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ABSTRACT

In this paper a novel Genetic Algorithm (GA) assisted Min-
imum Bit Error Rate Rate (MBER) beamforming technique
is introduced. The performance of the proposed GAs is char-
acterised by the Probability Density Function (PDF) and the
mean value of the achievable Bit Error Rate (BER) at the
beamformer’s output. The results are also compared to the
theoretical bounds. It is shown that GAs are suitable for
MBER beamforming and that a trade-off between the com-
plexity of the GA and its robustness against system parameter
variations can be found.

1. INTRODUCTION

In recent years an increasing demand for higher wireless teletraf-
fic system capacity was observed. Since bandwidth is a scarce
commodity, this increased demand has to be preferably satisfied
by exploiting the existing resources more efficiently. Adaptive an-
tenna arrays [1] can be used for enhancing the system capacity by
separating users transmitting on the same carrier frequency in the
spatial domain. The receiver controls the radiation pattern of the
array by adjusting the array weights so that a certain optimisation
criterion is met [1].

The conventional beamformer combines the signals received
with the aid of each antenna element for the sake of minimising
the Mean Square Error (MSE) between a transmitted and a re-
ceived reference signal. This technique is known as the Minimum
Mean Square Error (MMSE) approach. The Sample Matrix Inver-
sion (SMI) algorithm [1], which is based on invoking the so-called
temporal reference technique, is an accurate and well established
beamforming algorithm for the realization of this approach [1].

The minimisation of the MSE at the output of the beamformer
between a transmitted and a received reference signal does not
guarantee the minimisation of the Bit Error Rate (BER). There-
fore in [2] the BER rather than the MSE was minimised at the
beamformer’s output. We refer to this novel approach as the Min-
imum Bit Error Rate (MBER) approach, which has already been
successfully used for both Multi User Detection (MUD) [3] and
channel equalisation [4]. The associated performance gain how-
ever, is achieved by solving a more elaborate cost function op-
timisation problem than the minimisation of the quadratic MSE
cost function. The function describing the BER as a function of
the antenna array weights is highly nonlinear and has numerous
local minima. For solving this complex optimisation problem,
carefully initialised stochastic gradient based algorithms can be
employed [2], although the choice of the appropriate algorithmic

The financial support of the EU under the auspices of the Phoenix
project is gratefully acknowledged. The authors are also grateful to their
colleagues for the enlightenment gained within the Phoenix consortium.

parameters may turn out to be challenging. For sub-optimum set-
tings, the algorithm may get trapped in a local minimum of the
BER surface and thus result in a sub-optimum solution. With the
aim of circumventing these difficulties, it seemed natural to em-
ploy a random search based heuristic optimisation algorithm such
as a Genetic Algorithm (GA) [5].

GA based array weight calculation has been characterised
in [6–8]. GAs have been shown to be resistant against local
minima problems and can be randomly initialised, while gradi-
ent based search techniques are somewhat deficient in this respect.
The genetic approach can be interpreted as a guided random search
process, which attempts to imitate biological evolution [5]. The al-
gorithm commences its iterations with a set of potential solutions
referred to as the initial population, which can be chosen randomly
and for each of these potential initial solutions, which are also re-
ferred to as GA individuals, the so-called fitness function is eval-
uated. This function describes the quality or fitness of a poten-
tial solution and ensures that the most fit individuals are selected
as ’mates’ of the GA creating ’offspring’, i.e new parameter esti-
mates, which become part of the next generation. By successively
repeating the procedure of combining the best parameter estimates
for the sake of creating new estimates, the algorithm is likely to
converge to the best solution for the fitness function. The motiva-
tion of our research is to derive a GA, which is capable of finding
the antenna array weights that directly minimise the BER at the
beamformer’s output, resulting in the MBER solution.

In Section 2 we will first introduce the system model for our
investigations and then present an expression for both the true and
the estimated BER of the received signal. In Section 3 a GA con-
figuration will be presented, which is used in Section 4.1 for cal-
culating the MBER solution, where the true BER constitutes the
basis of the fitness function. The GA will be further developed in
Section 4.2 and an estimate of the true BER replaces the true BER
in the fitness function. Our conclusions are offered in Section 5.

