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Abstract— A generalised vector precoding (VP) design based
on the minimum bit error rate (MBER) criterion is proposed for
multiuser transmission in the downlink of a multiuser system
where the base station (BS) equipped with multiple transmit
antennas communicates with single-receive-antenna mobile sta-
tion (MS) receivers each having a modulo detection device. Our
transmit preprocessing scheme generates the effective symbol
vector based on the MBER criterion, given the knowledge of
the channel state information and the current information symbol
vector to be transmitted. The proposed MBER based generalised
VP algorithm is shown to outperform even the powerful mini-
mum mean-square-error VP benchmark, particularly for rank-
deficient systems where the number of BS’s transmit antennas is
smaller than the number MSs supported.

I. INTRODUCTION

The family of well-studied multiuser detectors (MUD) was
designed for mitigating the multiuser interference at the base
station (BS), which is imposed by the uplink (UL) transmis-
sions of the mobile stations (MSs) to the BS. It is however
less feasible to employ MUDs in the downlink (DL) of a
space-division multiple-access (SDMA) system at the MSs. In
order to facilitate the employment of a low-complexity, high-
power-efficiency single-user receiver, the transmitted multiuser
DL signals may be pre-processed at the BS, leading to the
concept of multiuser transmission (MUT) [1]. More explicitly,
the MUT requires the knowledge of each user’s unique channel
impulse response (CIR) for differentiating the different users’
transmissions. For time division duplex systems, the UL CIRs
measured at the BS may be exploited for subsequent DL pre-
processing owing to the channel’s reciprocity. However, the
CIR has to be explicitly fed back from the MS’s receivers
to the BS transmitter in frequency division duplex systems,
where the UL and DL CIRs are different. MUT schemes can
be divided into the two groups, namely, linear and nonlinear
MUT schemes.

The well-known linear MUT methods include the zero-
forcing (ZF) and the minimum mean-square-error (MMSE)
schemes [2], [3], which have an appealing simplicity, but
they exhibit a limited bit error rate (BER) performance.
Various linear MUT schemes based on the minimum BER
(MBER) criterion [4]–[8] were proposed in order to improve
the achievable BER performance. Recently, a low-complexity
particle swarm optimisation (PSO) aided linear MBER MUT
design was proposed in [9]. Nonlinear MUT techniques are
capable of approaching the rate region of dirty paper coding
[10]. The family of vector precoding (VP) schemes [11]–[14],

where each receiver employs a modulo device, is capable
of significantly outperforming linear MUT techniques. To
elaborate a little further, the VP of [11] is based on the
ZF criterion, while the powerful MMSE VP solution was
derived in [12]. By contrast, the MMSE VP of [15] dispenses
with the employment of the modulo device of [11]. An
improved MMSE VP schemes based on the MBER criterion
was developed in [16].

Against this background, in this paper, we consider an
advanced VP design based on the MBER criterion. Our
contributions are: (A) To the best of our knowledge, no VP
algorithm was proposed in the literature based directly on the
minimisation of the BER, hence we propose the MBER-based
generalised VP algorithm. (B) Instead of the two-step process
of generating the linear precoding matrix and perturbation
vector of [12], we generate the effective symbol vector to
be transmitted by directly minimising the BER criterion by
exploiting the knowledge of the information symbol vector
and the channel matrix. (C) Since the resultant design consti-
tutes a non-convex continuous-valued optimisation problem,
we adopt the computationally efficient PSO algorithm [17]–
[19] for creating the generalised MBER VP design. (D) We
demonstrate that the proposed MBER-based generalised VP
algorithm outperforms even the powerful nonlinear MMSE
VP benchmark proposed in [12], especially for rank-deficient
systems, where the number of BSs transmit antennas is lower
than the number MSs supported. (E) Our complexity study
demonstrates that the complexity imposed by the generalised
MBER VP design is no higher than twice that of the MMSE
VP solution.

