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The identification of non-linear systems using only observed finite datasets has become a mature research area
over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities
have been intensively studied and widely used due to the availability of many linear-learning algorithms and their
inherent convergence conditions. This article presents a systematic overview of basic research on model selection
approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system
identification is to find the minimal model with the best model generalisation performance from observational
data only. The important concepts in achieving good model generalisation used in various non-linear system-
identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective
criteria based on the cross validation and experimental design. A significant advance in machine learning has
been the development of the support vector machine as a means for identifying kernel models based on the
structural risk minimisation principle. The developments on the convex optimisation-based model construction
algorithms including the support vector regression algorithms are outlined. Input selection algorithms and
on-line system identification algorithms are also included in this review. Finally, some industrial applications of
non-linear models are discussed.

Keywords: adaptive learning; cross validation; model selection; model generalisation; system identification;
control engineering

1. Introduction

System identification, as a subject of control engineer-

ing, refers to the procedure of building a mathematical

description of the dynamic behaviour of a system/

process from measured data so as to provide accurate

prediction of the future behaviour for given inputs

(Eykhoff 1974; Goodwin and Sin 1984; Ljung 1987;

Aström and Wittenmark 1989; Söderström and

Stoica 1989). The two major sub-problems in system

identification are (1) to determine the model structure

describing the functional relationship between the

system input and output variables; and (2) to estimate

the model parameters that specify any model within

a chosen or derived model structure. The initial and

natural approach to system identification from sequen-

tial data was to use linear difference equations between

input and output observations. A number of mature

linear-system estimation theories based on time

series have been established over the past 40 years

(Aström and Eyhhoff 1971; Box and Jenkins 1976;

Priestley 1981), including adaptive methods that

infer system parameters on-line using recursive estima-

tion (Ljung and Söderström 1983; Young 1984).

Whilst most early research has focussed on linear-time

invariant systems, recent linear identification research

has considered the identification of continuous

systems (Rao 2006), subspace identification methods

(Goethals, Van Gestel, Suykens, Van Dooren, and

De Moor 2003; Markovsky, Willems, Rapisaida, and

de Moor 2005) and errors-in-the-variable methods

(Söderström 2006), etc.
A primary measure of model quality is its

approximation accuracy to the unknown underlying

process. Since most practical systems are non-linear to

some extent, non-linear models are often required to

achieve acceptable modelling performance. Defining

the input of a non-linear discrete system as u(t), the

system output as y(t), and given a training dataset DN

consisting of N input/output data pairs fuðtÞ, yðtÞgNt¼1,

the fundamental goal is then to find

yðtÞ ¼ f ðxðtÞ, hÞ þ eðtÞ ð1Þ

where the underlying function f(�) is unknown, h is
the vector of associated parameter and e(t) is the

noise, which is often assumed to be independent

and identically distributed (i.i.d.) with constant
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variance �2. The model input vector is formed
using x(t)¼ [y(t� 1), . . . , y(t� ny), u(t� 1), . . . , u(t� nu),
e(t� 1), . . . , e(t� ne)]

T, and ny, nu and ne are lags of past
output, input and noise used in constructing the model.
Equation (1) leads to the non-linear auto-regressive
moving average with exogeneous input (NARMAX)
model representation (Leontaritis and Billings 1985),
which provides a unified representation for a wide class
of non-linear systems.

Supposing that the true underlying function f(�) is
continuous and smooth (in most engineering systems
this assumption is generally satisfied), the problem of
non-linear system identification can be regarded as
a functional approximation problem that finds an
estimator f̂ of f. Many types of non-linear models
may be chosen by the users in order to approximate f
(Ljung and Vicino 2005; Söderström, Van den Hof,
Wahlberg, and Weiland 2005). Various modelling
paradigms have been investigated, e.g. piecewise
linear models (Billings and Voon 1987), rational
polynomial models (Mao, Billings, and Zhu 1999),
Hammerstein/WienerHammerstein models (Greblicki
1989; Bai 1998, 2004), projection pursuit regression
(PPR) and multivariate adaptive regression splines
(MARS) (Friedman and Stuetzle 1981; Friedman
1991), Gaussian processes (Neal 1996; Mackay 1997)
and recurrent neural networks (Mandic and
Chambers 2001). The multilayer perceptron (MLP)
(Funahashi 1989) and radial basis function (RBF)
neural networks have been proven to be capable
of representing a class of unknown non-linear
input–output mappings with arbitrary small approx-
imation error capability (Powell 1985; Broomhead
and Lowe 1988; Cybenko 1989; Hornik, Stinchcombe,
and White 1989; Girosi and Poggio 1990; Park,
EJ-Sharkawi, and Marks 1991). In approximation
theory, a general way of representing functions is via
a linear regression of non-linear basis functions.
Many existing approximation schemes in the field of
approximation theory have been naturally adopted
into the neural networks family such as B-spline
neural network of (Kavli 1993; Brown and Harris
1994; Harris, Hong, and Gan 2002), wavelets (Zhang
1993; Sjöberg et al. 1995; Juditsky et al. 1995), or
more generally the generalised single hidden layer
neural nets (Adeney and Korenberg 2000; Huang,
Zhu, and Siew 2004b). These models represent
non-linear input/output relationship with a linear-
in-the-parameters structure given by

f̂ðxðtÞ, hÞ ¼
Xm
i¼1

�iðxðtÞÞ�i ð2Þ

where �i(x(t)) is a known non-linear basis function
mapping, such as RBF, polynomial or B-spline

functions, �i are unknown parameter and m is the
number of basis functions in the model.

The linear-in-the-parameter models are well struc-
tured for adaptive learning, have provable learning and
convergence conditions, have the capability of parallel
processing and have clear applications in control
engineering (Murray-Smith and Johansen 1997; Fabri
and Kadirkamanathan 2001; Ruano 2005). There are
still, however, some major challenges and obstacles in
non-linear system identification:

Model generalisation: The ultimate objective should be
to produce a model that captures the true underlying
dynamics and predicts accurately the output for unseen
data. The model identified using a finite training
dataset should not just have good accuracy over the
training dataset but also be tested on an independent
dataset. As f is unknown, y(t) is used as the target for
training model f̂ and the modelling accuracy of f̂ðtÞ to
the target y(t) is increasing as model complexity
increases. Thus, overfitting to the noise contained in
y(t) may occur if model accuracy is over pursued.
How to define and achieve model generalisation is
central to all learning machines.

