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Abstract

The paper proposes a novel construction algorithm for generalized Gaussian kernel re-
gression models. Each kernel regressor in the generalized Gaussian kernel regression model
has an individual diagonal covariance matrix, which is determined by maximizing the cor-
relation between the training data and the regressor using a repeated guided random search
based on boosting optimization. The standard orthogonal least squares algorithm is then
used to select a sparse generalized kernel regression model from the resulting full regres-
sion matrix. Experimental results involving two real data sets demonstrate the effectiveness
of the proposed regression modeling approach.
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1 Introduction

A fundamental principle in practical nonlinear data modeling is the parsimonious principle of

ensuring the smallest possible model that explains the training data. Forward selection using the

orthogonal least squares (OLS) algorithm [1]–[5] is a simple and efficient construction method

that is capable of producing parsimonious linear-in-the-weights nonlinear models with excellent

generalization performance. Alternatively, the state-of-art sparse kernel modeling techniques,

such as the support vector machine and relevant vector machine [6]–[9], have been gaining
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popularity in data modeling applications. These existing sparse regression modeling techniques

typically place the kernel centers or mean vectors at the training input data and use a fixed

common kernel variance for all the regressor kernels. The value of this common kernel variance

obviously has a critical influence on the sparsity and generalization capability of the resulting

model, and it has to be determined via some sort of cross validation. For example, in [3]

a genetic algorithm is applied to determine the appropriate common kernel variance through

optimizing the model generalization performance.

In this paper, we consider a generalized Gaussian kernel model, in which each kernel regres-

sor has an individually tuned diagonal covariance matrix. Such a generalized kernel regression

model has the potential of improving modeling capability and producing sparser final models,

compared with the standard approach of single fixed common variance. The difficult issue is

then how to determine these kernel covariance matrices. Since the correlation function between

a kernel regressor and the training data defines the “similarity” between the regressor and the

training data, it can be used to “shape” the regressor by adjusting the associated kernel covari-

ance matrix in order to maximize the absolute value of this correlation function. A weighted

optimization algorithm, which has its root from boosting [10]-[12], is considered to perform the

associated optimization task. This weighted optimization algorithm is a guided random search

method and the solution obtained may depend on the initial choice of population. To provide a

robust optimization and guarantee stable solutions regardless of the initial choice of population,

the algorithm is augmented into a repeated weighted optimization method.

The determination of kernel covariance matrices essentially provides the full bank of regres-

sors or the full regression matrix, and this allows the application of the standard OLS algorithm

[1],[2] to select a parsimonious subset model. The outline of the paper is as follows. Section 2

gives the generalized Gaussian kernel regression model to be considered. Section 3 derives the

correlation criterion to be used for determining the kernel covariance matrices and presents a

repeated boosting search optimization algorithm for performing the corresponding optimization

tasks. Section 4 briefly summarizes the standard OLS algorithm used to select a sparse kernel

regression model, while Section 5 describes our modeling experiments. Finally, Section 6 offers

our conclusions.
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2 Generalized Gaussian kernel regression model

Consider a general discrete stochastic nonlinear system represented by���������	�
��������������	����������������������������������	�������� "!$#&%��'���(�)�+*$�(�� ,!$#&%-� (1)

where ��� and �.� are the system input and output variables, respectively, /$0 and /�1 are positive

integers representing the known lags in �2� and �.� , respectively, the observation noise %�� is

uncorrelated with zero mean, *3�4�657�.����������-�.����� � ������������-������� �)8:9 denotes the system input

vector with a known dimension / � /21 # /�0 , �(�)�<;=! is a priori unknown system mapping, and  
is an unknown parameter vector associated with the appropriate, but yet to be determined, model

structure. The system model (1) is to be identified from an > -sample system observational

data set ?A@ �CB�*$�.�����(D @��E" , using some suitable functions which can approximate �=���F;=! with

arbitrary accuracy.

