamforming based spatial
signal processing is classically carried out by forming a lin-
ear combination of the signals received from the different
elements of an antenna array. We will refer to this classic
beamforming approach as linear beamforming. Recent work
[4],[5] has investigated a linear beamforming technique di-
rectly minimizing the system’s bit error rate (BER) and de-
veloped an adaptive algorithm for realizing the linear min-
imum BER (LMBER) beamformer. The results of [4],[5]
have demonstrated that LMBER beamforming is capable of
providing considerable performance gains in terms of a re-
duced BER in comparison to linear minimum mean square
error (LMMSE) beamforming.

The angle of arrival (AOA) separation between the desired
signal and the closest (in terms of its AOA) interfering signal
dominates the system’s BER performance. When this AOA
separation is below a certain threshold, linear beamform-
ing results in a high residual BER, since the interference-
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contaminated phasor constellation becomes linearly nonsep-
arable [6],[7]. Even if it remains linearly separable, the pha-
sor constellation points may be close to the decision bound-
ary and hence nonlinear receivers [12] are typically capable
of providing a better performance than their linear counter-
parts, although at the cost of an increased complexity. These
considerations motivate this study on a nonlinear beamform-
ing technique. We derive the optimal nonlinear beamformer,
which is referred to as the Bayesian beamforming solution.
It is shown that this Bayesian solution has an identical form
to a radial basis function (RBF) network. A block-data based
adaptive RBF beamformer is proposed, which employs the
relevance vector machine (RVM) principle for classification
[8],[9]. For adaptive sample-by-sample based weight adap-
tation an enhanced κ-means clustering technique and the re-
cursive least squares (CRLS) algorithm [10],[11] are consid-
ered.

II. SYSTEM MODEL

It is assumed that the system supports M users, and each
user transmits a binary phase shift keying (BPSK) signal on
the same carrier frequency ω = 2πf . The baseband signal of
user i is given by

mi(k) = Aibi(k), bi(k) ∈ {±1}, 1 ≤ i ≤ M, (1)

where |Ai|2 denotes the received signal power of user i and
bi(k) represents the k-th bit of user i. Source 1 is assumed to
be the desired user and the rest of the sources represent the
interfering users. A linear antenna array is considered [1],
which consists of L uniformly spaced antenna elements, and
the signals arriving at the L-element antenna array are given
by

xl(k) =
M∑
i=1

mi(k) exp (jωtl(θi)) + nl(k) = x̄l(k) + nl(k)

(2)
for 1 ≤ l ≤ L, where tl(θi) is the relative time delay
at element l for source i, θi is the AOA for source i, and
nl(k) is the complex-valued additive white Gaussian noise
(AWGN) having zero mean and variance of E[|nl(k)|2] =
2σ2

n. The desired user’s signal to noise ratio is defined as
SNR= A2

1/2σ2
n, and his signal to interferer i ratio is given

by SIRi = A2
1/A

2
i for i = 2, · · ·M . The array input can be

written in vectorial form as

x(k) = [x1(k) · · ·xL(k)]T = x̄(k)+n(k) = Pb(k)+n(k)
(3)
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where E[n(k)nH(k)] = 2σ2
nIL with IL denoting the L×L-

dimansional identity matrix, while the system matrix is P =
[A1s1 A2s2 · · ·AMsM ], the steering vector of source i is
given by

si = [exp(jωt1(θi)) exp(jωt2(θi)) · · · exp(jωtL(θi))]T

(4)
and the bit vector by b(k) = [b1(k) · · · bM (k)]T .

III. LINEAR BEAMFORMER

The output of the linear beamformer is given by

y(k) = wHx(k) = wH x̄(k)+wHn(k) = ȳ(k)+e(k) (5)

where w is the complex-valued beamformer weight vector,
and e(k) is Gaussian distributed with zero mean and vari-
ance of E[|e(k)|2] = 2σ2

nwHw. The decision regarding the
transmitted bit b1(k) is made according to: b̂1(k) = +1 if
yR(k) ≥ 0 and b̂1(k) = −1 if yR(k) < 0, where we have
yR(k) = �[y(k)]. The classic LMMSE beamforming so-

lution is given by wMMSE =
(
PPH + 2σ2

nIL

)−1
p1, with

p1 being the first column of P. The LMMSE beamforming
solution can be realized adaptively using the recursive least
squares (RLS) algorithm [12]. Recently we have developed
the LMBER beamforming solution and its adaptive realiza-
tion based on a stochastic-gradient technique referred to as
the least bit error rate (LBER) algorithm [4],[5].