II. SYSTEM MODEL

The DL of a SDMA system is depicted Fig. 1, where the BS
is equipped with N DL transmit antennas and transmits over
frequency-flat fading channels to K non-cooperative MSs,

Fig. 1. Schematic diagram of the SDMA system’s DL using preprocessing
at the BS. The MUT-aided system employs N transmit antennas at the BS to
communicate with K non-cooperative MSs each with a modulo device.
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each employing a single receive antenna and a modulo device.
The DL channel matrix H of the system is given by

H = [h1 h2 · · ·hK ], (1)

where hk = [h1,k h2,k · · ·hN,k]T , 1 ≤ k ≤ K, is the kth
user’s spatial signature. The independent CIR taps hi,k, for
1 ≤ k ≤ K and 1 ≤ i ≤ N obey the complex-valued Gaussian
distribution having E[|hi,k|2] = 1, where E[•] denotes the
expectation. The information symbol vector to be transmitted
to the K MSs is given by x = [x1 x2 · · ·xK ]T , where xk

denotes the information symbol destined for the kth MS. Given
x and H, the generic VP generates the continuous-valued
effective symbol vector of d = [d1 d2 · · · dN ]T based on some
criterion. In a conventional VP, such as the ZF VP [11] or the
MMSE VP [12], the effective symbol vector d is expressed
as

d = P(x + ω), (2)

where P is the (N ×K)-element precoding matrix and ω is
the K-element discrete-valued perturbation vector, our design
objective is to determine P and ω separately based on H and
x. Our proposed scheme, however, determines d directly and
therefore it is referred to as the generalised VP.

The DL channel’s white noise vector is defined by n =
[n1 n2 · · ·nK ]T , where nk, 1 ≤ k ≤ K, is complex-valued
Gaussian distributed with a zero mean and E[|nk|2] = 2σ2

n =
No. Given a fixed total transmit power ET at the BS, an
appropriate scaling factor is defined by α =

√
ET/‖d‖2,

which is used to fullfill this power constraint. At the receiver,
the reciprocal of the scaling factor, namely α−1, is used
to scale the received signal in order to maintain unity-gain
transmission. The energy per bit per antenna is defined by
Eb = ET/N log2 M for M -ary modulation. The received
signal vector ŷ = [ŷ1 ŷ2 · · · ŷK ]T recorded at the input of
the modulo operation of Fig. 1 is given by

ŷ = HT d + α−1n. (3)

The modulo operation invoked for ŷk is described by

modτ

(
ŷk

)
= ŷk − b<[ŷk] + τ/2

τ
cτ − j b=[ŷk] + τ/2

τ
cτ. (4)

where 1 ≤ k ≤ K, <[•] and =[•] denote the real and
imaginary parts, respectively, j2 = −1, b•c denotes the integer
floor operator, and τ is a positive number determined by the
modulation constellation employed. The role of the modulo
operation was graphically portrayed in [11] and it is detailed
further below. The received signal vector y = [y1 y2 · · · yK ]T

at the output of the modulo operation of Fig. 1 is given by

y = modτ

(
ŷ
)
, (5)

and yk, 1 ≤ k ≤ K, constitutes sufficient statistics for the kth
MS to detect the transmitted information data symbol xk. The
authors of [11] suggested to choose τ according to

τ = 2(|c|max + ∆/2), (6)

where |c|max is the largest distance of the modulated symbols
to the real or imaginary axis, and ∆ is the spacing between
the constellation points. Specifically, we consider 4 level

quadrature amplitude modulation (4-QAM), where all the four
symbols have the amplitude of

√
2/2. The values of |c|max

and ∆ are given by |c|max = 1
2 and ∆ = 1, respectively. Thus

we have τ = 2 according to (6). The modulo operator (4)
maps the received signal, <[ŷk] and =[ŷk], into the interval
[−τ/2, τ/2). For example, if we have <[ŷk] = 1.75τ , it is
then mapped to <[yk] = −0.25τ by the modulo operation.

III. GENERALISED MBER VECTOR PRECODER DESIGN

For notational simplicity, we restrict our treatment to the 4-
QAM case of M = 4, noting that its extension to a high-order
QAM scheme can be achieved by considering the minimum
symbol error rate (MSER) criterion, which was employed for
a MUD in [20]. The BER encountered at the receiver’s output
after the modulo operation for the in-phase component of user
k is

PeI ,k(d) = Prob{sgn(<[xk])<[yk] < 0}. (7)

Let us now define the signed decision variable
sk = sgn(<[xk])<[ŷk], which has a mean of
c
(k)
R = sgn(<[xk])<[hT

k d] and the probability density
function (PDF) given by

p(sk) =
1√

2πα−1σn

e
− (sk−c

(k)
R

)2

2σ2
nα−2 . (8)

The decision areas are periodically extended in the sk-axis, as
depicted in Fig. 2, where the intervals marked by − are the
error areas of sgn(<[xk])<[yk] < 0, while the intervals marked
by + are the error-free areas of sgn(<[xk])<[yk] > 0. An error
occurs, when sk falls into the intervals [ 2m+1

