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Abstract – The family of minimum bit error rate (MBER)
multiuser detectors (MUD) is capable of outperforming the
classic minimum mean-squared-error (MMSE) MUD in term
of the achievable bit-error rate (BER) owing to directly
minimising the BER cost function. In this paper, we will
invoke genetic algorithms (GA) for finding the optimum
weight vectors of the MBER MUD in the context of multiple-
antenna aided multi-user OFDM.

1. INTRODUCTION

In an effort to increase the achievable system capacity of an
OFDM system, antenna arrays can be employed for supporting
multiple users in a Space Division Multiple Access (SDMA)
communications scenario [1, 2]. A variety of linear multiuser
detectors (MUD) have been proposed for performing the sep-
aration of OFDM users based on their unique, user-specific,
spatial signature, provided that their channel impulse response
was accurately estimated [1, 2]. The most popular SDMA-
receiver design strategy is constituted by the minimum mean-
squared-error (MMSE) MUD.

However, as recognised in [3–5], a better strategy is to
choose the linear detector’s coefficients so as to directly min-
imise the error-probability or bit-error ratio (BER), rather than
the mean-squared error (MSE). This is because minimising the
MSE does not necessarily guarantee that the BER of the sys-
tem is also minimised. The family of detectors that directly
minimises the BER is referred to as the minimum bit-error rate
(MBER) detector class [3–6]. In [7] we have derived the exact
MBER MUD weight calculation for the uplink SDMA OFDM
system. We have also shown that the MBER MUD may signif-
icantly outperform the MMSE MUD in terms of the achievable
BER in a two-user OFDM scenario.

In this contribution, we will investigate the performance of
the proposed MBER MUD with the assistance of genetic algo-
rithm for finding the MUD’s weight vectors, as an alternative
to the simplified conjugate gradient (CG) algorithm of [7].

2. SYSTEM MODEL

2.1. Space Division Multiple Access (SDMA)

Fig. 1 portrays the antenna array aided uplink transmission
scenario considered. In this figure, each of the L simultane-
ous users is equipped with a single transmission antenna, while
the base-station’s receiver capitalises on a P -element antenna
front-end. The set of complex signals, xp[n, k], p ∈ 1, . . . , P
received by the P -element antenna array in the k-th subcar-
rier of the n-th OFDM symbol is constituted by the superpo-
sition of the independently faded signals associated with the L
users sharing the same space-frequency resource [1]. The re-
ceived signal was corrupted by the Gaussian noise at the array
elements. The indices [n, k] have been omitted for notational
convenience during our forthcoming discourse, yielding [1]:

x = Hs + n = x̄ + n, (1)

where x is the (P × 1)-dimensional vector of the received sig-
nals, s is the (L×1)-dimensional vector of transmitted signals,
n is the (P × 1)-dimensional noise vector and x̄ represents the
noiseless component of x. The complex data signal, sl, trans-
mitted by the l-th user, l ∈ 1, . . . , L and the AWGN noise
process, np, at any antenna array element p, p ∈ 1, . . . , P are
assumed to exhibit a zero mean and a variance of σ2

l and 2σ2
n

for the data signal and AWGN noise process, respectively.
The frequency domain channel transfer function (FDCHTF)

matrix H of dimension P ×L is constituted by the set of chan-
nel transfer function vectors of the L users, each of which de-
scribes the FDCHTF between the single transmitter antenna
associated with a particular user l and the reception array ele-
ments p ∈ 1, . . . , P . The FDCHTFs, Hpl of the different array
elements p ∈ 1, . . . , P for users l ∈ 1, . . . , L are independent,
stationary, and complex Gaussian distributed processes with
zero-mean and unit variance.

For the MUDs, the estimate ŝ of the transmitted signal vec-
tor s of the L simultaneous users is generated by linearly com-
bining the signals received by the P different antenna elements
at the BS with the aid of the array weight matrix W, resulting
in:

ŝ = WHx. (2)

0-7803-8521-7/04/$20.00 (C) 2004 IEEE Crown Copyright



User L Modulator

b
L

User 2
2

b

User 1 Modulator
1

b

+

n

x P

P

1n

+
x 1

+
x

n 2

2
Modulator

Channel

M
ul

tiu
se

r 
D

et
ec

to
r

s

1H

H 2
H P

H 2
H P

H 2

H

ŝ
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Figure 1: Schematic of an antenna array aided OFDM uplink scenario, where each of the L users is equipped with a single
transmit antenna and the BS’s receiver is assisted by a P -element antenna front-end.

