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Abstract— This constribution considers nonlinear space-time
equalisation (STE) designed for single-input multiple-output
(SIMO) systems. By exploiting the inherent symmetry of the
underlying optimal Bayesian STE solution, a novel symmetric
radial basis function (RBF) based STE scheme is proposed,
which is capable of achieving the optimal Bayesian equalisation
performance. The adaptive adjustment of the STE taps of
this symmetric RBF (SRBF) based STE can be achieved by
estimating the SIMO channel encountered using the classic least
mean square channel estimator and computing the optimal RBF
centres from the resultant SIMO channel matrix estimate. Our
simulation results demonstrate that the performance of this SRBF
based STE is robust with respect to the choice of the algorithmic
parameters.

I. INTRODUCTION

Space-time processing techniques play an increasingly impor-
tant role in wireless communications [1]-[7]. With the aid
of smart antenna arrays and by exploiting both the space
and time dimensions, space-time processing becomes capable
of improving the achievable system capacity, coverage and
quality of service by suppressing both the intersymbol inter-
ference and the co-channel interference. The family of single-
input multiple-output (SIMO) systems has enjoyed popularity
owing to its potent performance benefits and relative imple-
mentational simplicity. A SIMO system consists of a single-
antenna transmitter and a receiver equipped with multiple
antennas. A space-time equaliser (STE) [8]-[12] based on
this SIMO structure is capable of mitigating the channel
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Fig. 1. Single-input multiple-output system employing multiple receive
antennas.

impairments arising from hostile multipath propagation. The
most commonly used STE structure is linear and classically the
design of such a linear STE is based on the minimum mean
square criterion. A recent study has shown that the optimal
linear STE design - optimal in terms of attaining the Minimum
Bit Error Ratio (MBER) - is the one that adopts the minimum
bit error rate criterion of [12], and hence we refer to this STE
design as the linear MBER STE.

However, we will show that the true optimal STE is nonlinear,
just as in the case of single-input single-output (SISO) systems
[13]-[16]. We will highlight the inherent symmetry of the op-
timal Bayesian STE solution’s modulated signal constellation,
and demonstrate that this enables us to propose an adaptive
nonlinear STE based on a novel symmetric radial basis func-
tion (RBF) network. A convenient way of adaptively adjusting
the taps of this symmetric RBF (SRBF) STE is to estimate
the SIMO channels using the classic least mean square (LMS)
channel estimator and then to compute the optimal RBF centre
vectors based on the resultant SIMO channel matrix estimate.
This adaptive SRBF STE is capable of realising the optimal
Bayesian STE and its performance is robust with respect to
the choice of the algorithmic parameters, such as the RBF
centres’ variance value, as will be demonstrated with the aid
of our simulations.
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Fig. 2. Space-time equalisation structure using ∆-spaced temporal filters,
where ∆ = Ts and Ts denotes the symbol period, M is the temporal filter
order, and d the decision delay.
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II. SIMO SYSTEM MODEL

A SIMO system employs a single transmit antenna and L (>
1) receive antennas, as depicted in Fig. 1, where s(t) is the
transmitted signal, xl(t) denotes the l-th receiver antenna’s
output signal and nl(t) the l-th channel’s noise. The received
signals are sampled at the symbol rate to obtain the L
antennas’ output samples xl(k), 1 ≤ l ≤ L, which are passed
to a generic STE, as shown in Fig. 2. The received signal
sample xl(k) of the l-th antenna can be expressed as

xl(k) =
nc−1∑
i=0

ci,ls(k − i) + nl(k) = x̄l(k) + nl(k), (1)

where nl(k) is a complex-valued Gaussian white noise process
with E[|nl(k)|2] = 2σ2

n, x̄l(k) denoting the noise-free part of
the l-th channel’s output. The modulation scheme is assumed
to be binary phase shift keying (BPSK) and therefore the
transmitted symbol sequence s(k) assumes values from the
BPSK symbol set {±1}, while ci,l represents the complex-
valued taps of the l-th channel impulse response (CIR) having
a length of nc taps. For notational simplicity, we have assumed
that each of the L SIMO channels has the same length of nc.
The task of the STE is to use the multi-channel output vector