We will model the unknown dynamical process (1) by using the following generalized Gaus-

sian kernel regression model

�.���HG�.�I#J%���� @K L E"NM LPO(L �Q*,��!$#&%-� (2)

where G�.� denotes the model output given the input *R� , M L are the model weight parameters, andO(L �F;=! are the kernel regressors. We allow the regressor function to be chosen as the general

Gaussian function

O.L �Q*3!S�UTV�Q*W��* L �	X L ! withTV�Q*Y��* L ��X L !Y�[Z	\^]`_�acbd �Q*cae* L ! 9 X ��L �+*fag* L !ih (3)

where the kernel covariance matrix takes the form of X L � diag Bkj,lLnm  �)��������j2lLom � D . As is in a

standard kernel regression model, the kernel mean vectors are placed at the training input data

points. If all the diagonal covariance matrices are set to the identical form of diag BkjRl��������)��j,l)D ,
we arrive at the standard Gaussian kernel model.

The kernel model (2) over the training set ?V@ can be written in the matrix form aspq�srt u#wv (4)

by defining px�y57�Nz� l ������� @ 8 9 (5)
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 c� 5 M  M l ����� M @ 8 9 (6)v �y5 %�3% l ������% @ 8 9 (7)r �y5 �  � l ����� � @ 8 (8)

� L � 5 O�L �Q* �! O�L �Q* l !2����� O(L �Q* @ ! 8 9 � b ����� > (9)

The objective of sparse modeling is to construct a subset model consisting of > �S��� > ! signif-

icant regressors only from the full set of regressors defined in (9).

3 Determination of the full regression matrix

To specify the pool of regressors or the full regression matrix r , one needs to determine all the

associated diagonal covariance matrices X L , b ����� > . Let us start the discussion by defining

the least squares cost or mean square error (MSE) associated with an 	 -term model as


�� � b> @K��E" �
��� a G�.�)! l (10)

where for the notational simplicity the same notation G��� is also used for representing the 	 -term

model output. Obviously

� �[p$9�p ����p�� l .

3.1 Correlation criterion

The correlation between a regressor � L and the training data is defined by

� � X L !Y� p 9 � L� p 9 p � � 9L � L (11)

This correlation is a function of the regressor’s kernel covariance matrix. We propose to use this

correlation function as the optimization criterion to determine the regressor’s kernel covariance

matrix. Specifically, we should choose X L so that � � � X L ! � is maximized. Why this is a good

strategy to specify the pool of regressors can easily be explained. Assuming that � L is selected

to form a one-term model, the associated reduction in the MSE value can be shown to be

� 
 � 
� a 
 Y��� p 9�� L�� l� 9L � L (12)
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which can be rewritten as

� 
 � � p 9 p � � p 9 � L � l�Qp 9 p !,� � 9L � L ! � ��p�� l � � � X L ! � l (13)

Since ��p���l is a constant, maximizing � � � X L ! � leads to a maximum reduction in the MSE value.

Having chosen the optimization criterion, we now turn our attention to optimization algo-

rithm. We propose a repeated guided random search method to perform the associated opti-

mization tasks. This algorithm adopts ideas from boosting [10]-[12].

3.2 Weighted optimization algorithm

The task of maximizing � � � X L ! � with respect to X L can be carried out by various optimization

methods. For example, the global optimization methods, such as the genetic algorithm [13],[14]

and adaptive simulated annealing [15],[16], can be used. A global optimization method how-

ever is generally computationally very costly and may be overkill, since in this application

we only seek to tune a kernel’s diagonal covariance matrix. Let us consider the following

simple search method to perform this optimization. Given � points of X , X�� �� �)��������X�� � � , letX	��
���u�����������(\�B � � � X��
L
� ! � � b � � � �,D and X	��������� ���������! #"�B � � � X��

L
� ! � � b � � � �,D . A�$�`# b ! th point is generated by a weighted combination of X��

L
�
, b � � � � . Because this

weighted combination is a convex combination, the point X � �&% �� is always within the convex

hull defined by the � values. A �$� # d ! th point is then generated as the mirror image of X'� �(% �� ,
with respect to X ��
)��� , along the direction defined by X ��
��� a X � �&% �� . The best of X � �&% �� andX � �&% l � then replaces X ��������� . The process is repeated until it converges.