By substituting x with Eq. 1 and considering the l-th user’s
associated vector component, we will arrive at:

ŝl = wH
l x = wH

l Hs + wH
l n

= s̄l + wH
l n, (3)

where the weight vector wl is the l-th column of the weight
matrix W. At the current state-of-the-art, the most popular
MUD strategy is the MMSE design, where wl is chosen as
the unique vector minimising the MSE expressed as MSE =
E[(ŝl − sl)2], namely as [1]:

wl(MMSE) = (HHH + 2σ2
nI)−1Hl, (4)

where Hl is the l-th column of the FDCHTF matrix H.

2.2. Exact MBER Multiuser Detection

In our initial discourse we assumed the explicit knowledge of
the FDCHTF matrix H defined in Eq. 1. However, in practice
H has to be determined on the basis of the channel-impaired
noisy value of x and hence a number of adaptive techniques
have been proposed in references [4, 5] to this effect.

The probability of error PE encountered at the output of
the SDMA MUD characterised by the combiner weight vector
wl of user l may be expressed as [7]:

PE(wl) =
1

Nb

Nb∑
j=1

Q


 sgn(b(j)

l ) · wH
l x̄j

σn

√
wH

l w


 , (5)

where Nb is the number of equiprobable combinations of the
binary vectors of the L users, i.e. we have Nb = 2L, σn is the
variance of the noise, b

(j)
l j ∈ 1, . . . , Nb is the transmitted bit

of user l, and x̄j , j ∈ 1, . . . , Nb constitutes a possible value of
the noiseles (P × 1)-dimensional received signal vector x̄.

The MBER solution is defined as [5]:

wl(MBER) = arg min
wl

PE(wl). (6)

However, the complex, irregular shape of the BER cost func-
tion prevents us from deriving a closed-form solution for the
MBER MUD weights. Therefore, in practice an iterative strat-
egy based on the steepest-descent gradient method can be used
for finding the MBER solution [5]. According to this method,
the linear SDMA MUD’s weight vector wl is iteratively up-
dated, commencing for example from the MMSE weights, un-
til the specific SDMA MUD weight vector that exhibits the
lowest BER is arrived at. In each step, the weight vector is
updated according to a specific step-size, µ, in the vectorial di-
rection in which the BER cost function decreases most rapidly,
namely in the direction opposite to the gradient of the BER
cost function, which is given by:

∇wl
PE(wl) =

1
Nb

√
2πσn

(
wlwH

l − wH
l wlI

(wH
l wl)

3
2

)

·
Nb∑
j=1

e

(
− (s̄

(j)
l

)2

2σ2
nwH

l
wl

)
· sgn(b(j)

l ) · x̄j ,(7)

where s̄
(j)
l = wH

l x̄j .

The BER is independent of the magnitude of the MUD’s
weight vector [7], and hence the knowledge of the orientation
of the detector’s weight vector is sufficient for defining the de-
cision boundary of the linear MBER OFDM/SDMA detector.
Therefore, the MBER detector has an infinite number of MUD
weight solutions, although with the aid of appropriate weight-
vector normalisation, it is possible to reduce the infinite num-
ber of MBER solutions to a single solution.

In [7], we employed the simplified cojugate gradient (CG)
algorithm for arriving at the minimum solution of the BER cost
function, and the step size, µ, is fixed for every iteration.
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Figure 2: Flowchart for the probability error optimisation us-
ing GA.

3. GENETIC ALGORITHM

Even though the MBER detector of [7] is capable of maintain-
ing a good performance, the convergence of the algorithm is
sensitive to the choice of the algorithm’s parameters. For ex-
ample, the choice of the initial condition for the MBER MUD
is critical in order for the solution to converge to the mini-
mum of the BER surface. In [7], the MMSE SDMA MUD
weight solution has been used for initialising the CG algo-
rithm based MUD. However, this choice of initial conditions
does not necessarily guide the algorithm’s convergence to the
required MBER solution. Another parameter that affects the
performance of the MBER detector is the step size µ used
for updating the array weights in the direction opposite to the
BER gradient. The choice of this step size must be based on a
compromise, since a step-size that is too high might not allow
convergence to the minimum BER point, whereas the opposite
scenario will require a high number of iterations for attaining
convergence to the MBER solution. An attractive method that
might be able to assist the MBER MUD in circumventing the
above-mention problems is constituted by the family of genetic
algorithms (GA) [8, 9].