Model interpretation: A model is often used to interpret
the properties of the process that it represents and to
extract the knowledge of the underlying system. Many
good properties of linear systems do not hold for non-
linear models, e.g. the free exchangeability of model
representations between the time domain and fre-
quency domain. The parameters in a linear model can
often be associated with the physical nature of the
system. Due to the non-linear nature and higher model
complexity, it is very difficult for non-linear models to
be utilised for explanation of the structural character-
istics of the system, unless there is a deliberate effort in
revealing information in the modelling strategy/process
by the modeller.

The curse of dimensionality: The number of model
parameters can easily be excessive in relation to the size
of the dataset in the construction of model (2), e.g. the
basis functions may either be built up using the tensor
products from univariate functions (as in B-spline
networks) or radial construction from training data
(as in RBF neural networks). An over-parameterised
model is ill-conditioned, by which the parameters
cannot be estimated with sufficient accuracy, leading to
poor model generalisation performance. Note that in
linear models persistent excitation (PE) is generally
achieved through input signal design (Ljung 1987;
Söderström and Stoica 1989) in order to guarantee the
non-singularity of the regression matrix spanning the
input space. In the case of non-linear models, both
input signal and regression matrix design are required

926 X. Hong et al.
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so as to ensure the non-singularity of regression matrix
for a non-linear model due to non-linearities.

Computational complexity: Associated with the curse of
dimensionality is an excessively high computational
complexity. Non-linear system identification is inher-
ently an intractable problem. For practical applica-
tions, efficient non-linear system-identification
algorithms are highly desirable. The algorithm design
demands innovative computational engineering using
an interaction between system theory, statistics,
optimisation theory, intelligent learning and linear
algebra.

Input selection: For many non-linear models, the size of
model can increase exponentially fast as the model
input dimension (x) increases. Using too many input
terms may have undesirable effects on the modelling
performance through either incorrect input setting or
overparametrisation. For the actual system output,
some input variables may be redundant or would
become insignificant if some other input variables were
present in the model. Input selection as a preprocessing
procedure can significantly help improve network
performance and model interpretation. However,
optimal input selection is often an intractable task,
and efficient input selection algorithm is always an
important element in many pattern recognition
applications.

Robustness and noise rejection: For linear system
identification, there exist effective techniques to
achieve robust estimation and noise rejection.
Conventional linear system identification is based on
the assumptions of linear-time invariance of the
process, usually with additive Gaussian noise. Yet,
the majority of real dynamics processes are complex,
non-linear, non-stationary, stochastic and partially
unknown. Conventional-learning algorithms often
have limitations when applied to the real system
processes. For improved performance on model
robustness and noise rejection, it is necessary to
investigate algorithms that deal with processes, which
are both non-linear and non-Gaussian.

On-line non-linear system identification: In many
applications, the models are to be inferred for real
time operation where the data samples are available
sequentially. On-line system-identification algorithms
are computationally advantageous in that the model is
updated following the arrival of new data rather than
being relearnt from scratch. The concept of on-line
learning is also an important concept in intelligent
systems as the natural human learning behaviour is to
build up a posteriori knowledge based upon a priori
knowledge. Although the linear recursive-identification
algorithms can update model parameters for a fixed

model structure, this may be limited whenever there is

a need to update the model structure. On-line

estimation algorithms based on variable structure and
sparse models with fast computation ability is an

important current area of research.
Whilst there is an abundance of publications in the

area of the non-linear system identification, this survey
emphasises the concepts and computational techniques

of non-linear system identification for a class of

linear-in-the-parameter models, which have universal
approximation capabilities. In the following, the

important concepts in various non-linear system-
identification algorithms for such models are reviewed.

Developments in both stepwise-selection algorithms
and convex optimisation-based model-construction

algorithms including support vector regression (SVR)
algorithms are then outlined. Next the input

selection algorithms and on-line system identification
algorithms are briefly reviewed. Finally, industrial

applications of the linear-in-the-parameter models are
briefly surveyed.

2. Model generalisation

2.1 Parameter regularisation

The major purpose of model construction is to produce

good generalisation (the capability to provide approx-
imation to the true system output for new input data).

The technique of parameter regularisation is one of the
primary tools for improving model generalisation.

Note that the effects of model parameter estimation
on model generalisation can be analysed via the mean

square error (MSE) of a parameter estimator, which
can be used as a measure of model generalisation.

Suppose that the true dynamics of a system can be
represented by model (2) and parameterised with an

estimator bh ¼ ½�̂1, �̂2, . . . , �̂m�
T. The MSE of bh of (2) is

given by

E ½ðbh� hÞTðbh� hÞ�

¼ E ½ðbh� EðbhÞ þ EðbhÞ � hÞTðbh� EðbhÞ þ EðbhÞ � hÞ�

¼ VarðbhÞ þ biasðbhÞ2: ð3Þ

where VarðbhÞ ¼ E ½ðbh� EðbhÞÞTðbh� EðbhÞÞ� and biasðbhÞ ¼
EðbhÞ � h:

It is known in statistics that in general (m43),
there exists some biased parameter estimator to

dominate any unbiased parameter estimator in
terms of the MSE (James and Stein 1961). One

way of improving model generalisation is therefore
to design the bias that the model variance can be

reduced significantly at the cost of a small bias as to
achieve a good bias/variance trade-off.

International Journal of Systems Science 927
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The method of regularisation or ridge regression is

a simple, yet effective way of achieving a good bias/

variance trade-off (Hoerl and Kennard 1970;

Marquardt 1970). For (2), over the training dataset

DN, the regression matrix ( is arranged as

( ¼

�1ðxð1ÞÞ �2ðxð1ÞÞ � � � �mðxð1ÞÞ

�1ðxð2ÞÞ �2ðxð2ÞÞ � � � �mðxð2ÞÞ

���������������������������������������������������������

�1ðxðN ÞÞ �2ðxðN ÞÞ � � � �mðxðN ÞÞ

26664
37775:

and y¼ [y(1), . . . , y(N )]T.
For illustration, let e(t)�N(0, �2), and the least

squares estimator bhLS be obtained as bhLS ¼
½(T(��1(Ty via minimising cost J¼ [y�(h]T�

[y�(h], which is also the maximum likelihood

estimator (MLE) of h. We havebhLS � Nðh, ½(T(��1�2Þ.
The MSE of the parameter estimatorbhLS, is given by