x(k) = [xT
1 (k) xT

2 (k) · · ·xT
L(k)]T (2)

to produce an estimate ŝ(k − d) of the transmitted symbol
s(k − d), where d denotes the STE’s decision delay,

xl(k) = [xl(k) xl(k − 1) · · ·xl(k − M − 1)]T (3)

for 1 ≤ l ≤ L, and M is the order of the l-th temporal filter.
Again, for notational simplicity, we have assumed that each
of the L temporal filters of the STE has the same order M .
In most state-of-the-art applications a linear - rather than non-
linear - STE has been employed, whose soft output is given
by

y(k) =
L∑

l=1

M−1∑
i=0

θ∗i,lxl(k − i) = θHx(k), (4)

where θ = [θT
1 θT

2 · · ·θT
L]T , and θl = [θ0,l θ1,l · · · θM−1,l]T

is the l-th temporal filter’s weight vector. Again, the optimal
solution for the linear STE’s weight vector θ is known to
be the linear minimum bit error rate (LMBER) solution [17].
However, just as in the case of the SISO channel equalisation
[13]-[16], the optimal STE solution based on the information
provided in x(k) is nonlinear.

III. BAYESIAN SPACE-TIME EQUALISER SOLUTION

Note that the STE’s input vector x(k) can be expressed as

x(k) = Cs(k) + n(k) = x̄(k) + n(k) (5)

where n(k) = [nT
1 (k) nT

2 (k) · · ·nT
L(k)]T with nl(k) =

[nl(k) nl(k − 1) · · ·nl(k − M + 1)]T , the symbol vector

s(k) = [s(k) s(k − 1) · · · s(k − M − nc + 2)]T , (6)

and the overall CIR matrix C is defined as

C =




C1

C2

...
CL


 (7)

with the M × (M + nc − 1) CIR matrix Cl given by

Cl =




c0,l c1,l · · · cnc−1,l 0 · · · 0

0 c0,1 c1,l · · · ccn−1,l
. . .

...
...

. . .
. . .

. . . · · · . . . 0
0 · · · 0 c0,1 c1,l · · · cnc−1,l


 .

(8)
We define the overall signal to noise ratio (SNR) of the SIMO
system under consideration as

SNR =
σ2

s

L2σ2
n

L∑
l=1

nc−1∑
i=0

|ci,l|2, (9)

where σ2
s = 1 is the BPSK symbol energy.

Denote the Ns = 2M+nc−1 legitimate combinations of s(k)
as sq, 1 ≤ q ≤ Ns. Denote furthermore the d-th element of
sq, corresponding to the desired symbol s(k− d) as sq,d. The
noiseless SIMO channel output x̄(k) only takes values from
the finite signal state set

x̄(k) ∈ X �
= {x̄q = Csq, 1 ≤ q ≤ Ns}, (10)

which can be divided into two subsets conditioned on the value
of s(k − d) as

X (±) �
= {x̄q ∈ X , 1 ≤ i ≤ Nsb : s(k − d) = ±1}, (11)

where the size of X (+) and X (−) is Nsb = Ns/2. Let the
conditional probabilities of receiving x(k) given s(k − d) =
±1 be p±(x(k)) = p(x(k)|s(k − d) = ±1). According to the
classic Bayesian decision theory [18], the optimal detection
strategy is

ŝ(k − d) =
{

+1, if p+(x(k)) ≥ p−(x(k)),
−1, if p+(x(k)) < p−(x(k)). (12)

Let us now introduce the following real-valued Bayesian
decision variable

yBay(k) = fBay(x(k))
�
=

1
2
p+(x(k)) − 1

2
p−(x(k)). (13)

The optimal detection rule (12) is equivalent to

ŝ(k − d) = sgn(yBay(k)) =
{

+1, yBay(k) ≥ 0,
−1, yBay(k) < 0.