Although GAs have been used in numerous applications,
such as machine learning and modelling adaptive processes,
by far the largest application of GAs is in the domain of func-
tion optimisation [9, 10]. GAs are different from traditional
algorithms, because they do not attempt to optimise the de-
sired decision variable [9]. Instead, they encode the decision
variables such as for example the SDMA MUD’s weight vec-

Parameter Value or type

SDMA
Number of users 4
Receiver antennas 4
OFDM
Number of subcarriers 128
Length of cyclic prefix 32
GA
GA type Non-overlapping
Population size 30
Number of generations 100
Mutation type Flip mutator
Probability of mutation 0.01
Crossover type Single-point crossover
Probability of crossover 0.6
Genome type Binary string
Initialization Uniform
Comparison Bit comparator
Encoding/decoding Binary encoding and decoding
Selection Roulette wheel
Others
MBER Exact MBER
Channel impulse h(z) = 0.8854 + 0.3504z−6

response +0.2881−11, dispersive
Gaussian channel [1]

Table 1: Parameters for the GA simulations.

tors into finite-length strings or GA individuals, which are then
optimised. In the case of SDMA-MUDs, both the real and
imaginary part of a complex-valued weight have to be repre-
sented by a single GA string to create an individual. A GA does
not commence its optimisation process from a single point in
the search space, but rather from an entire set of individuals,
which form the initial population. In other words, GAs may be
invoked in robust global search and optimisation procedures
that do not require the knowledge of the objective function’s
derivatives or any gradient-related information concerning the
search space. Hence, non-differentiable functions as well as
functions with multiple local minima, like the BER surface of
the SDMA-MUD, represent classes of problems, where GAs
can be efficiently applied. For further details on the origin of
GAs and its applications, the readers are referred to the impres-
sive compilation of ideas in [9–11].

4. SIMULATION RESULTS

In this contribution, a GA is used for finding the best SDMA-
MUD weight vectors that will minise the probability of error
in Eq. 5. The flowchart of the GA process is shown in Fig. 2.
Firstly, the probability of error is used as the objective function
to be solved by the GA. Each individual in a population rep-
resents either the real or imaginary part of the SDMA-MUD
weight values. At the beginning of the GA process the indi-
viduals are initialised randomly. These individuals are then
evaluated for the sake of finding the best array-weights in the
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Figure 3: The BER performance of the four different users in an SDMA system employing four receiver antennas and 128-
subcarrier OFDM for communicating over the OFDM symbol-invariant dispersive Gaussian channel given in Table 1.

sense of the MBER-related objective function. This GA op-
eration is followed by the selection, crossover and mutation
processes, before the individuals are re-evaluated again. The
process will continue, until the specific termination criteria ad-
vocated is satisfied.

The parameters used for our simulations are outlined in Ta-
ble 1. The channel that we used in the simulation is the dis-
persive Gaussian channel, where the z-domain transfer func-
tion associated with the channel impulse response is given by
h(z) = 0.8854 + 0.3504z−6 + 0.2881z−11 [1]. As a start-
ing point, we used binary type genomes [9] for representing
the GA’s individuals. Therefore each real and imaginary part
of the weight vectors is represented by a 16-bit binary string.

The GA’s termination criterion is constituted by the maximum
affordable number of generations. Following the termination
process, the best individual encountered is deemed to be the
best MBER weight solution and hence it is converted to the real
and imaginary values of the weight vectors. Our prelimiary re-
sults derived for four different users employing the parameters
summarised in Table 1 are presented in Fig. 3. We can see from
the figure that the MMSE result for each user varies due to the
difference in the CIR received at the base station antennas.

4.1. Complexity comparison

The advantage of using GAs compared to the CG method [7]
for determining the MBER MUD’s weight values is that the
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Figure 4: The BER performance of User 1 versus com-
plexity for the GA and CG MBER MUD invoked in
the OFDM/SDMA system employing P = 4, L = 4 and
128-subcarrier OFDM for communicating over the symbol-
invariant dispersive Gaussian channel given in Table 1 at
SNR = 15 dB. The complexity calculations were described in
Sec. 4.1.