A simple illustration is depicted in Fig. 1 for a one-dimensional case, where there are � �+*

points, X!� �� , X�� l � and X!�-, � , and X	��
��� � X�� l � and X.�����#���V� X��/, � . The 4th value X0�21 � is a

weighted combination of X � �� , X � l � and X �-, � , and X �/3 � is the mirror image of X �-1 � with respect

to X�� l � . As X��21 � is better than X��/3 � in this case, it replaces X!�/, � . Clearly, how the weighted

combination is performed is critical. The weightings for X��
L
�
, b � � � � , should reflect

the “goodness” of X0�
L
�
, and the process should be capable of self-learning or adapting these

weightings. This is exactly the basic idea of boosting [10]-[12]. Specifically, by combining the

AdaBoost algorithm of [11] with the above-mentioned simple search strategy, we arrive at the

weighted optimization algorithm. Given the training data ? @ and for fitting the 4 th regressor’s
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covariance matrix, the algorithm is summarized as follows.

Initialization: Set iteration index � ��� , give the � randomly chosen initial values for X�� ,X � ��� � � !	��X � l �� � � ! , �����)��X � � �� � � ! , with the associated weightings � ��� �
L � 

� for b � � � � , and

specify a small positive value � for terminating the search.

Step 1: Boosting

1. Calculate the loss of each point in the population, namely

cost

L � b a � � � X �
L
�� � � !�! � � b ����� �

2. Find X ��
)���� � � !I� �������! #""B cost

L � b � � � �2D
and X	� ���#���� � � !Y� �������0�(\�B cost

L � b � ��� �,D
3. Normalize the loss

loss

L � cost

L
	 � 
 E" cost


 � b ����� �

4. Compute a weighting factor � � according to

� � � �KL E" � �� �L loss

L � � � � � �b a�� �
5. Update the weighting vector

� ���% ��L � �� � � ��� �
L
� loss �� for � � � b �� ��� �

L
�  � loss �� for � ��� b � b ����� �

6. Normalize the weighting vector

� ����% ��L � � ���% ��L
	 � 
 E" � ���% ��
 � b ����� �

Step 2: Parameter updating

1. Construct the �$� # b ! th point using the formula

X � �&% ��� � � !I� �K L E" � ���% ��L X � L �� � � !
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2. Construct the �$� # d ! th point using the formula

X � �&% l �� � � !S� X	��
���� � � !$# � X	��
)���� � � ! awX � �&% ��� � � ! �
3. Choose a better point (smaller loss value) from X � �&% ��� � � ! and X � �&% l �� � � ! to replaceX.���������� � � ! , which will inherit the weighting � value from X ���������� � � ! 1.

Set � � � # b and repeat from Step 1 until

��� X � �(% ��� � � ! awX � �&% ��� � � a b ! ����� �
Then choose the 4 th regressor covariance matrix as X ����X ��
)���� � � ! .

The algorithmic parameter that needs to be set appropriately is the population size � . The

population size depends on the dimension of X and the objective function to be optimized.

Generally, an appropriate value of � has to be found empirically. This is very similar to for

example the choice of population size in the genetic algorithm.

3.3 Repeated weighted optimization algorithm

The above weighted optimization algorithm performs a guided random search and the solution

obtained may depend on the initial choice of population. To derive a robust algorithm that

guarantees a global optimal solution, one may incorporate the full idea of the scatter search

[17]-[19] with this weighted optimization algorithm. However, to avoid an overly complicated

algorithm, we simply augment the algorithm into the following repeated weighted optimization

algorithm. The aim is not to guarantee a global optimal solution. Rather it is to make sure that

the algorithm will arrive at similar solutions regardless of the initial choices of population.

Initialization: Give a positive integer number � for controlling the maximum repeating times,

and choose a small positive number �  for terminating the search.

First generation: Randomly choose the � number of the initial population X � ��� ����������X � � �� , and

call the weighted optimization algorithm to obtain a solution X���
)���� .

1Each �
���	�
 , �������� , has an associated weighting value � � . When �

���������
 or �
���������
 replaces ���! #"%$'&
 , it will

keep the weighting value of � �! #"%$'&
 .
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Repeat loop: For
� � b�� �

Set X � ��� ��X ��
)���� , and randomly generate the other �Aa b points X �
L
�� for

d � ��� � .

Call the weighted optimization algorithm to obtain a solution X ��
)���� .