2. SYSTEM MODEL

The system model of the beamforming process is chosen in anal-
ogy to other studies reported in the literature [2]. The user and
the interferer are considered as Binary Phase Shift Keying (BPSK)
modulated point-sources in the far field of the receiver. Addi-
tionally, we consider a one-dimensional L-element linear array
of omni-directional antennas having an inter-element spacing of
d = λ

2
, where λ is the wave-length of the sources. The receiver

noise n is assumed to be a complex white Gaussian process hav-
ing a variance of 2σn. The antenna array output signal x at a time
instant k can then be written as

x(k) = Pb(k) + n(k), (1)
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where b is an M -element vector containing the BPSK modulated
users’ symbols and P is the (L × M )-dimensional system matrix,
which takes into account the M sources’ signal amplitude at the
receiver and their angles of incidence θ. The system matrix is
defined as

P =




A1e
jωt1(θ1) · · · AMejωt1(θM )

A1e
jωt2(θ1) AMejωt2(θM )

...
. . .

...
A1e

jωtL(θ1) · · · AMejωtL(θM )


 , (2)

where Am is the amplitude of the signal received from the mth

source and tl(θm) is the relative time delay of the signal transmit-
ted by the mth source at the lth array element. The beamformer
output can now be written as

y(k) = wHx(k), (3)

where H denotes the Hermitian operator, representing the conju-
gate complex value of a vector.

For M number of BPSK modulated point sources, there exist
only 2M possible transmitted bit sequences bq with 1 ≤ q ≤ Nb,
where bq,1 corresponds to the desired user’s symbols. Therefore,
the beamformer’s input signal may assume values from the set
X = {xq = Pbq, 1 ≤ q ≤ Nb}. Then it can be shown,
that the Bit Error Probability (BEP) for a given weight vector w
may be calculated as follows [2]

Pe(w) =
1

Nb

Nb∑
q=1

Q(gq(w)) (4)

with

gq(w) =
sgn(bq,1)Re{wHxq}

σn

√
wHw

. (5)

The true BEP Pe of (4) will be used in the fitness function of the
GA for an initial BER versus GA complexity study in Section 2.
However, in order to aim for a more realistic receiver structure,
the true BEP has to be replaced by the estimated P̂e, which can
be obtained using kernel density estimation [9]. The estimated bit
error probability P̂e may be written as [2]

P̂e(w) =
1

K

K∑
k=1

Q(ĝk(w)) (6)

with

ĝq(w) =
sgn(b1(k))yR(k)

ρn

√
wHw

, (7)

where K is the reference sequence length, yR(k) is the real part of
the received reference symbol, b1(k) is the transmitted reference
symbol and ρn is the so-called kernel width, also known as the
smoothening parameter. Note, that for the kernel density estima-
tion of the Probability Density Function (PDF) of yR a Gaussian
kernel function was used, which has been transformed into the Q-
function by integrating it.

The task of the GA in the system configuration considered is to
calculate the complex array weight vector w in order to minimise
(4) and (6), respectively.

3. GENETIC ALGORITHM CONFIGURATION

In this section the GA configuration employed is presented, which
is used for calculating the MBER weights of an antenna array. The
general structure of a GA entails the following steps [5]:

1. Create initial population;

2. Evaluate the fitness of the individuals in the initial popula-
tion;

3. Select individuals of the initial population fitness-
proportionately, which are subject to cross-over of
parents or mates for the sake of creating the new generation
of individuals;

4. Perform cross-over for creating the new population having
an increased average fitness;

5. Perform mutation for the sake of avoiding premature conver-
gence, which might trap the GA in local minima.

The operation of the GA commences with an initial set of poten-
tial array weights, which are chosen randomly from within a given
search-space. Each of the potential array weight solutions is rep-
resented as a binary string using Binary Coded Decimal (BCD)
format with 8 bits assigned for the real and 8 bits for the imagi-
nary part of each array weight wl. BCD encoded, randomly cho-
sen weight vectors form the initial population, which may also be
referred to as the first generation of the GA associated with the
generation index g = 1. The total number of generations is G.