GA does not neccessarily require a good initial weight guess
for exhibiting rapid convergence. In this section, we will in-
vestigate the complexity of the two methods.

The complexity of the CG algorithm is proportional to the
number of iterations used for finding the MBER solution on
the BER surface. In each iteration the gradient of Eq. 7 will
have to be calculated and the SDMA-MUD weight values will
be updated accordingly. Therefore the complexity of the CG
method can be estimated as:

Compl{CG} � Maximum number of iterations. (8)

On the other hand, if we used the maximum number of gen-
erations as the termination criterion in the GA, each generation
of the population contains a certain number of individuals, thus
the complexity of the GA aided MUD is proportional to the
product of the population size and the number of generations
used, which is given by:

Compl{GA} � Population size × Generation. (9)

By using Eq. 8 and Eq. 9, we can compare the complex-
ity of the two methods. Fig. 4 shows the probability of error
for User 1 at SNR = 15 dB for the P = 4 and L = 4 system
configuration. We can see from the figure that the GA-aided
SDMA-MUD will reach the minimum BER at a lower com-
plexity compared to the CG method.

5. CONCLUSION

In this contribution, we have shown that GAs may be applied
in the context of an SDMA OFDM system for determining the

MBER MUD’s weight vectors. The GA-aided system has an
edge over the CG-based system, because it does not require an
initial weight solution. It was also shown that the GA is capa-
ble of approaching the MBER solution at a lower complexity
than the CG algorithm. Our future work will invoke forward
error correction codes in high-dimensional SDMA-MUDs.

6. REFERENCES

[1] L. Hanzo, M. Münster, B. J. Choi and T. Keller, OFDM
and MC-CDMA. West Sussex, England: John Wiley and
IEEE Press, 2003.

[2] P. Vandenameele, L. van Der Perre, and M. Engels, Space
Division Multiple Access for Wireless Local Area Net-
works. Boston: Kluwer Academic Publishers, 2001.

[3] R. C. de Lamare and R. Sampaio-Neto, “Adaptive MBER
Decision Feedback Multiuser Receivers in Frequency Se-
lective Fading Channels,” IEEE Communications Letters,
vol. 7, no. 2, pp. 73–75, February 2003.

[4] C.-C. Yeh and J. R. Barry, “Adaptive Minimum Bit-Error
Rate Equalization for Binary Signalling,” IEEE Transac-
tions on Communications, vol. 48, no. 7, pp. 1226–1235,
July 2000.

[5] S. Chen, A. K. Samingan, B. Mulgrew, and L. Hanzo,
“Adaptive Minimum-BER Linear Multiuser Detection
for DS-CDMA Signals in Multipath Channels,” IEEE
Transactions on Signal Processing, vol. 49, no. 6,
pp. 1240–1247, June 2001.

[6] D. Gesbert, “Robust Linear MIMO Receivers: A Mini-
mum Error-Rate Approach,” IEEE Transactions on Sig-
nal Processing, vol. 51, no. 11, pp. 2863–2871, Novem-
ber 2003.

[7] M. Y. Alias, A. K. Samingan, S. Chen, and L. Hanzo,
“Multiple Antenna Aided OFDM Employing Minimum
Bit Error Rate Multiuser Detection,” IEE Electronics Let-
ters, vol. 39, no. 24, pp. 1769–1770, 27 November 2003.

[8] L. Hanzo, L-L. Yang, E-L. Kuan and K. Yen, Single- and
Multi-Carrier DS-CDMA: Multi-User Detection, Space-
Time Spreading, Synchronisation, Networking and Stan-
dards. West Sussex, England: John Wiley and Sons,
2002.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Reading, Massachusetts:
Addison-Wesley, 1989.

[10] J. Holland, Adaptation in Natural and Artificial Systems.
Ann Arbor, Michigan: University of Michigan Press,
1975.

[11] M. Mitchell, An Introduction to Genetic Algorithm. Cam-
bridge, Massachusetts: MIT Press, 1996.

0-7803-8521-7/04/$20.00 (C) 2004 IEEE Crown Copyright


	Select a link below
	Return to Main Menu
	Return to Previous View