E ½ðbhLS � hÞTðbhLS � hÞ� ¼ trace½covðbhLSÞ�
¼ �2traceð½(T(��1Þ

¼ �2
Xm
i¼1

1

�i
ð4Þ

where �i are the eigenvalues of the positive definite

matrix (T(, which are assumed to be in the order

�max¼ �1� �2� � � � � �m¼ �min40. Note that in the

case of ill-conditioning, �min can be very small so that

the MSE of bhLS is very large. Ridge regression is

a biased estimator bhR (Hoerl and Kennard 1970;

Marquardt 1970) and is obtained by minimising

JR¼ [y�(h]T[y�(h]þ�hTh and given by

bhR ¼ ½(T(þ �I��1(Ty ð5Þ

where �40 is called the regularisation parameter. It is

shown (Hoerl and Kennard 1970) that

E ½ðbhR� hÞTðbhR� hÞ� ¼ �2
Xm
i¼1

�i

ð�iþ�Þ
2

þ�2hTð(T(þ�IÞ�2h ð6Þ

As � increases, the first term of (6) (the variance) is

monotonically decreasing whilst the second term of (6)

(the bias) is monotonically increasing, and there

always exists a �40 such that E ½ðbhR � hÞTðbhR � hÞ�5
E ½ðbhLS � hÞTðbhLS � hÞ�.

The regularised parameter estimator bhR obtained

by optimising JR is equivalent to the maximum

a posteriori pdf (MAP) of parameters in a Bayesian

approach (MacKay 1991). By Bayesian Theorem

pðhjDN,�,�Þ ¼
pðhj�ÞpðDNjh,�Þ

pðDNj�,�Þ
ð7Þ

where p(hj�) is the prior, p(DNjh,�) the likelihood and

p(DNj�,�) the evidence that does not dependent on �
explicitly.

Assuming that the observations are independent, so

pðDNjh,�Þ ¼
exp �ð�=2Þ

PN
t¼1 yðtÞ �

Pm
i¼1 �iðxðtÞÞ�i

� �2h i
ZDð�Þ

ð8Þ

where � ¼ ð1=�2Þ and ZD(�)¼ (2�/�)N/2 is a

normalising coefficient. By using prior knowledge

of p(hj�) that controls superfluous parameters, the

MAP estimator is a solution that resolves the

inadequacy of ML estimator for improved general-

isation. If the prior p(hj�) for the parameters is

Gaussian

pðhj�Þ ¼ exp �
�

2

Xm
i¼1

�2i

 !.
Zhð�Þ ð9Þ

where Zh(�)¼ (2�/�)m/2 is a normalising coefficient,

the MAP estimator is equivalent to the regularised

least squares parameter estimator via minimising

JR (MacKay 1991; Chen 2002) with the regularisation

parameter � ¼ ð�=�Þ.
A further question is how to determine the

regularisation parameter through some optimisation

procedure. The optimal value of � through the

generalised cross validation (GCV) (Section 2.2) has

been developed by Wahba (1990) and Hastie and

Tibshirani (1996). Alternatively in the Bayesian’s

formulation, this is found through an evidence max-

imisation procedure (MacKay 1991).
The above parameter regularisation, based on

l2 norm regulariser in the objective function, is

closely related to the structure risk principle in

Section 4.1, and l1 regularisation in Section 4.3.

A promising approach for non-linear system identifi-

cation, the least squares support vector machine

(LSSVM) (Suykens, Van Gestel, De Branbanter,

De Moor, and Vandewalle 2002; Goethals,

Pelckmans, Suykens, and De Moor 2005; Espinoza,

Suykens, and De Moor 2005b), is also an application

of l2 norm parameter regularisation in the kernel

feature space (Section 4).
System identification is simply an optimisation

problem. The use of different objective functions, often

in the form of a trade-off between the model fit and

structural/parametric constraints, leads to alternative

models. The model selective criteria are used for the the

discrimination of the model’s generalisation capability

amongst different models.

928 X. Hong et al.
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2.2 Model selective criteria

2.2.1 Model selective criteria based on cross
validation

Information theoretic metrics of a model’s general-
isation capability are of great importance in statistical
learning including non-linear system identification.
A fundamental concept in the evaluation of model
generalisation capability is that of cross validation
(Stone 1974), which is often used to derive the
information theoretic metrics. Model selective criteria
can be used for either predicting a model’s perfor-
mance on unseen data or evaluating a model’s quality
amongst other competitive models. Suppose that
a system modelled by (2) is parameterised withbh ¼ ½�̂1, �̂2, . . . , �̂m�

T and let b�2 be the estimator of �2.
The sum of squared errors over the estimation dataset
is given by SSEðbhÞ ¼PN

t¼1½yðtÞ �
Pm

i¼1 �iðxðtÞÞ�̂i�
2.

Various model selection criteria have been introduced
such as the GCV (as detailed below), Mallow’s Cp, final
prediction error (FPE), Akaike’s information criteria
(AIC) and the predicted residual error sum of squares
(PRESS) statistic (Allen 1974; Akaike 1974; Barron
1984; Miller 1990; Moody 1994) given, respectively, by

Cp ¼
SSEðbhÞb�2 þ 2m�N

FPE ¼
SSEðbhÞ

N
�

Nþm

N�m

� �
AIC ¼ N log

SSEðbhÞ
N

 !
þ 2m

PRESS ¼ b�2 1þ
2m

N

� �
ð10Þ

In order to illustrate how these model criteria are
obtained, consider one commonly used version of cross
validation, the leave one out (LOO) cross validation
(Stone 1974), The idea is that, for any predictor, each
data point in the estimation dataset DN is sequentially
set aside in turn, a model is then estimated using the
remaining (N� 1) data, and the prediction error is
derived for the data point that was removed. For
convenience, ŷð�ÞðiÞ is defined as the output for input
x(i), of model (1) estimated using the LOO, dataset,
DN\{x(i), y(i)}. The LOO errors corresponding to
ŷð�ÞðiÞ are given by (Stone 1974)

	ð�ÞðiÞ ¼ yðiÞ � ŷð�ÞðiÞ ð11Þ

The mean squares of LOO errors E[(	(�)(i))2] is
often used as the metric of the model generalisation
errors. The LOO errors can be calculated without
actually splitting the dataset for the linear-in-
the-parameters model of (2) as parameterised with
the least squares estimator. Denoting the model

residual sequence as 	ðiÞ ¼ yðiÞ �
Pm

j¼1 �jðxðiÞÞ�̂j, it is

shown (Stone 1974) that

	ð�ÞðiÞ ¼
	ðiÞ

1� �ðiÞ½(T(��1½�ðiÞ�T
i ¼ 1, . . . ,N ð12Þ

where �(i) denotes the ith row vector of (. Similarly,

for the linear-in-the-parameters model as parame-

terised with the regularised least squares estimator

of (5), the LOO errors are (Wahba 1990; Green and

Silverman 1994)