For the linear beamformer to operate adequately, the pha-
sor constellation at the channel’s output must be linearly sep-
arable. Denote the Nb = 2M possible M -user phasor com-
binations b(k) as bq, 1 ≤ q ≤ Nb. Denote furthermore
the first element of bq , corresponding to the desired user, as
bq,1. The noiseless channel output at the array input x̄(k)
only takes values from the signal state set of

X �
= {x̄q = Pbq, 1 ≤ q ≤ Nb}. (6)

Similarly, ȳ(k) takes values from the scalar set Y �
= {ȳq =

wH x̄q, 1 ≤ q ≤ Nb}. Thus, ȳR(k) only takes values from

the set YR
�
= {ȳR,q = �[ȳq], 1 ≤ q ≤ Nb}, which can

be divided into the two subsets conditioned on the value of
b1(k)

Y(±)
R

�
= {ȳ(±)

R,q ∈ YR : b1(k) = ±1}. (7)

The linear separability implies that there exists a weight vec-
tor w such that Y(−)

R and Y(+)
R are separable using a linear

decision boundary. When the minimum AOA separation be-
tween the desired user and interfering users is below a certain
threshold, the channel’s output phasor points inevitably be-
come linearly nonseparable - even in the absence of noise. In
such a situation, the linear bermformer will have a high irre-
ducible BER floor, and a nonlinear receiver has to be adopted
for achieving an adequate performance. We will show that a
nonlinear beamformer is capable achieving a better BER per-
formance than a linear one, regardless, whether the system is
linearly separable or not.

IV. BAYESIAN BEAMFORMING SOLUTION

Given the observation vector x(k), the optimal solution
to the beamforming problem considered is the maximum a
posteriori probability solution, which we derive below. The
state set X can be divided into two subsets conditioned on
b1(k):

X (±) �
= {x̄(±)

q ∈ X , 1 ≤ q ≤ Nsb : b1(k) = ±1} (8)

where Nsb = Nb/2. The a posteriori probabilities or de-
cision variables for b1(k) = ±1 given x(k) are formulated
as

η(±)(k) =
Nsb∑
q=1

ξ
(±)
q

(2πσ2
n)L

exp

(
−‖x(k) − x̄(±)

q ‖2

2σ2
n

)
(9)

where ξ
(±)
q are the a priori probabilities of x̄(±)

q . Assume

that all values of x̄(±)
q are equiprobable, yielding ξ

(±)
q = 1

Nb
.

The optimal decision is given by: b̂1(k) = +1 if η(+)(k) ≥
η(−)(k), and b̂1(k) = −1 otherwise. Let us now redefine a
single decision variable as

yB(k) =
Nb∑
q=1

αq exp
(
−‖x(k) − x̄q‖2

2σ2
n

)
(10)

where αq = sgn(bq,1)/(Nb

(
2πσ2

n

)L). Then the optimal de-

cision is equivalent to: b̂1(k) = +1 for yB(k) ≥ 0 and
b̂1(k) = −1 for yB(k) < 0. Note that (10) characterises
an RBF network associated with a Gaussian kernel function
[12].

V. BLOCK ADAPTIVE RBF AND RVM AIDED

BEAMFORMER

Given a block of N training data {x(k), b1(k)}N
k=1, con-

sider the nonlinear beamformer of the form

y(x) =
N∑

l=1

βlKl(x) (11)

where βl represents the beamformer weights and Kl(x) =
K(x,x(l)) the RBF kernel basis functions [12]. In our beam-
forming application, K(•, •) can be chosen as the Gaussian
kernel function of the form [12]