The fitness fi of an individual was quantified as

fi = 1 − 1

1 − log(Pe)
, (8)

which approached unity, as Pe decreased. The employment of
the logarithm of Pe in the objective function has significantly im-
proved the convergence behaviour of the GA. The fitness function
of (8) outperforms other functions that rely on a linear relation-
ship between the fitness of an individual and the BER, which is
particularly so at low BERs.

Having evaluated the fitness fi, it is scaled by a multiplicative
factor in order to stimulate a certain level of competition among the
individuals, thus preventing the algorithm from premature conver-
gence without wider exploration of the entire search space. Nu-
merous fitness scaling methods, such as for example sigma scal-
ing [5] or linear scaling [5] have been investigated, demonstrating
that the recently introduced so-called span scaling [10] technique
was the most effective. Span scaling modifies the fitness fg

i of an
individual of generation g according to [10]

fi,new =
fg

i − fg

σg
+ Wg (9)

with

Wg = 1 − 1

1 + exp
(
−( 10g

G
− 4)

) , (10)

where fg is the mean fitness and σg is the standard deviation of
the fitness of generation g from the mean 2σg . The function Wg

in (10) is a modified version of the one used in [10]. In contrast
to other scaling methods, adaptive span scaling has the advantage
of forcing the GA to converge to a solution after a fixed number
of generations by increasing the ’selection pressure’, as the gener-
ation index increases. In addition to span scaling, elitism [5] was
also used in the GA advocated, which guarantees that the most fit
individual of a generation is always retained in the forthcoming
generation.

The GA features presented in this section have shown in our
initial studies, that they improve the GA’s performance, although
carefully optimised span scaling and elitism have to be used, since
they may guide the search towards local minima, potentially pre-
venting the algorithm from converging to the global minimum. In
order to ensure that the performance of the GA is not limited by
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Bits per array weight 16
Selection type Roulette Selection
Cross-over type Single Point
Cross-over Probability 0.9
Scaling Span Scaling
Mutation type Bit Inversion
Mutation Probability 0.1
Elitism performed

Table 1: GA parameters

the GA operators, it is important to carefully monitor the PDF of
the BER at the beamformer’s output evaluated for numerous dif-
ferently initialised GA runs.

4. SIMULATIONS

For the sake of arriving at the analytical BER expression of (4),
a conjugate gradient algorithm based array weight adaption proce-
dure has been proposed in [2]. This theoretical performance bound
will serve as our benchmarker when the performance of the GA is
evaluated for the different angular distribution of the users given
in Table 2. For a given weight vector calculated with the aid of the
GA, the BER was evaluated using (4), so that resorting to Monte
Carlo simulation could be avoided. The BER curves presented are
averaged over 1000 GA-aided weight-optimisation runs. When
we refer to the complexity of a GA, we characterise it by the num-
ber of objective function evaluations used. The complexity is then
given as the product of the population size P and the number of
generations G. If two GAs have an equal complexity, typically
the one having a higher population size is preferable, since for a
certain generation, the P number of evaluations of the objective
function can be processed in parallel.

4.1. GA-Aided Best-Case Performance

For the sake of characterising the achievable upper-bound perfor-
mance in our initial study, the true bit error probability is assumed
to be known at the receiver, so that it can be used for evaluating
the fitness of the GA’s individuals. The exact configuration of the
GA is summarised in Table 1.

The search-space of the GA was limited to the region of
|Re{wl}| ≤ 1 and |Im{wl}| ≤ 1 with 1 ≤ l ≤ L, since the
MBER solution found for BPSK modulated users is invariant to
linear scaling and thus can be confined to this search-space. The
initial population was chosen randomly in conjunction with a uni-
form probability within the given search-space. The signal of all
point sources arranged according the constellations given in Ta-
ble 2, was assumed to be received with equal power at the antenna
array.