	ð�ÞðiÞ ¼
	ðiÞ

1� /ðiÞ½(T(þ �I��1½/ðiÞ�T
i ¼ 1, . . . ,N

ð13Þ

Based on the lower triangular, diagonal, lower

triangular (LDL) matrix decomposition of a positive

definite matrix, a computationally efficient algorithm

calculating LOO errors without matrix inversion is

available (Green and Silverman 1994). A popular

variant of the mean squares of LOO errors is to replace

the denominator in (13) for all data samples by their

average value, leading to the PRESS statistic (see (10))

(Allen 1974; Miller 1990)

PRESS ¼

PN
i¼1 	

2ðiÞ

Nð1� tr½H�=N Þ2

� b�2 1þ
2m

N

� � ð14Þ

where H ¼ (½(T(�
�1
(T, b�2 ¼ ð1=NÞPN

i¼1 	
2ðiÞ under

the assumption that m is much smaller than the

number of data samples N. Let H(�)¼([(T(þ
�I]�1(T, the GCV is given by

GCVð�Þ ¼

PN
i¼1 	

2ðiÞ

Nð1� tr½Hð�Þ�=N Þ2
ð15Þ

which corresponds to (13) for the regularised least

squares estimator. The GCV can be optimised with

respect to � to find the optimal � (Wahba 1990).
The sensitivity of the model selective criteria to

a unit increase in the number of model parameters can

be utilised to reveal the differences of the set of model

selective criteria especially for small datasets and small

model size (Bossley 1997). Despite the differences

amongst the set of model selective criteria, there are

common characteristics in which the above criteria are

equivalently asymptotic under general conditions

(Nishii 1984), and these share the form of trade-off

between the goodness of fit in the estimation data and

the model complexity. Consequently, information

theoretic metrics are consistent with the basic principle

of parsimony of using the smallest possible model

(Occam’s razor).

International Journal of Systems Science 929
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A more sophisticated perspective is the bias/
variance dilemma (Geman, Bienenstock, Dowsat and
1992; Moody 1994) in which a simple model tends to
generalise well when it is used to infer the true
system/process dynamics based on a finite dataset.
The bias/variance dilemma simply states that the
model generalisation error can be decomposed into
two components, the bias and the variance. A model
with high approximation capability has high varia-
bility and may fit the estimation dataset too well
rather than generalise for a new dataset. The bias
refers to any flexibility constraints on the model. A
smaller model with less approximation capacity has
higher bias.

2.2.2 Model selective criteria based on
experimental design

The optimum experimental design is a subject of
statistics (Atkinson and Donev 1992; Myers and
Montgomery 1995) used to construct smooth network
response surfaces based on the setting of the
experimental variables under well-controlled experi-
mental conditions. In optimum design, model ade-
quacy is evaluated by design criteria, which are
statistical measures of goodness of experimental
designs by virtue of design efficiency and experimen-
tal effort. Two examples of experimental design in
linear system identification are the well-known
PE condition for input signal design (Ljung 1987;
Söderström and Stoica 1989) and the more recently
proposed robust input spectral density design (Rojas,
Welsh, Goodwin, and Fever 2007). A recent review in
the context of linear system identification for control
can be found (Gevers 2005). Despite the fact that the
design of experiments for general non-linear system
identification lacks a formal coverage, the underlying
idea is closely related to the active learning (Plutowski
and White 1993; Cohn, Ghahramani, and Jordan
1996), the paradigm of local modelling (Murray-
Smith 1994) and the experiment design combining
with a real-time control experiment (Stewart,
Fleming, and Mackenzie, 2003). These methods
attack the problem of the curse of dimensionality by
acquiring datasets or defining model structures
that are relevant to the operating region/tasks
(Murray-Smith 1994; Cohn et al. 1996; Stewart
et al. 2003).

One way of applying the concept of optimal
experiment design for model selection is to measure
the model adequacy as a function of the eigenvalues
of the design matrix, (T(. It is well known that
a model based on least squares estimates tends to be
unsatisfactory for a near ill-conditioned regression
matrix (or design matrix). Note that the MSE of bhLS

given by (4) is very large when �min is close to zero.

It is natural to consider model subset selection in the

framework of the optimal experiment design. The

subset model is constructed from the full model with

regression matrix ( by using n� regressors selected

from m regressors in (, n��m. Define the resultant

regression matrix as (k2RN�n�, and the resultant

design matrix by (T
k(k, and �k, k¼ 1, . . . , n� are still

used to denote the eigenvalues of (T
k(k for simplicity.

The following two experimental design criteria in the

context of model subset selection may be used for

subset selection.

Definition 1: The A-optimality criterion minimises

the sum of the variance of a parameter estimate

vector ĥLS

min JA ¼ tr covðĥLSÞ
h i

¼ �2
Xn�
k¼1

1

�k

( )
: ð16Þ

Definition 2: The D-optimality criterion maximises

the determinant of the design matrix of (T
k(k

max JD ¼ detð(T
k(kÞ ¼

Yn�
k¼1

�k

( )
: ð17Þ

These criteria (Atkinson and Donev 1992)

inherently improve model robustness by favouring

models with smaller condition numbers to ensure a low

value of MSE for bhLS. It should be noted that, when

used for model subset selection, these criteria are not

related to the significance of the regressors in

explaining the output variable, i.e. the model

approximation capability of the final model is not

taken into account.