If
��� X � ��� awX	��
)���� ��� � � 

Exit loop;

End if

End for

Choose the 4 th regressor’s covariance matrix as X ����X �&
)���� .

The important algorithmic parameter that need to be chosen appropriately is the termination

criterion �  . Basically, �  determines whether the solutions obtained in different runs of the

weighted optimization are closely enough to be regarded as the same solution. If a too small

�  is chosen, the loop may keep going for long time. To safeguard against this, we also specify

the maximum repeating times � . Again, appropriate values for � and �  depends on the

dimension of X and how hard the objective function to be optimized. Also the choice of � has

some influence on the choice of � and �  . Generally, these algorithmic parameters have to be

found empirically.

4 OLS algorithm for subset model selection

Once the full regression matrix r has been designed, the standard OLS algorithm [1],[2] can

be used to select a subset model. Let an orthogonal decomposition of the regression matrix be

r ����� (14)

where

� �
������
�
b
	  m l ����� 	  m @� b . . .

...
...

. . . . . . 	 @ �� m @� ����� � b
������
� (15)

and � � 5��  � l ������� @ 8 (16)
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with orthogonal columns that satisfy � 9 L � 
 � � , if
���� � . The regression model (4) can

alternatively be expressed as px� ��� #wv (17)

where the orthogonal weight vector � �y5�� �� l ������� @ 8 9 satisfy the triangular system

�t t�	� (18)

Knowing � and � ,  can readily be solved from (18).

For the orthogonal regression model (17), the MSE
 @ � b> v 9 v (19)

can be expressed as 
 @ � b> p 9 pfa b> @KL E" � 9 L � L � lL (20)

Thus the MSE for the 4 -term subset model can be expressed recursively as
 ��� 
 � ��Ra b> � 9 � � � � l� (21)

At the 4 th stage of regression, the 4 th term is selected to maximize the error reduction criterion

[1],[2] � 
 ��� b> � 9 � � � � l� (22)

The forward selection procedure is terminated at the > � th stage if
 @�
 �� (23)

is satisfied, where the small positive scalar � is a chosen tolerance. This produces a parsimo-

nious model containing > � significant regressors.

In this study, we should assume that an appropriate tolerance value � can be chosen. It

is worth emphasizing that the termination of the model construction process can alternatively

be decided using cross validation [20],[21]. A simple method is to have a separate validation

data set. The model construction is based on the training data set, while the performance of

the selected model, the MSE (20), is monitored over the validation data set. The construction

process is terminated when the MSE over the validation data set stops improving. Instead

of using the pure least squares cost (20), it is also worth pointing out that other criteria can

alternatively be adopted for the orthogonal forward selection, and these include regularization,

optimal experimental design, and leave-one-out cross validation criterion [4],[5].
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5 Modeling examples

Two real-data sets were used to demonstrate the effectiveness of the proposed sparse model

construction algorithm. The population size � , the maximum repeating times � and the termi-

nation criterion �  were chosen empirically to ensure that the OLS subset selection procedure

could produce consistent final models with the same levels of modeling accuracy and model

sparsity for repeating runs.

Example 1. This example constructed a model representing the relationship between the fuel

rack position (input ��� ) and the engine speed (output �=� ) for a Leyland TL11 turbocharged,

direct injection diesel engine operated at low engine speed. Detailed system description and

experimental setup can be found in [22]. The data set, depicted in Fig. 2, contained 410 samples.

The first 210 data points were used in training and the last 200 points in model validation. The

previous study [22] has shown that this data set can be modeled adequately as

�.��� �(�)�+*$��!$#J%�� (24)

with �����F;=! describing the unknown underlying system and the system input vector defining by

*$�'� 57�.�	��z������$����� l 8 9 (25)

The previous results [4],[5] have shown that when fitting a Gaussian kernel model with a

single common variance, j l � b�� ��� is the optimal value for this kernel variance. Since every

training input data points were considered as a candidate regressor’s center, there were 210

regressors for the full Gaussian kernel model. With the tolerance level set to � ��� � ��� b � � 1 , the

OLS algorithm selected a 19-term subset model from the full regression model, and the resulting

subset model is listed in Table 1. The MSE values of the resulting model were � �
d�	 � b � � 1 for the

training set and
�
�

 d � b � � 1 for the validation set, respectively. Fig. 3 shows the corresponding

model prediction G�.� and the model prediction error %����U��� a G�.� .
The proposed sparse model construction algorithm was then applied to construct a general-

ized Gaussian kernel model. The algorithmic parameters of the repeated weighted optimization

for kernel covariance fitting were chosen to be �e� * 
 , � � � � and �  � �
�
� � � d . Using the

same tolerance level of � ��� � ��� b � � 1 , the OLS algorithm selected a 11-term subset model
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from the full generalized Gaussian kernel model, and the obtained model is listed in Table 2.