2 τ, (m + 1)τ),
−∞ < m < ∞. Therefore, PeI ,k(d) is given by

PeI ,k(d) =
∞∑

m=−∞

∫ (m+1)τ

2m+1
2 τ

p(sk)dsk ≈
∫ −3τ

−∞
p(sk)dsk

+
∫ −2τ

− 5τ
2

p(sk)dsk +
∫ −τ

− 3τ
2

p(sk)dsk +
∫ 0

− τ
2

p(sk)dsk

+
∫ τ

τ
2

p(sk)dsk +
∫ 2τ

3τ
2

p(sk)dsk +
∫ 3τ

5τ
2

p(sk)dsk, (9)

where the approximation occurs, when we lump all the in-
tegrations over all the error intervals in (−∞, − 3τ) and
(3τ, ∞) together into a single integration over the interval
of (−∞, − 3τ). This approximation is fairly accurate owing
to the near-symmetry of the PDF (8) over the two regions of
(3τ, ∞) and (−∞, −3τ). Furthermore the last six integrates
at the righthand side of the approximation are generally higher
than the first term. Thus PeI ,k(d) can be approximated as

PeI ,k(d) ≈ Q

(
c
(k)
R + 3τ

α−1σn

)
+ Q

(
− 5τ

2 − c
(k)
R

α−1σn

)

− Q

(
−2τ − c

(k)
R

α−1σn

)
+ Q

(
− 3τ

2 − c
(k)
R

α−1σn

)

− Q

(
−τ − c

(k)
R

α−1σn

)
+ Q

(
− τ

2 − c
(k)
R

α−1σn

)
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Fig. 2. Probability density function of the decision variable sk .

− Q

(
−c

(k)
R

α−1σn

)
+ Q

(
τ
2 − c

(k)
R

α−1σn

)
−Q

(
τ − c

(k)
R

α−1σn

)

+ Q

(
3τ
2 − c

(k)
R

α−1σn

)
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(
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(k)
R
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. (10)

Hence, the average BER of the in-phase component of y is

PeI ,x(d) =
1
K

K∑

k=1

(PeI ,k(d)) . (11)

Similarly, let c
(k)
I = sgn(=[xk])=[hT

k d]. Then the BER of
the quadrature-phase component for the kth user is given by

PeQ,k(d) ≈ Q

(
c
(k)
I + 3τ

α−1σn

)
+ Q

(
− 5τ

2 − c
(k)
I

α−1σn

)

− Q

(
−2τ − c

(k)
I

α−1σn

)
+ Q

(
− 3τ

2 − c
(k)
I

α−1σn

)

− Q

(
−τ − c

(k)
I

α−1σn

)
+ Q

(
− τ

2 − c
(k)
I

α−1σn

)

− Q

(
−c

(k)
I

α−1σn

)
+ Q

(
τ
2 − c

(k)
I

α−1σn

)
−Q

(
τ − c

(k)
I

α−1σn

)

+ Q

(
3τ
2 − c

(k)
I

α−1σn

)
−Q

(
2τ − c

(k)
I

α−1σn

)

+ Q

(
5τ
2 − c

(k)
I

α−1σn

)
−Q

(
3τ − c

(k)
I

α−1σn

)
. (12)

Then the average BER for the quadrature-phase component of
y at the receivers of the K MSs is given by

PeQ,x(d) =
1
K

K∑

k=1

[
PeQ,k(d)

]
. (13)

Thus, the average BER for 4-QAM signalling becomes

Pe,x(d) = [PeI ,x(d) + PeQ,x(d)]/2. (14)

Hence, the optimal continuous-valued effective symbol vector
dopt is found by solving the following optimisation problem

dopt = arg min
d

Pe,x(d). (15)

Note that (15) constitutes a non-convex continuous-valued
optimisation problem. Hence we invoke the powerful PSO
algorithm [17], [18] to solve this generalised MBER VP design
problem. The detailed algorithm is now described.