2.2.3 Correlation-based model validation

In classical linear model identification, correlation

function-based model validation tests have been

widely applied to validate the estimated models

(Bohlin 1971; Box and Jenkins 1976; Söderström and

Stoica 1990). Model validation tests are procedures to

detect the inadequacy of the model. If the model

structure and the estimated parameters are appropri-

ate, then the residual sequence 	ðtÞ ¼ yðtÞ �Pm
i¼1 �iðxðtÞÞ�̂i should be unpredictable from all linear

and non-linear combinations of the past inputs u(t) and

outputs y(t). Despite the complexity and difficulties in

designing correlation function-based model validation

tests, there are various correlation-based model

validation tests developed to deal with the effects of

system non-linearity (Mao and Billings 2000; Zhang,

Zhu, and Longden 2007).
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3. Model construction using stepwise selection

algorithms

A practical non-linear modelling principle is to find the
smallest model that generalises well. Sparse models are
preferable in engineering applications, since a model’s
computational complexity scales with its model com-
plexity. Moreover, a sparse model is easier to interpret
from the viewpoint of knowledge extraction. It is
important to acknowledge that the non-linear system
identification is an intractable optimisation problem as
any algorithm can only aim to solve the problem
within some hypothesis space. For practical applica-
tions, optimisation algorithms with computational
simplicity are highly desirable. In any practical non-
linear system-identification algorithm, the problems
are initially formulated as some tractable problems of
which suboptimal solutions can be obtained.
Considering the subset selection of choosing n� from
m candidate terms and taking m¼ 500 and n�¼ 40,
there are m!=ðn�!ðm� n�Þ!Þ ¼ 2:2443� 1059 possible
model structures to select from. Forward/backward
subset selection algorithms are greedy algorithms that
aim to optimise some objective function at each
regression stage. The classical forward (backward)
approach appends (removes) a model regressor one at
a time based on largest improvement (least deteriora-
tion) in model fit (Miller 1990). In the forward subset
selection of choosing n� from m candidate terms,
for the same m¼ 500 and n�¼ 40, the number of
candidate model evaluation is reduced toPn�

k¼0ðm� kÞ5 n�m ¼ 2� 104.
Among various stepwise subset selection

algorithms, the forward orthogonal least squares
(OLS) is an efficient non-linear system-identification
algorithm (Korenberg 1988; Chen, Billins, and Luo
1989) which selects regressors in a forward manner by
virtue of their contribution to the maximisation of the
model error reduction ratio (ERR). The forward OLS
estimator involves selecting a set of n� variables
�k¼ [�k(1), . . . ,�k(N )]T, k¼ 1, . . . , n�, from m regres-
sors to form a set of orthogonal basis pk, k¼ 1, . . . , n�,
in a forward regression manner. To produce a model
with good generalisation capabilities, model selection
criteria such as the AIC (Akaike 1974) are usually
incorporated into the procedure to determinate the
model construction process. The OLS algorithm has
become a popular modelling tool for the associative
neural networks such as fuzzy/neurofuzzy systems
(Wang and Mendel 1992; Hong and Harris 2001a),
wavelets neural networks (Zhang 1993; Billings and
Wei 2005). The algorithm has also been utilised in
a wide range of engineering applications, e.g.
aircraft gas turbine modelling (Chiras, Evans, and
Rees 2001), fuzzy control of MIMO non-linear systems

(Gao and Er 2003), power system control (Tsang and
Chan 2005) and fault detection (Luh and Cheng 2004).

3.1 The locally regularised orthogonal least squares
algorithm

Regularisation techniques have been incorporated into
the forward selection (Orr 1995) and a regularised
orthogonal least squares (ROLS) algorithm has been
introduced to reduce the variance of parameter
estimates (Chen, Wu, and Luk 1999; Chen 2002).
The advantage of ROLS is that the parameter
regularisation is applied to the auxiliary parameters
in orthogonal space, simplifying the calculation for
parameter estimation significantly. The locally
regularised orthogonal least squares (LROLS) proce-
dure as outlined below (Chen 2002) can automatically
select a subset of n� regressors to construct a parsi-
monious model.

An orthogonal decomposition of ( is

( ¼ PA ð18Þ

where A¼ {aij} is an m�m unit upper triangular
matrix and P¼ [p1, . . . , pm] is an N�m matrix with
orthogonal columns that satisfy

PTP ¼ diagf
1, . . . , 
mg ð19Þ

with


k ¼ pTkpk, k ¼ 1, . . . ,m ð20Þ

so that (1) and (2) can be expressed in vector form as

y ¼ ð(A�1ÞðA�Þ þ f ¼ Pgþ f ð21Þ

where g¼ [g1, . . . , gm]
T is an auxiliary vector. The

LROLS algorithm uses the following error criterion
for parameter estimation:

JR ¼ fTfþ gTUg: ð22Þ

where U ¼ diag{�1, . . . ,�k, . . .,�m}, with �k’s are
positive regularisation parameters. Because 	(t) is
uncorrelated with regressors, it may be shown
(Chen et al. 1989) that

gk ¼
wT
ky


k þ �k
, k ¼ 1, . . . ,m: ð23Þ

The original model coefficient vector h¼ [�1, . . . , �m]
T

can then be calculated from Ah¼ g through
backsubstitution.

At the kth selection, a candidate regressor is
selected as the kth basis of the subset if it produces
the largest value of ½ERR�k ¼ ðg

2
k
k=y

TyTÞ from the
remaining (m� kþ 1) candidates. Equivalently, this
procedure can be expressed as

JðkÞ ¼ Jðk�1Þ �
1

N
g2k
k ð24Þ

International Journal of Systems Science 931
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where J(0)¼ yTy. At the kth forward regression stage,
a candidate regressor is selected as the kth regressor if
it produces the smallest J(k). A possible disadvantage of
using (24) for model selection is that this is not directly
derived by optimising model generalisation. Note that
AIC or other information-based criteria are usually
simplified measures derived as approximation formu-
las that are particularly sensitive to model complexity.
The model selective criteria given by (10), aside from
affecting the stopping point of the model selection,
does not have more discriminative power about model
generalisation than using (24). This means the regres-
sors that might cause poor model performance, e.g. too
large parameter variance or ill-conditioning of the
regression matrix, are not directly penalised during the
model selection.

3.2 Improvements on the model selective criteria in
forward selection

Recently, some variants of OLS algorithms have
been introduced by modifying the model selective
criteria based on the experimental design criteria,
in order to ensure that the best model in terms of
the experimental design criteria is found amongst the
candidate models (Hong and Harris 2001a, 2003;
Chen, Hong, and Hauis 2003a). Specifically instead
of (24), the OLS algorithm with A-optimality and
D-optimality algorithms use the following model
selective criteria

A-optimality+OLS : JðkÞ ¼ Jðk�1Þ �
1

N
g2k
kþ

�A

k

D-optimality+OLS : JðkÞ ¼ Jðk�1Þ �
1

N
g2k
kþ �D log

1


k

� �
ð25Þ

in each forward regression step, where �A and �D are
small positive numbers to regulate the trade-off
between model approximation capability and
optimal design criteria. Note that the third term
in both of (25) is as a result of applying the
experimental design criteria of Section 2.2, based on
model representation (21). �A and �D are set by the
users and it is shown that model robustness can be
improved for a wide range of �A or �D. Alternatively,
�A or �D can be determined empirically using cross
validation from another dataset.