The MSE values of this model were � �
� � � b � � 1 over the training set and � �ob � � b � � 1 over the

validation set, respectively. The model prediction and prediction error generated by this model

are illustrated in Fig. 4.

Example 2. This example constructed a model for the gas furnace data set (Series J in [23]).

The data set, illustrated in Fig. 5, contained 296 pairs of input-output points, where the input �$�
was the coded input gas feed rate and the output �=� represented CO l concentration from the gas

furnace. All the 296 data points were used in training, with the model input vector defined by

*,� � 5 ������z����� l ����� , ������z����� l ����� , 8 9 (26)

For this data set, the previous experiments have found out that it was difficult for the existing

state-of-art kernel regression techniques to fit a Gaussian kernel regression model using a com-

mon kernel variance [5]. Various existing state-of-art kernel regression techniques were then

used in [5] to fit a thin-plate-spline regression model for this data set and the best result obtained

required at least 30 model terms to achieve a modeling accuracy of � � �
�
����� .

The proposed sparse model algorithm was employed to construct a generalized Gaussian

kernel model for this data set. The kernel covariance matrices were first determined using the

repeated weighted optimization with the following algorithmic parameters: � � b � � , � � � �
and �  � �

�
� � � b . With the modeling accuracy of � � �

�
� ��� , the OLS algorithm constructed a

20-term subset model from the full generalized Gaussian kernel model, as is listed in Table 3.

The model prediction and prediction error generated by this model are shown in Fig. 6.

6 Conclusions

A novel construction algorithm has been developed for the generalized Gaussian kernel model.

Each kernel regressor in the pool of candidate regressors has an individual diagonal covariance

matrix, which is determined by maximizing the absolute value of the correlation between the

regressor and the training data using a repeated weighted search optimization. The standard

orthogonal least squares algorithm is then applied to select a parsimonious model from the full

regression matrix. Compared with the existing kernel regression modeling approaches which
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adopt a single common kernel variance for all the regressors, the proposed method has the

advantages of improving modeling capability and producing sparser models. These advantages

have been demonstrated by the experimental results involving two real data sets.
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Table 1: Subset model generated for the engine data set by the OLS algorithm with a Gaussian
kernel model of a single common variance.

step mean vector diagonal covariance weight MSE
4 * � matrix X � M � 
 � � b � �
0 1558.9
1 4.2823 5.0245 5.0245 1.69 1.69 1.69 -109.2247 73.9841
2 2.8236 3.7439 3.7439 1.69 1.69 1.69 2.4249 34.7312
3 4.5954 5.8200 5.8200 1.69 1.69 1.69 16.0325 8.3802
4 3.1978 5.8200 3.7439 1.69 1.69 1.69 5.0481 7.5403
5 3.9310 3.7439 4.5006 1.69 1.69 1.69 -2.0419 4.6502
6 4.2976 5.0439 5.0439 1.69 1.69 1.69 106.5281 2.9565
7 4.6183 4.5006 5.0051 1.69 1.69 1.69 0.1787 2.4999
8 3.2131 5.8006 5.8006 1.69 1.69 1.69 -58.8794 1.5953
9 4.5725 5.8006 5.8006 1.69 1.69 1.69 -17.0584 0.7767