K(x,x(l)) = exp
(
−‖x − x(l)‖2

2ρ2

)
(12)

where ρ2 is an estimate of the noise variance σ2
n. Our aim is

to minimize the number of kernel functions to be used by the
beamformer for the sake of reducing its complexity. Hence
the RVM method [8],[9] can be invoked for constructing a so-
called sparse beamformer having a reduced number of Nspa

terms. Denote t = [t1 · · · tN ]T = [b1(1) · · · b1(N)]T and
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β = [β1 · · ·βN ]T . The a posteriori probability of β is given
by [8]

p(β|t,α) =
p(t|β,α)p(β|α)

p(t|α)
(13)

where p(β|α) is the a priori probability of β, with α =
[α1 · · ·αN ]T denoting the vector of hyperparameters, while
p(t|β,α) is the so-called likelihood and p(t|α) is the evi-
dence. According to the Bayesian classification principles
[8],[9] the likelihood is expressed as

p(t|β,α) =
N∏

l=1

(f(y(x(l))))(tl+1)/2 (1 − f(y(x(l))))(1−tl)/2

(14)
where f(y) = 1/(1 + exp(−y)). Assuming that the a priori
probability is Gaussian distributed, we have

p(β|α) =
N∏

l=1

√
αl√
2π

exp
(
−αlβ

2
l

2

)
. (15)

With a fixed given α, the maximum a posteriori prob-
ability (MAP) solution β̂ can be obtained by maximizing
log(p(β|t,α)) or, equivalently, by minimizing the following
cost function

J(β|t,α) =
N∑

l=1

(
αlβ

2
l

2
− tl + 1

2
log(f(y(x(l))))

−1 − tl
2

log(1 − f(y(x(l))))
)

. (16)

It may be readily shown that the gradient of J with respect
to β is

∇J = Aβ + ΦT

(
f − 1

2
(t + 1N )

)
, (17)

where A = diag{α1, · · · , αN}, f = [f(y(x(1))) · · · f(y(x(N)))]T ,
1N = [1 · · · 1]T and the matrix Φ has elements φi,j =
K(x(i),x(j)). The Hessian of J is given by

H = ∇2J = ΦT BΦ + A (18)

where B = diag{f(y(x(1)))(1−f(y(x(1)))), · · · , f(y(x(N)))
(1− f(y(x(N))))}. The hyperparameters α are updated us-
ing

αnew
i =

1 − αold
i γi,i

β̂2
i

, (19)

with γi,i being the diagonal elements of Γ, which is defined
by

Γ =
(
H| ˆβ

)−1

. (20)

During the optimization process, many of the hyperparam-
eters αi are driven to large values, so that the correspond-
ing model weights βi are effectively pruned out [8] and the
related model terms Ki(•) are removed from the trained

model. The following iterative procedure can be adopted for
constructing a sparse RVM beamformer:

Initialization. The (N × Nspa)-dimensional kernel matrix
Φ is initialized with Nspa = N . Each weight βi is initially
associated with the same value of the hyperparameter αi.
Step 1. Given the current value α, find β̂ by minimizing

the cost function (16) using a simplified conjugate gradient
algorithm [13].
Step 2. The hyperparameters are updated using (19). If

a αi > Lg , where Lg is a preset large positive value, we
set Nspa := Nspa − 1, the corresponding column of Φ is
removed, and thus the weight βi and model term Ki(•) are
pruned out from the model.
Test. If α remains sufficiently unchanged in two successive

iterations (no removal of hyperparameters) or a pre-set max-
imum number of iterations is reached, stop; otherwise go to
Step 1.

VI. RECURSIVE ADAPTIVE RBF BEAMFORMER USING

THE CLUSTERING AND RLS ALGORITHM

Consider again the RBF beamformer of the form:

y(x(k)) =
Nc∑
i=1

βiK(x(k), ci), (21)

where ci represents the kernel centers and the number of
kernel centers Nc is assumed to be given. For a recursive
sample-by-sample adaptation of this RBF beamformer, the
enhanced κ-means clustering and RLS algorithm [10],[11]
can be used.

The enhanced κ-means clustering algorithm [14], which
recursively updates the RBF centers, is described by:

ci(k) = ci(k − 1) + Mi(x(k)) (gc (x(k) − ci(k − 1)))
(22)

for 1 ≤ i ≤ Nc, where 0 < gc < 1.0 define the learning rate,
the membership function Mi(x(k)) is defined as

Mi(x) =
{

1, if vi‖x − ci‖2 ≤ vl‖x − cl‖2 for all l �= i,
0, otherwise,

(23)
and vi is the variation of the i-th cluster. In order to estimate
the variation vi, the following updating rule is used:

vi(k) = gvvi(k−1)+(1−gv)
(Mi(x(k))‖x(k) − ci(k − 1)‖2

)
,

(24)
where gv is a constant slightly less than 1.0. The initial vari-
ations, vi(0), 1 ≤ i ≤ Nc, are set to the same small number.
The learning rate gc can either be set to a fixed small posi-
tive number or be self-adjusting based on an entropy formula
[14]. The RBF weights βi are updated using the usual RLS
algorithm [12].