Generally, extra parameters affect modelling
performance and it is advantageous to keep the
extra tuning parameters to the minimum.
An improved model selective criteria is simply the
mean squares of LOO errors E[(	(�)(i))2], which does
not include any tuning parameter. The combined
LOO errors-based ROLS algorithm has been

introduced (Hong, Sharky, and Warwick 2003;
Chen, Hong, Harris, and Sharkey 2004), in which

JðkÞ ¼ E ð	ð�ÞðiÞÞ2
� �

ð26Þ

are calculated efficiently. Note that E[(	(�)(i))2] directly
measures the model generalisation capability and has
not lost discriminative power in selecting terms, as
happens with (10).

In parallel to each of the variants of the orthogonal
forward selection algorithm based on A-optimality,
D-optimality or LOO errors, the Bayesian regularisa-
tion can be efficiently implemented. The regularisation
parameters �i ¼ ð�i=�Þ can be optimised using some
efficient recursive formula through the evidence
maximisation procedure based on (21) and (22),
following an evidence maximisation procedure
(MacKay 1991; Chen, Hong, and Harris 2003b;
Chen et al. 2004).

3.3 Other stepwise selection algorithms

Other subset selection algorithms have also been
researched. The least squares parameter estimator is
also the MLE when the noise is Gaussian distributed
with a constant variance. In practice, the Gaussian
noise assumption may be violated, e.g. the data
samples have outliers. The general method of
M-estimation (Huber 1981) is well established in
order to tackle outliers in observational data. The
M-estimator-based orthogonal selection algorithm
has been proposed for robust model identification
(Hong and Chen 2005).

The conventional backward elimination approach
removes a model regressor one at a time based on the
least deterioration in model fit. The computational
cost of backward elimination algorithms decreases
dramatically when the candidate model size is small,
therefore, the backward elimination as a post-
processing procedure is computationally affordable,
and this can be used to form hybrid approaches to
prune a model that is identified via other approaches.
The modification on conventional backward elimina-
tion approach has been researched by using some
hybrid cost functions between the model fit and one of
three terms of A-/D-optimality/(parameter 1-norm in
basis pursuit) (Hong, Harris, Brown, and Chen 2004)
and LOO errors (Hong and Mitchell 2007).

To reduce the computational cost, or to improve the
compactness of the models, a few algorithms have been
suggested (e.g. Li, Peng, and Irwin 2005; Li, Peng, and
Bai 2006). Iterative algorithms have also been proposed
where both the forward model selection and backward
model refinement are implemented (e.g. Adeney and
Korenberg 2000; Li et al. 2006). In Li et al. (2006),
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a regression context is defined to enable the forward
model selection and backward model refinement within
one integrated analytic framework. To further reduce
the computational compleity and to improve the model
compactness for neural models with tunable para-
meters, a hybrid algorithm is proposed to simulta-
neously select model structure and parameter
optimisation (Peng, Li, and Huang 2006). Recently,
orthogonal forward-selection algorithmic designs have
employed an individually tuned diagonal covariance
matrix, rather than a fixed common variance (Chen,
Hong, Wang, and Harris 2005b), as well as tunable
RBF centres instead of restricting RBF centres to input
training data points (Chen, Hong, and Harris 2005a).
In these approaches (Chen et al. 2005a,b; Peng et al.
2006), the network growing and parameter optimisation
are performed within an integrated analytic framework,
significantly increasing the modelling capability of
a minimal kernel model.

4. Model construction using convex optimisation

algorithms

Despite the popularity and great efficiency of the
stepwise subset selection algorithms in practical data
modelling, the Achilles heel is that the final model is
not optimal, and the algorithms can only yield
suboptimal solutions. With the advent of increasing
affordable computing resources, efforts on less greedy
non-linear modelling algorithms have attracted much
interest, such as convex optimisation-based algorithms.
One of the recent topics in the area of machine learning
is the support vector machine (SVM) as a tractable
algorithm for classification and regression, based on
the (SRM) principle.

4.1 The structure risk minimisation principle

In machine learning, a model generalisation measure is
used to describe the capacity of a learning machine
(Vapnik 1995, 1998; Müller, Mika, Rätsch, Tsuda, and
Schölkopf 2001). The SRM principle or Vapnik–
Chervonenkis (VC) theory has been introduced for
a binary classifier. The optimal model is derived based
on the principle of minimising an upper bound of the
model’s generalisation error (structure risk) given
as (28) below. The concept of the model complexity
is expressed by the VC dimension � of the hypothesis
space H. Generally, a VC dimension � is a scalar value,
which measures the capability or the expressive power
of the hypothesis space H. A set of k hypothesis spaces
can be expressed by

H1 	 � � � 	 Hk ð27Þ

with non-decreasing VC dimensions. Suppose that in

each hypothesis space Hj, j¼ 1, . . . , k, a model fk has
been found with the minimum empirical risk Remp( f )
over the training set. An upper bound of the general-
isation error can be expressed by

Rð f Þ 
 Rempð f Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðlnð2N=�Þ þ 1Þ � lnð=4Þ

N

r
ð28Þ

where 0551 holds with probability of at least 1� 
for N4�.

The SRM principle chooses the hypothesis spaceHj

such that the above upper bound is minimised. Similar
to the other model selective criteria of (10), the best
model is chosen with a trade-off between empirical
errors over estimation dataset and model complexity.

The key difference is that model complexity is given as
VC dimension �, which may or may not be related to
m, the number of terms in a linear-in-the-parameters
model.