(14)

Given the signal model of (5), the decision variable (13) can
be expressed as

yBay(k) =
Ns∑
q=1

sgn(sq,d)βqe
− ‖x(k)−x̄q‖2

2σ2
n (15)

where βq denotes the a priori probability of x̄q. Since all the
x̄q values are equiprobable, all the βq values are equal.
Let us now highlight the symmetry of the Bayesian solution.
Lemma 1: The two subsets X (+) and X (−) are distributed
symmetrically, hence for any signal state x̄(+)

i ∈ X (+) there
exists a signal state x̄(−)

q ∈ X (−) satisfying x̄(−)
q = −x̄(+)

i .
Proof: Let x̄(+)

i = Cs(+)
i ∈ X (+). Then

−x̄(+)
i = C

(
−s(+)

i

)
∈ X (−).



Given this symmetry, the optimal Bayesian equalisation solu-
tion (15) can be rewritten as

yBay(k) =
Nsb∑
q=1

βq

(
e
− ‖x(k)−x̄

(+)
q ‖2

2σ2
n − e

− ‖x(k)+x̄
(+)
q ‖2

2σ2
n

)
, (16)

where x̄(+)
q ∈ X (+). The Bayesian STE solution has odd

symmetry, as fBay(−x(k)) = −fBay(x(k)). In the next
section, we propose a RBF network which has the same odd-
symmetric structure.

IV. SYMMETRIC RBF SPACE-TIME EQUALISER DESIGN

The proposed SRBF network assumes the following form

ySRBF(k) = fSRBF(x(k)) =
Nsb∑
i=1

θiφi(x(k)) (17)

where fSRBF(•) is a real-valued nonlinear mapping realised
by the SRBF network, θi is the i-th real-valued RBF weight,
φi(•) denotes the i-th RBF unit, and Nsb is the number of RBF
units used. The SRBF STE makes its decisions according to
ŝ(k − d) = sgn(ySRBF(k)). In contrast to the standard RBF
model, here, we propose to adopt the following symmetric
RBF unit

φi(x)
�
= ϕ(x; ci, σ

2
i ) − ϕ(x;−ci, σ

2
i ), (18)

where ci ∈ CLM is the i-th complex-valued RBF centre,
σ2

i the i-th real-valued RBF centres’ variance, and ϕ(•) the
classic RBF function. In this study we adopt the Gaussian RBF
function of the form

ϕ(x; ci, σ
2) = e−

‖x−ci‖2

2σ2 . (19)

The SRBF network (17) with the node structure (18) has an
inherently odd symmetry, just as the Bayesian STE solution.
Its is worth noting that the standard RBF model, where the

RBF node is defined by φi(x)
�
= ϕ(x; ci, σ

2
i ), is unable to

guarantee this odd symmetry.
It is plausible that we can set all the RBF weights according
to θi = θ > 0 and all the RBF centres’ variances to σ2

i = σ̂2
n,

where σ̂2
n is the estimate of σ2

n. Furthermore, if we use the
set of signal states X (+) as the RBF centres of this SRBF
STE, then the proposed solution becomes capable of exactly
achieving the optimal Bayesian performance. A simple and
effective means of realising this optimal RBF centre set is to
estimate the SIMO CIRs using the LMS algorithm as follows

ĉi,l(k) = ĉi,l(k−1)+µcεl(k)s(k− i), 0 ≤ i ≤ nc −1, (20)

TABLE I

THE CIRS OF THE SIMULATED SIMO SYSTEM WITH L = 4 AND nc = 3.