10 3.9844 4.5200 4.5200 1.69 1.69 1.69 4.3978 0.5986
11 2.8618 3.7439 4.5200 1.69 1.69 1.69 25.1798 0.4682
12 3.4498 4.5200 3.7439 1.69 1.69 1.69 -0.8959 0.3327
13 3.2284 5.8006 5.8006 1.69 1.69 1.69 61.2593 0.2065
14 2.9381 3.7439 4.5006 1.69 1.69 1.69 -110.8486 0.1589
15 3.1520 5.8006 3.7245 1.69 1.69 1.69 -4.5398 0.1292
16 3.6866 5.8200 5.8200 1.69 1.69 1.69 -2.1195 0.1032
17 2.9763 3.7439 4.5200 1.69 1.69 1.69 91.5013 0.0758
18 3.3735 3.7245 4.5394 1.69 1.69 1.69 -22.2389 0.0579
19 3.5491 3.7439 4.5200 1.69 1.69 1.69 16.7227 0.0528
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Table 2: Subset model generated for the engine data set by the OLS algorithm with a generalized
Gaussian kernel model. The kernel covariance matrices are determined by maximizing the
correlation criterion using the repeated weighted optimization algorithm.

step mean vector diagonal covariance weight MSE
4 * � matrix X � M � 
 � � b � �
0 1558.9
1 4.6030 5.8006 5.8006 4.6610 23.2494 18.7487 -52.9824 0.9292
2 4.5114 5.8006 5.8006 4.2126 22.5550 18.0605 53.9543 0.1655
3 4.4579 5.0245 5.8006 2.7926 14.5527 33.8069 -74.9670 0.1202
4 4.4503 5.0051 5.8006 3.5534 360.546 12.8974 -74.5696 0.1134
5 3.2284 5.8006 5.8006 311.554 12.6886 7.5157 -246.1931 0.1129
6 4.6183 5.0051 5.8006 4.8006 48.6543 12.6258 96.1724 0.1007
7 3.6637 5.8006 5.8006 190.214 12.6563 7.5715 245.7579 0.0898
8 4.3510 5.0245 5.0245 2.8708 6.8213 253.1952 13.8707 0.0813
9 3.1062 4.5394 3.7245 400.00 400.00 400.000 -2.5807 0.0642
10 4.3663 5.0439 5.8200 2.2056 40.4580 75.2890 50.1908 0.0592
11 3.9233 3.7439 4.5200 2.0241 327.7485 263.2715 -4.3783 0.0509
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Table 3: Subset model generated for the gas furnace data set by the OLS algorithm with a gen-
eralized Gaussian kernel model. The kernel covariance matrices are determined by maximizing
the correlation criterion using the repeated weighted optimization algorithm.

step � mean vector � � / weight � � MSE � �
diagonal covariance matrix �����	��
� �

0 2844.3
1 59.5 58.0 55.6 -2.053 -2.330 -2.4730 -267.5601 1.2067

5.0681 94.9960 58.5221 272.6948 158.8822 1.3383
2 57.2 56.4 55.4 -1.474 -1.746 -1.8910 221.7796 0.1549

3.7912 16.1987 213.2852 238.2681 51.3793 1.0180
3 55.0 55.6 56.8 -1.525 -1.086 -0.6200 95.2771 0.1307

57.7623 270.1883 3.8217 243.6048 0.4934 261.9284
4 56.0 54.3 53.0 -0.204 -0.528 -0.7400 -40.7100 0.1177

2.1951 158.9803 343.7560 223.1368 1.3853 357.1565
5 56.4 57.0 57.4 -0.848 -0.713 -0.6250 -349.0073 0.1061

9.6873 6.0958 85.0066 328.2904 0.9786 295.3635
6 51.4 52.8 54.5 -0.748 -0.458 0.0930 -81.1253 0.0974

49.5275 396.8625 2.7015 47.2399 0.4224 61.6835
7 57.3 57.0 56.2 -0.582 -0.634 -0.8130 -281.8031 0.0828

2.5829 67.9224 139.6028 9.7573 91.9482 92.2856
8 60.4 60.0 59.5 -1.261 -1.739 -2.0530 564.5599 0.0755

4.7792 246.5125 215.1170 43.7362 4.4022 208.8816
9 51.6 52.8 53.7 1.683 1.746 1.6070 -375.1686 0.0716

320.0416 393.5093 7.9007 64.7479 302.4567 212.9779
10 53.2 53.6 53.6 0.918 0.858 0.7820 355.5893 0.0639

400.0000 12.1366 32.3310 318.6978 400.0000 86.1125
11 53.8 53.7 53.6 0.254 -0.007 -0.2290 -150.5212 0.0596