The SVM is based on the SRM principle and the
theory of the reproducing kernel Hilbert space
(RKHS) kernel functions (Aronszajin 1950; Debnath
and Mikusinski 1998; Smola and Schlkopf 1998; Gao,

Harris, and Gunn 2001; Bartlett 2003). Note that as
the VC dimension is difficult to compute it is
impractical to implement (28) in practise. Assisted
by a ‘kernel trick’, the SVM approximately minimises
an upper bound on the generalisation error
(Vapnik 1995, 1998) via minimising the norm of

weights in a feature space (Vapnik 1995, 1998).
Consider initially a two-class training dataset
{x(j), y(j)}, y(j)2 [�1, 1], j¼ 1, . . . ,N, a hyperplane
classifier is represented by wTu(x)þ b¼ 0, where
u(x) maps the data x to a feature space F with
dimension NF , which may be unknown and/or even

infinite. Thanks to the celebrated Mercer’s theorem
(Mercer 1909), the difficulty of having to work with
the unknown feature space F can be avoided through
the ‘kernel trick’: for some feature space F the inner
products are calculated without explicitly knowing ’,
but via a kernel function1, i.e. k(x(i), x(j))¼u(x(i))T

u(x(j)). A typical example of kernel function is the
Gaussian RBF where kðxðiÞ, xð jÞÞ ¼ expðð�kxðiÞ �
xð jÞk2=�2ÞÞ:

Aside from the kernel trick, the invention of SVM
is also due to another useful result (Vapnik 1998) of
linking the VC dimension with the margin, defined as
the minimal distance of a data sample to the decision
surface. The margin can be calculated as ð2=kwkÞ2 and
an upper bound of the VC dimension is
�
kwk2R2

þ 1 (Müller et al. 2001), where R is the
radius of the smallest ball around the training data,
which is fixed for a given dataset. This means that the
second term in (28) (the model complexity term) can
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be minimised via the minimisation of kwk2. Define

a set of slack variables n¼ [�(1), . . . , �(N )]T. The SVM

can be formulated as a quadratic optimisation

problem

minw, b, n
1

2
kwk2 þ C

XN
j¼1

�ð jÞ ð29Þ

subject to y(j)(wTu(x(j))þ b)
 1� �(j), �(j)� 0, 1


j
N, where C40 is the regularisation constant.
The SVM for classification has been comprehen-

sively reviewed (Müller et al. 2001). There is an

abundance of more recent publications on SVM,

mainly for pattern classification, in all major neural

networks and machine learning journals. In the

following, we concentrate on the extension of SVM

to the regression problem, referred to as the SVR

(Smola 1998; Smola and Schlkopf 1998).

4.2 Support vector regression

Consider using a model

ŷ ¼ wTuðxÞ þ b ð30Þ

based on the training dataset {x(j), y(j)2R,

j¼ 1, . . . ,N. Define 	 ¼ y� ŷ, a common choice for

the loss function in the SVR is an "-insensitive loss

function (Vapnik 1998) given by

�ð	Þ ¼
0 if j	j5 ":

j	j � " otherwise:

�
ð31Þ

where "40 is a user-defined threshold for controlling

the SV’s (support vector) complexity. The use of the

"-insensitive loss function in SVR is equivalent to the

formulation of a quadratic optimisation problem

(Smola and Schlkopf 1998)

minw, b, n, n�
1

2
kwk2 þ C

XN
j¼1

ð�ð jÞ þ ��ð jÞÞ ð32Þ

subject to

yð jÞ � wTuðxð jÞÞ � b 
 "þ �ð jÞ, j ¼ 1, . . . ,N,

wTuðxð jÞÞ þ b� yð jÞ 
 "þ ��ð jÞ, j ¼ 1, . . . ,N:

�ð jÞ, ��ð jÞ � 0, j ¼ 1, . . . ,N

8><>:
ð33Þ

where n¼ [�(1), . . . , �(N )]T and n*¼ [�*(1), . . . , �*(N )]T

are slack variables.
The constant C determines the trade-off between

the complexity of the model and the modelling

error over the training set. Using the standard

dualisation method, a Lagrangian can be represented

by (Smola and Schlkopf 1998):

Lgrgðw, b, n, n�, a, a�, b,b�Þ

¼
1

2
kwk2 þ C

XN
j¼1

ð�ð jÞ þ ��ð jÞÞ

�
XN
j¼1

�ð jÞð"þ �ð jÞ � yð jÞ þ wTuðxð jÞÞ þ bÞ

�
XN
j¼1

��ð jÞð"þ ��ð jÞ þ yð jÞ � wTuðxð jÞÞ � bÞ

�
XN
j¼1

ð�ð jÞ�ð jÞ þ ��ð jÞ��ð jÞÞ ð34Þ

where a¼ {�(j)� 0jj2 (1, . . . ,N )}, a*¼ {�*(j)� 0jj2

(1, . . . ,N )}, b¼ {�(j)� 0jj2 (1, . . . ,N )}, b*¼ {�*(j)�
0 jj2 (1, . . . ,N)} are sets of Lagrange multipliers.

It follows from the saddle point condition (Minoux

1986) that the partial derivatives of the Lagrangian

given by (34) with respect to w, b, �(j) and �*(j),
j¼ 1, . . . ,N have to vanish for optimality, i.e.

@Lgrg

@b
¼
XN
j¼1

ð�ð jÞ � ��ð jÞÞ ¼ 0, ð35Þ

@Lgrg

@w
¼ w�

XN
j¼1

ð�ð jÞ � ��ð jÞÞuðxð jÞÞ ¼ 0, ð36Þ

@Lgrg

@�ð jÞ
¼ C� �ð jÞ � �ð jÞ ¼ 0, j ¼ 1, . . . ,N, ð37Þ

@Lgrg

@��ð jÞ
¼ C� ��ð jÞ � ��ð jÞ ¼ 0, j ¼ 1, . . . ,N: ð38Þ

Substituting (35)–(38) into (34) and making use of the

kernel functions

kðxðiÞ,xð jÞÞ ¼uðxðiÞÞTuðxð jÞÞ,

i 2 f1, . . . ,Ng, j 2 f1, . . . ,Ng ð39Þ

yields a dual quadratic programming (QP) optimisa-

tion problem as (Smola and Schlkopf 1998)

max
a, a�

�
1

2

XN
i, j¼1

½�ðiÞ � ��ðiÞ�½�ð jÞ � ��ð jÞ�kðxðiÞ, xð jÞÞ

(

�"
XN
j¼1

ð�ð jÞ þ ��ð jÞÞ þ
XN
j¼1

ð�ð jÞ � ��ð jÞÞyð jÞ

)
,

subject to

0 
 �ð jÞ 
 C, j ¼ 1, . . . ,N,

0 
 ��ð jÞ 
 C, j ¼ 1, . . . ,N,PN
j¼1

ð�ð jÞ � ��ð jÞÞ ¼ 0:

8>>><>>>: ð40Þ
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Note that �(j) and �*(j) does not appear in the dual

objective (40). By applying (36) to (30), the SVR model
(30) can be rewritten as

f ðxÞ ¼
XN
j¼1

½�ð jÞ � ��ð jÞ�kðx, xð jÞÞ þ b, ð41Þ

which is independent of the dimension of the feature

space F , but only depends on the number of data
samples with non-zero [�(j)� �*(j)].