A swarm of particles, {d(l)
i }S

i=1, that represent potential
solutions are evolved, a set of initial solutions to the find
solution in the search space DK , where S is the swarm size,
the index l denotes the iteration step-size and

D = [−Pmax, Pmax] + j[−Pmax, Pmax] (16)

specifies the search range for each element of d.
a) Initialisation. For l = 0, we choose d(l)

1 to be the solution
of the improved MMSE VP scheme [16], and generate the rest
of the particles, {d(l)

i }S
i=2, randomly in the search space DK .

b) Evaluation. Each particle d(l)
i has an associated cost

Pe,x

(
d(l)

i

)
. Each particle d(l)

i remembers its best visited posi-
tion, denoted as pb(l)

i , which provides the cognitive informa-
tion. Every particle also knows the best position visited by any
particle throughout the entire swarm, denoted as gb(l), which
provides the social information. The cognitive information
{pb(l)

i }S
i=1 and the social information gb(l) are updated at each

iteration, given the new cost information {Pe,x

(
d(l)

i

)}S
i=1.

c) Update. Each particle d(l)
i has a velocity v(l)

i used for
directing its “flight” or search. both the velocity and position
of the ith particle are updated in each iteration according to:

v(l+1)
i = wI ∗ v(l)

i + c1 ∗ ϕ1 ∗ (pb(l)
i − d(l)

i )

+c2 ∗ ϕ2 ∗ (gb(l) − d(l)
i ), (17)

d(l+1)
i = d(l)

i + v(l+1)
i , (18)

where wI is the inertia weight, c1 and c2 are the two accelera-
tion coefficients, while ϕ1 = rand() and ϕ2 = rand() denotes
the two random variables uniformly distributed in (0, 1).

In order to avoid excessive by diverse roaming of particles
beyond the search space, a velocity space VK obeying

V = [−Vmax, Vmax] + j[−Vmax, Vmax] (19)

is imposed, so that each element of v(l+1)
i is forced to remain

within the velocity range V defined in (19). Similarly, if a
particle d(l+1)

i moves outside the search space, it is moved
back into the search space to a random position.
d) Termination. If the maximum number of iterations, Im, is
reached, we terminate the algorithm at the final solution of
dopt = gb(Im); otherwise, we set l = l +1 and go to Step b).

The complexity of this PSO aided generalised MBER-VP
design is characterised in Table I, in comparison to the com-
plexity of the MMSE-VP design [12]. In Step a), one of the
particles is initialised to the solution of the improved MMSE-
VP [16]. Then it may be readily shown that the complexity of
this initialisation is proportioned to (73K+18KN+6N+4)D,
where D is the number of extended constellation points visited
[12], [16].

TABLE I
COMPUTATIONAL COMPLEXITY OF THE MMSE-VP [12] AND THE

PROPOSED MBER-VP DESIGNS FOR 4-QAM SIGNALLING.

Algorithm Flops

MMSE-VP
(

7
3
K3 + 13K2 + 13K − 1

)
D +O(9K2N2 − 2K2)

MBER-VP (7N + (73 + 7N)K + (23N + (73 + 7N)K + 6)Im)S
+(73K + 18KN + 6N + 4)D + 2K + 7KN + 5S
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Fig. 3. BER versus SNR performance of the MMSE VP [12] and our
proposed MBER generalised VP for communicating over flat Rayleigh fading
channels using N = 4 transmit antennas to support K = 4 4-QAM users.

The size of the search space (16) is specified by the specific
optimisation problem considered. For 4-QAM signalling, our
extensive empirical results suggest that the magnitudes of
<[dk] or =[dk] obtained by the MMSE VP solution are
typically lower than 1.0, and they may only occassionally
be slightly larger than 1.0. This observation is also true for
the proposed generalised MBER VP design. Therefore, we
set Pmax = 1.2. The velocity limit Vmax is typically related to
Pmax, and we empirically set Vmax = 0.2. The inertia weight
was chosen as wI = rand(), which was found to perform
better in our investigations not included here owing to lack
of space than the alternative choice of setting wI to a small
positive constant or to zero. The time-varying acceleration
coefficients were defined in [19], and c1 was varied from 2.5
to 0.5, while c2 varied from 0.5 to 2.5 during the iterative
procedure. Alternatively, setting them to

c1 = (0.5− 2.5) · l/Im + 2.5,

c2 = (2.5− 0.5) · l/Im + 0.5,
(20)

also works well in our application. The appropriate values of S
and Im have to be carefully chosen to ensure that the algorithm
converges to the optimal solution at a modest computational
complexity.