The above clustering algorithm is an unsupervised one. To
take the full advantage of training, it can be reformulated as
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Fig. 1. Locations of the desired source and the interfering sources with re-
spect to the two-element linear antenna array having λ/2 element spac-
ing, where λ is the wavelength.

a supervised one. Let the RBF center set be divided into the
two subsets: C(+) = {ci, 1 ≤ i ≤ Nc/2} and C(−) =
{ci, 1 + Nc/2 ≤ i ≤ Nc}, corresponding to the two classes
b1(k) = ±1. During the training instance k, if b1(k) = +1,
the enhanced κ-means clustering algorithm is applied only
to the center subset C(+); otherwise, if b1(k) = −1, it is
applied to C(−). This supervised clustering is more efficient
in dealing with linearly nonseparable cases.

VII. A SIMULATION EXAMPLE

In the example considered four users were supported with
the aid of a two-element antenna array. Fig. 1 shows the loca-
tions of the desired source and the three interfering sources
graphically. The desired user and all the three interfering
users had equal signal power. The minimum AOA separation
observed between the desired user and interferer 2, which
was θ ≤ 30◦. Fig. 2 compares the BERs of the LMMSE,
LMBER and Bayesian beamformers for θ = 30◦. It can
be seen from Fig. 2 that the LMMSE beamformer was un-
able to achieve linear separability and hence exhibited a high
BER floor. By contrast, the LMBER beamformer achieved
linear separability and had a better BER performance than
the LMMSE beamformer. The Bayesian beamformer pro-
vided the optimal performance and had a 4 dB SNR gain at a
BER of 10−3, compared to the LMBER beamformer. When
the AOA separation was reduced to θ = 10◦, the system be-
came linearly nonseparable, as seen in Fig 3. While the linear
beamformer failed in this linearly nonseparable situation, the
Bayesian beamformer still performed adequately, and this is
demonstrated clearly in Fig. 3. For this example, the number
of states that defined the Bayesian beamformer was Nb = 16.

At an AOA of θ = 30◦, the RVM algorithm was used
for constructing a RBF beamformer. The number of training
data used at each SNR was N = 160, and the number of RBF
centers identified by the algorithm ranged from Nspa = 14
to 20, with an average value of Nspa = 18. Recursive
sample-by-sample adaptation of the RBF beamformer given
Nc = 16 was also performed using the enhanced κ-means
clustering and RLS algorithm, where the training data length
was N = 1000 with gc = 0.2 and gv = 0.995. Fig. 4 de-

picts the BERs of both the RVM RBF beamformer and that
of the CRLS RBF beamformer in comparison to the opti-
mal Bayesian performance. For the CRLS RBF beamformer,
the results obtained using both the unsupervised and super-
vised clustering algorithms were similar, and the unsuper-
vised clustering results are shown in Fig. 4.

For the AOA of θ = 10◦, the BERs of the two adap-
tive beamformers, the RVM RBF beamformer and the CRLS
RBF beamformer, are compared to the optimal Bayesian per-
formance in Fig. 5. The training data lengths and adap-
tive algorithm parameters used were identical to the case of
θ = 30◦. For the CRLS RBF beamformer, the result shown
was obtained using the supervised clustering algorithm. In
this linearly inseparable case, it was observed that the super-
vised clustering performed better than the unsupervised one.

VIII. CONCLUSIONS

A robust nonlinear beamforming technique has been de-
signed for wireless communications. The optimal solution
of the nonlinear beamforming assisted receiver has been de-
rived for BPSK signalling. It has been shown that this opti-
mal Bayesian beamformer significantly outperforms the fam-
ily of classic linear beamformers, although at the expense
of an increased complexity. This suggests that significant
wireless system capacity enhancements may be achieved
by employing nonlinear, rather than linear beamforming.
Both block-based and sample-by-sample adaptive implemen-
tations of the optimal Bayesian beamformer have been con-
sidered using a RBF network based on the RVM algorithm
as well as on the enhanced κ-means clustering and RLS al-
gorithm, respectively.
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