Figure 1 (left graph) shows the achievable BER at the beam-
former’s output for a two-element linear array with the users ar-
ranged according to scenario S of Table 2. The population size
has been set to P = 20 individuals and the number of generations
was chosen to be G = 20. It can been seen, that the theoretical
MBER solution and the solution calculated with the aid of the GA
are identical, even though the GA uses quantised array weights.
The convergence behaviour of the GA is characterised with the
aid of the PDF of the BER, which is plotted for g = 1, 5, 10, 20.
It is demonstrated, that the GA converges towards the theoretical
best-case performance, as the generation index g increases. After
twenty generations the GA reaches the theoretical best-case BER
performance with a high probability and hence the PDF of the BER

User Interferer
S θ0 = 15◦ θ1,2,3,4 = −30◦, 60◦, −70◦, 80◦

U θ0 = 15◦ θ1,2,3,4 = 4◦, 26◦, −70◦, 80◦

V θ0 = 15◦ θ1,2,3,4 = 9◦, 21◦, −70◦, 80◦

Table 2: Angles of incidence relative to the perpendicular of the antenna
array for the user constellations S, U and V .
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Figure 1: Left Graph: BER versus SNR for a two-element linear array
receiving five equal-power sources arranged according to con-
stellation S of Table 2. The GA configuration was as given
in Table 1 with a population size of P = 20 and G = 20
generations. The BER associated with specific values of the
fitness function of (8) was assumed to be known at the receiver
and was calculated using (4). The GA-based BER results were
averaged over 1000 GA runs, when communicating over an
AWGN channel. Right Graph: PDF of the BER for arrange-
ment S, corresponding to the GA’s individual having the high-
est fitness after g = 1, 5, 10, 20 generations. The BER-PDF
was estimated using kernel density estimation for SNR=10 dB
and 1000 samples over AWGN channels.

achieved in the differently initialised GA-assisted runs becomes a
narrow peak, as seen at the right of Figure 1.

If the number of array elements is increased, the complexity of
the GA also has to be increased, when aiming for a narrow BER-
PDF, since the search-space expands significantly. For the opti-
misation of the elements in a four-element array characterised in
Figure 2 (left graph) the population size was increased to P = 40
and the number of generations was set to G = 40. In the case,
when the point sources have been arranged according to scenario
S of Table 2, a good agreement is observed between the theoret-
ical best-case BER performance and the results obtained with the
aid of the GA. However, if the two interferers arriving at angles of
θ = −30◦ and θ = 60◦ are moved towards the desired user, as
in constellation U of Table 2, there is a performance gap between
both solutions, as seen in Figure 2.

Furthermore, a lower probability of convergence is observed in
the right hand side graph of Figure 2, where the PDF of the BER
corresponding to the GA’s individual having the maximum fitness
in the generation is plotted after g = 1, 10, 20, 40 generations for
SNR=10 dB and for the user constellation S of Table 2. The GA
is still capable of converging to the theoretical best-case perfor-
mance, albeit with a lower probability than for the two-element
array characterised in Figure 1. However, it is important to note
that even if the GA does not converge to the ideal solution, it re-
mains capable of reaching a reasonable BER.

For the eight-element array a similar behaviour to that recorded
for the four-element scheme can be observed in Figure 3. In the
scenario, when the users are arranged according to constellation S
of Table 2, a good agreement was found between the theoretical
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Figure 2: Left Graph: BER versus SNR for a four-element linear array
receiving five equal-power sources arranged according to con-
stellations S and U of Table 2. The GA configuration was as
given in Table 1 with a population size of P = 40 and G = 40
number of generations. The BER associated with specific val-
ues of the fitness function of (8) was assumed to be known at
the receiver and was calculated using (4). The GA-based BER
results were averaged over 1000 GA runs, when communicat-
ing over an AWGN channel. Right Graph: PDF of the BER
for arrangement S, corresponding to the GA’s individual hav-
ing the highest fitness after g = 1, 5, 20, 40 generations. The
BER-PDF was estimated using kernel density estimation for
SNR=10 dB and 1000 samples over AWGN channels.