IV. SIMULATION RESULTS

The proposed PSO aided generalised MBER VP design
was investigated using the MMSE VP design [12] as the
benchmark. We considered the DL of a multiuser system
employing N transmit antennas at the BS to support K 4-
QAM MSs. The received signals after the modulo operation
of Fig. 1 were directly used for making decisions. The signal-
to-noise ratio (SNR) was defined as SNR = Eb/No. All the
simulation results were averaged over 100 channel realisations.
The appropriate swarm size was found empirically to be
S = 20, and the maximum number of iterations ranged from
Im = 20 to 45, depending on both the specific system and on
the SNR value.

We considered the case of N = 4 and K = 4. First, the
perfect knowledge of the DL CIR matrix was assumed to be
available at the BS. Fig. 3 shows that the proposed generalised
MBER VP scheme achieved 1 dB SNR gain at the target
BER of 10−5 over the MMSE VP. Fig. 4 indicates that the
PSO algorithm converged after Im = 20 and 40 for the SNR
values of 6 dB and 10 dB, respectively. The robustness of
the two VP algorithms against the channel estimation error
was investigated next. Complex-valued Gaussian white noise
having a variance of 0.01 was added to each channel tap hi,k in
order to represent the channel estimation error, and the BERs
of these two nonlinear MUT designs contaminated by this
channel estimation error were also depicted in Fig. 3, where
it can be seen that the generalised MBER VP had a similar
sensitivity to channel estimation errors to that of the MMSE
VP design.

The system was then configured to use N = 2 transmit
antennas to support K = 4 4-QAM users, which was a
strongly rank-deficient scenario. The BERs of the two algo-
rithms are shown in Fig. 5 assuming the perfect knowledge
of the channel matrix as well as assuming the same channel
estimation error as specified in the previous example. Even the
powerful nonlinear MMSE VP suffered from an error floor in
this demanding scenario. By contrast, the generalised MBER
VP did not exhibit an error floor, which demonstrated its
ability to operate successfully in the challenging rank-deficient
scenario considered. Fig. 4 shows that the PSO algorithm
converged after Im = 40 and 45, respectively, for the SNRs of
25 dB and 30 dB, respectively. The computational complexity
imposed and the run times recorded by the two VP designs
are compared in Table II, where it can be clearly seen that
the total complexity of the PSO aided generalised MBER
VP design is less than twice of the conventional MMSE-VP
design. Fig. 6 shows that S = 10 was insufficient for the PSO
algorithm, while the PSO algorithms having S = 20, 30 and
40 all converged to the optimal solution. However, the choice

Fig. 4. Convergence of the PSO aided MBER generalised VP algorithm given
different SNR values for communicating over flat Rayleigh fading 4× 4 and
2× 4 systems, respectively, where the swarm size is S = 20.

TABLE II
FLOPS AND RUN TIMES REQUIRED BY THE MMSE-VP AND MBER-VP

DESIGNS FOR THE RANK-DEFICIENT SYSTEM, GIVEN TWO SNR VALUES.

Algorithm Flops/Time (SNR=25 dB) Flops/Time (SNR=30 dB)
MMSE-VP 2, 508, 638/4787.3(s) 2, 609, 600/4981.9(s)
MBER-VP 4, 064, 937/8878.9(s) 4, 471, 060/9565.8(s)
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Fig. 5. BER versus SNR performance of the MMSE VP [12] and our
proposed MBER generalised VP for communicating over flat Rayleigh fading
channels using N = 2 transmit antennas to support K = 4 4-QAM users.

Fig. 6. Convergence of the PSO aided MBER generalised VP algorithm
with different swarm sizes S for for the rank-deficient system given the SNR
value of 25 dB.

of S = 20 was attractive owing to its low complexity, as seen
from Table III.

V. CONCLUSIONS

We have proposed a generalised MBER VP scheme for
the DL of a multiuser system, where the BS equipped with
multiple transmit antennas communicates with single-antenna
aided non-cooperative MS receivers each equipped with a
modulo device. Our PSO aided nonlinear transmit preprocess-
ing scheme generates the effective symbol vector based on
the MBER criterion with the knowledge of both the downlink
CIR matrix and the current information symbol vector to be
transmitted. Our PSO aided generalised MBER VP scheme
outperforms even the powerful nonlinear MMSE VP scheme,

TABLE III
COMPLEXITY OF THE PSO AIDED MBER-VP DESIGN FOR THE

RANK-DEFICIENT SYSTEM, GIVEN SNR= 25 DB.

Swarm size S number of iterations Im complexity (Flops)
20 40 4, 064, 937
30 32 4, 149, 627
40 25 4, 174, 077

especially in the challenging rank-deficient scenario, while
imposing less than twice higher computational complexity.
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