THE ACTUALLY SIMULATED CHANNEL WAS NORMALISED ACCORDING TO

cl/‖cl‖.

l cl

l −0.2 + j0.3 −0.5 + j0.4 0.7 − j0.6
2 −0.3 + j0.2 0.7 − j0.1 −0.5 + j0.4
3 −0.1 − j0.2 0.6 + j0.1 −0.4 + j0.3
4 0.1 + j0.1 0.2 + j0.2 −0.4 − j0.4

for 1 ≤ l ≤ L, where µc is the step size, and

εl(k) = xl(k) −
nc−1∑
i=0

ĉi,l(k − 1)s(k − i). (21)

From the estimated SIMO channel matrix Ĉ, it is straightfor-
ward to calculate the optimal RBF centre set, namely, X (+).
The estimated noise variance σ̂2

n is used as the RBF centres’
variance. We point out that our experience indicates that the
performance of the SRBF STE is not overly sensitive to the
value of the RBF centres’ variance used, and hence there
exists a large range of the RBF centres’ variance values
which enable the SRBF STE to achieve the optimal Bayesian
performance. This will be more explicitly demonstrated in our
simulation study. This underlying robustness to the value of
the RBF centres’ variance is a consequence of the Bayesian
detector’s robustness to the noise variance σ2

n used. It has been
shown [16] that the performance of the Bayesian detectors
using 0.2σ2

n and 5σ2
n to substitute the noise variance σ2

n is
indistinguishable from that of the exact Bayesian solution.

V. SIMULATION STUDY

A SIMO system using L = 4 receive antennas was simulated,
and each channel had nc = 3 taps. Table I lists the CIRs
cT

l = [c0,l c1,l c2,l], 1 ≤ l ≤ 4, of this SIMO system. The
simulated channel was normalised according to cl/‖cl‖ for the
sake of maintaining a unity channel gain. The STE’s temporal
filter order was chosen as M = 5. For this example, the
STE’s decision delay 0 ≤ d ≤ 6, and the optimal decision
delay was found to be d = 4. This optimal decision delay
was used in our simulations. Fig. 3 depicts the bit error ratio
(BER) performance of the two benchmarkers, namely that of
the linear MBER STE and of the optimal Bayesian STE.
The proposed SRBF based STE was next investigated. The
LMS channel estimator (20) was employed to identify the
L = 4 SIMO CIRs in conjunction with a step size of µc =
0.02. The optimal RBF centre set was then computed from the
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Fig. 3. Bit error rate comparison of three space-time equalisers for the SIMO
system listed in Table I.
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Fig. 4. Learning curve of the LMS SIMO channel estimator averaged over
10 runs for the SIMO system listed in Table I, given SNR= 1 dB and the
step size µc = 0.02.

estimated SIMO channel matrix. The RBF centres’ variance
was set to σ2

n. Given SNR= 1 dB, Fig. 4 characterizes the
convergence behaviour of the LMS SIMO channel estimator
averaged over 10 runs, in terms of the mean tap error (MTE)
expressed as:

MTEl(k) = ‖cl − ĉl(k)‖2, 1 ≤ l ≤ 4. (22)

The BER of the SRBF STE is plotted in Fig. 3, in comparison
to the two benchmarkers. For the same conditions as those
used in Fig. 4, Fig. 5 shows the BER performance of the SRBF
STE as a function of the RBF centres’ variance. It can be seen
from Fig. 5 that the SRBF STE is capable of approaching
the Bayesian performance for a large range of RBF variance
values.

VI. CONCLUSIONS

A nonlinear space-time equaliser has been proposed for SIMO
systems based on a novel symmetric RBF network. By exploit-
ing the inherent symmetry of the underlying optimal Bayesian
STE solution, the proposed SRBF based STE is capable of
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Fig. 5. Bit error rate performance of the SRBF STE as a function of the
RBF variance for the SIMO system listed in Table I, given SNR= 1 dB.

achieving the optimal Bayesian equalizer’s performance. An
adaptive implementation of this SRBF based STE has been
adopted by estimating the SIMO channels using the LMS
channel estimator and computing the optimal RBF centres
from the resultant SIMO channel matrix estimate. Our simu-
lation results demonstrated that the performance of this SRBF
based STE is robust with respect to the choice of the RBF
centres’ variance value.
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