best-case performance and the GA-based solution. If the two in-
terferers at angles of θ = −30◦ and θ = 60◦ are moved closer
to the desired source, as seen in scenario V of Table 2, there is
again a performance gap between the two solutions. Informal in-
vestigations suggest that the performance gap is due to the coarsely
quantised weights of the GA. To elaborate a little further, assume
that the array weights of user constellation S have to be calcu-
lated, when the BER versus array weights surface is characterised
by a wide valley, which represents the MBER solution, although
this BER valley not explicitly shown here owing to lack of space.
In the case of this wide valley even coarsely quantised weights
are very likely to identify this minimum sufficiently accurately.
However, if the BER surface is rendered more complex by moving
the interferer closer to the desired source, the valley in the BER
surface becomes narrower. This implies even for finely quantised
weights, which deviate only little from the optimum solution that
an increased BER may be recorded.

As a result of the two-, four- and eight-element array based
study, we surmise the rule of thumb, that the complexity of the
GA increases quadratically with the array size, when aiming for a
similar BER-PDF spread.

4.2. GA-Aided Performance Using Kernel Estimates

The motivation for the employment of a GA in the context of
MBER beamforming was to circumvent the algorithmic difficul-
ties of stochastic gradient based MBER algorithms, such as for
example the Least Bit Error Rate (LBER) algorithm [2, 3], which
are sensitive to BER gradient estimation errors.

4.2.1. Static GA Configuration

In Figure 4 the BER versus SNR performance is illustrated for
the users arranged according to constellation S of Table 2 and for
INR=SNR, where INR is the Interference to Noise to Noise Ratio.
The GA parameters are given in Table 1. It can be seen that for
a reference length of K = 512 (dashed lines) and for ρn = 0.1
as well as ρn = 1, respectively, the GA associated with P = 20

1e-8

1e-6

1e-4

1e-2

1e0

 0  2  4  6  8  10

B
E

R

SNR [dB]

S:P=130,G=50
V:P=130,G=50
S:MBER
V:MBER

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1e-30 1e-21 1e-12 1e-03

E
st

im
at

ed
 P

D
F

BER

 g=1
 g=5
 g=20
 g=50

Figure 3: Left Graph: BER versus SNR for an eight-element linear ar-
ray receiving five equal-power sources arranged according to
constellations S and V of Table 2. The GA configuration
was as given in Table 1 with a population size of P = 130,
G = 50 number of generations and a reduced mutation prob-
ability pm = 0.01. The BER associated with specific values
of the fitness function of (8) was assumed to be known at the
receiver and calculated using (4). The GA-based results were
averaged over 1000 GA runs, when communicating over an
AWGN channel. Right Graph: PDF of the BER for arrange-
ment S, corresponding to the GA’s individual with highest fit-
ness after g = 1, 5, 20, 50 generations. The BER-PDF was
estimated using kernel density estimation for SNR=10 dB and
1000 samples over AWGN channels.

and G = 20 occasionally fails to converge towards the MBER so-
lution, except perhaps for ρn = 0.01. Further investigations have
shown that if the complexity of the GA is increased by opting for
P = 40 and G = 40 (solid lines), the algorithm is capable of
compensating for the BER estimation errors, even if a shorter ref-
erence sequence length of K = 256 is used. As expected, for an
inappropriately chosen value of ρn the minimum of the BER sur-
face is shifted away from the theoretical solution [3]. In this case
the GA becomes incapable of converging to the MBER solution.
From the results presented in Figure 4 it is inferred, that a trade-off
between the complexity of the GA and its sensitivity against BER
estimation errors can be found.