32.2065 49.2961 223.7835 19.9128 232.0460 0.4760
12 54.0 54.1 53.9 0.301 0.161 0.0600 -57.9844 0.0571

275.6604 3.0180 107.5660 313.2379 94.6038 32.9662
13 50.6 49.7 49.3 -1.269 -1.099 -0.7140 -153.0328 0.0569

385.9776 71.0925 94.5789 239.7465 0.2531 23.1095
14 54.4 52.8 51.3 -1.456 -1.825 -1.7990 -17.1629 0.0561

34.9812 236.0426 291.7318 50.2033 46.0414 0.4039
15 56.0 56.4 56.4 0.605 0.709 0.6620 -116.3539 0.0557

3.3890 12.3638 5.9307 337.1134 15.9024 196.7020
16 52.3 51.2 50.4 -0.194 -0.424 -0.6030 -111.9460 0.0555

257.1146 84.5112 387.4997 274.5492 181.3500 0.3622
17 52.6 52.8 53.3 -0.759 -0.493 0.0 196.3985 0.0553

325.0471 315.4355 32.2995 145.7428 0.3241 271.2281
18 53.6 53.7 54.4 0.782 0.556 0.2090 85.7510 0.0550

265.5988 115.8858 1.9625 164.8533 184.6377 133.1301
19 54.6 55.9 55.9 0.109 0.484 0.6430 171.1110 0.0545

121.0842 2.2050 74.6179 23.9226 201.9486 215.9408
20 54.3 53.0 52.6 -0.528 -0.740 -0.8240 174.7513 0.0540

105.1096 102.6449 14.6421 47.2963 80.0091 0.2617
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Figure 1: Illustration of a simple weighted search optimization process.
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Figure 2: The engine data set: (a) system input �2� , and (b) system output ��� .
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Figure 3: The engine data set: (a) model prediction G��� , and (b) model prediction error %�� ��.� a G�.� using the 19-term Gaussian kernel model with a single common kernel variance.
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Figure 4: The engine data set: (a) model prediction G��� , and (b) model prediction error %�� ��.��aqG�.� using the 11-term generalized Gaussian kernel model, each kernel having an individually
tuned diagonal covariance matrix.
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Figure 5: The gas furnace data set: (a) system input �2� , and (b) system output ��� .
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Figure 6: The gas furnace data set: (a) model prediction G�=� , and (b) model prediction error%��e� ��� a G�.� using the 20-term generalized Gaussian kernel model, each kernel having an
individually tuned diagonal covariance matrix.

23



Xunxian Wang received his PhD degree in the control theory and application field from

Tsinghua University, Beijing, China, in July 1999. From August 1999 to August 2001, he was

a postdoctoral researcher in the State Key laboratory of Intelligent Technology and Systems,

Beijing, China. From September 2001, he has been a research associate and now research fellow

at the University of Portsmouth, Portsmouth, U.K. Dr Wang’s main interests are in machine

learning and neural networks, control theory and systems as well as robotics.

Sheng Chen obtained a BEng degree in control engineering from the East China Petroleum

Institute, Dongying, China, in 1982, and a PhD degree in control engineering from the City

University at London in 1986. He joined the School of Electronics and Computer Science at

the University of Southampton, U.K., in September 1999. He previously held research and

academic appointments at the Universities of Sheffield, Edinburgh and Portsmouth, U.K. Dr

Chen is a Senior Member of IEEE. His recent research works include adaptive nonlinear signal

processing, modeling and identification of nonlinear systems, machine learning and neural net-

work research, finite-precision digital controller design, evolutionary computation methods and

optimization. He has published over 200 research papers.

David J. Brown received his PhD degree in manipulator control from the University of

Southampton, Southampton, U.K., in April 1983. From 1980 to August 1985, he was a lecturer

at the same university directing a research group specialising in digital motion control. He went

on to be a technical director of an international electronics company based in Cambridge, U.K.,

from 1985 to 1988. He then formed his own company, which specialised in motion control

and diagnostics until 1998. He is now director of the Computer Intelligence and Applications

Research Group based on the University of Portsmouth, Portsmouth, U.K. The group’s main

interests are in machine learning and neural networks.

24