4.2.2. Adaptive GA Configuration

In the previous section, a fixed kernel width of ρn was used for
BER estimation. It is known however that the perfect kernel width
has to be adjusted according to the variance of the received training
sequence and is thus dependent on both the SNR and the INR.
Silverman has provided a simple rule of thumb for the estimation
of ρn given as [9]

ρn =

(
σ̂5

3K

) 1
5

≈ 1.06σ̂K− 1
5 , (11)

where K is the reference sequence length and σ̂ is the standard
deviation of the received reference sequence. Equation (11) tends
to over-smoothen the BER estimate, but the results presented in
Figure 4 suggest that the GA is capable of compensating for this
inaccuracy.

For the sake of investigating a GA design, which invokes an
adaptive kernel width, the GA given in Table 1 was enhanced by
incorporating two additional features [5]:

1. Incest Prevention: Prevents that two identical individuals are
earmarked for the cross-over operation.
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Figure 4: BER versus SNR for a two-element linear array receiving five
equal-power sources arranged according to constellation S of
Table 2. The GA configuration was as given in Table 1 with
a population size P and G number of generations as given in
the legend. The BER associated with specific values of the fit-
ness function of (8) was estimated based on a 256 and a 512
symbol training sequence using (6). The GA results were aver-
aged over 1000 GA runs, when communicating over an AWGN
channel.

2. Weighted Mutation: Reduces the mutation probability pm of
the more significant bits of each individual, as the generation
index g approaches the maximum number of generations G.

Figure 5 (left graph) shows the achievable BER versus SNR
performance in conjunction with the enhanced GA configuration
for P = 50 and G = 30, when detecting equal-power users
(SNR=INR1,2,3,4 labelled as equ) as well as for a scenario study-
ing the near-far effect using SNR=INR3,4 and SIR1,2 =-6 dB (la-
belled as diff ). The users were arranged according to constellation
S of Table 2. The graphs illustrate the superiority of the MBER
approach over the MMSE approach in terms of counteracting the
near-far effects, while demonstrating that the GA adopts automat-
ically to the new BER surface without being reconfigured. Reduc-
ing the training sequence length from K = 256 to K = 64 does
not significantly affect the mean BER, but when considering the
BER-PDF after g = G = 30 generations, it can be seen that the
algorithm’s convergence behaviour is noticeably improved. For a
longer training sequence the GA is more likely to converge to the
MBER solution.

5. CONCLUSIONS AND CURRENT RESEARCH

A novel GA assisted MBER beamformer has been developed. It
has been shown that a GA can be used for approximating the
MBER solution, which directly minimises the BER at the beam-
former’s output. A rule of thumb, which relates the complexity of
a GA to the array size was provided. The proposed GA may be
used for approximating the theoretical best-case MBER solution.
A further improved GA associated with an adaptively chosen ker-
nel width was used in Section 4.2.2 for investigating, how the al-
gorithm reacts to time-variant interference conditions, which was
capable of accommodating, when the BER surface changed shape
owing to changing the sources’ power. In this respect the GA out-
performs the gradient based algorithms, such as the LBER [3] al-
gorithm, which has to be reconfigured for each BER surface vari-
ation.
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Figure 5: Left Graph: BER versus SNR for a two-element linear array
receiving five sources arranged according to constellation S
of Table 2. The simulations were carried out for equal-power
users with SNR=INR1,2,3,4 (labelled as equ) and for a constel-
lation where the two interferer of incident angles θ = −30◦
and θ = 60◦ had 6 dB higher power than the desired source
(SNR=INR3,4 and SIR1,2 =-6 dB labelled as diff ). The GA
configuration was as given in Table 1 with a populations size
of P = 50, G = 30 number of generations and the addi-
tional features incest prevention and weighted mutation. The
BER associated with specific values of the fitness function of
(8) was estimated using (6) and (11). The GA results were
averaged over 1000 GA runs, when communicating over an
AWGN channel. Right Graph: PDF of the BER corresponding
to the GA’s individual with highest fitness after g = G = 30
number of generations corresponding to the SNR-BER curves
in the left graph. The BER-PDF was estimated using kernel
density estimation for a SNR=10 dB and 1000 samples over an
AWGN channel.
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