The optimal solution has to satisfy the Karush–

Kuhn–Tucker (KKT) conditions as (Smola and
Schlkopf 1998)

�ðiÞ "þ �ðiÞ�yðiÞþ
PN
j¼1

ð�ð jÞ���ð jÞÞkðxðiÞ,xð jÞÞþb

" #
¼ 0,

��ðiÞ "þ ��ðiÞþyðiÞ�
PN
j¼1

ð�ð jÞ���ð jÞÞkðxðiÞ,xð jÞÞþb

" #
¼ 0:

8>>>>><>>>>>:
ð42Þ

and

ðC� �ðiÞÞ�ðiÞ ¼ 0,

ðC� ��ðiÞÞ��ðiÞ ¼ 0:

�
ð43Þ

From (42) and (43), the following conclusions can be
drawn:

(1) �(i)�*(i)¼ 0. This means that �(i) and �*(i)
cannot be non-zero simultaneously. This can be

proven by contraction. If �(i)�*(i) 6¼ 0, then
from (42) to yield 2"þ �(i)þ �*(i)¼ 0 is

impossible.
(2) When jyðiÞ �

PN
j¼1ð�ð jÞ � �

�ð jÞÞkðxðiÞ, xð jÞÞ � bj5 ",

both �(i) and �*(i) have to be zeros.
(3) When jyðiÞ �

PN
j¼1ð�ð jÞ � �

�ð jÞÞkðxðiÞ, xð jÞÞ � bj � ",
�(i) or �*(i) may be non-zeros. Moreover, if

jyðiÞ �
PN

j¼1ð�ð jÞ � �
�ð jÞÞkðxðiÞ,xð jÞÞ � bj4 ", then

from (42), any of �(i) and �*(i) has to be non-

zero, yielding that the corresponding �(i) or
�*(i) equals to C.

(4) For any data point x(i), i2 {1, . . . ,N} satisfying

either �(i)2 (0,C) or �*(i)2 (0,C), it can be
derived from (43) that either �(i)¼ 0 or

�*(i)¼ 0, respectively.

From (42), it is seen that jyðiÞ �
PN

j¼1ð�ð jÞ �
��ð jÞÞkðxðiÞ, xð jÞÞ � bj ¼ ".

Applying the fourth point from above, the

threshold b can be computed by any of the following
equations (Smola and Schlkopf 1998)

b¼ yðiÞ�
PN
j¼1

ð�ð jÞ���ð jÞÞkðxðiÞ,xð jÞÞ� " if �ðiÞ 2 ð0,CÞ,

b¼ yðiÞ�
PN
j¼1

ð�ð jÞ���ð jÞÞkðxðiÞ,xð jÞÞþ " if ��ðiÞ 2 ð0,CÞ:

8>>><>>>:
ð44Þ

From the above points, it is clear that the SVR has
the property of sparsity in that only the data points x(i)
with non-zero values of (�(j)� �*(j)) are included
in (41). These data points are referred to as the
support vectors (SV) and satisfy jyðiÞ �

PN
j¼1ð�ð jÞ �

��ð jÞÞkðxðiÞ, xð jÞÞ � bj � ". It is possible to control the
number of the SVs by setting a proper value of " and
obtain a final model with a small number of SVs.

The optimisation algorithm of solving the dual (40)
has been discussed (Smola and Schlkopf 1998). The
training of SVM requires solving a convex QP problem
(Vanderbei 1994) and the global optimum is ensured.
A problem with standard QP solvers is that they
become computationally inefficient for large-sized
datasets. One of the efforts of overcoming this problem
is the so-called chunking that operates on a working
set, a fixed size subset of the training dataset, in order
to find the SV for the working set. The process iterates
and in each iteration a set of worst input data that
violates the optimality condition of the current
estimator is chosen as the new working set for the
next iteration. For maximal computational efficiency,
the sequential minimal optimisation (SMO) has been
introduced for classification (Platt 1999) and adopted
in SVR (Smola and Schlkopf 1998). The SMO breaks
a large QP problem into a series of the smallest
possible QP problems of size two, for which the
analytical solution is available rather than using the
time consuming numerical QP solver as an inner loop.
An improved SMO–SVR was proposed to further
improve the efficiency of Smola’s SMO–SVR
(Shevade, Keerthi, Bhattacharrya, and Murthy 2000).

Some possible issues associated with SVR applica-
tion in system identification have been discussed
(Drezet and Harrison 1998). Although the SVR has
the properties of sparsity control using "-insensitive
loss function, it was found that the final SVR model
may still have a large size despite the use of
"-insensitive loss (Drezet and Harrison 1998; Lee and
Billings 2002). There is current research into improving
the sparsity of the SVM (Burges 1996; Downs, Gates,
and Masters 2001). An empirical study has shown that
compared to SVR, the OLS tends to derive much
smaller models, yet may be less robust to noise in low
signal-to-noise ratio scenarios. The SVM–OLS was
proposed to reduce the model size and retain noise
rejection of the final model (Lee and Billings 2002).
Finally, the LSSVM is an attractive approach for non-
linear system identification (Suykens et al. 2002;
Espinoza et al. 2005b; Goethals et al. 2005). This is
partly because the original LSSVM is not solved using
a QP solver, but as a much simpler regularised least
squares algorithm. However, LSSVM does not lead to
a sparse representation; this disadvantage may be
alleviated by limiting the search space to a subset of
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datasets (Hoegaerts, Suykens, Vandewalle, and De

Moor 2005). Alternatively, an hierarchical modelling
strategy is adopted to achieve the desirable sparsity
representation by using QP (Pelckmans, Suykens, and

De Moor 2005).

4.3 l1 norm regularisation

A difference between the orthogonal forward selection
(OFS) procedure and the SVR is that OFS algorithms
start from an empty model, whereas the SVR

algorithm gradually eliminates the data samples from
the model. The sparsity of the SVR is achieved by the
QP algorithm with the property of global optimality.
An alternative QP-based sparse model construction

algorithm is the ‘least absolute shrinkage and selection
operator’ (LASSO) algorithm (Tibshirani 1996). The
LASSO algorithm uses l1 norm regularisation and

retains some good features from both subset selection
and ridge regression (Tibshirani 1996). Recall the
regularised parameter estimation objective function
JR ¼ ½y�(h�T½y�(h� þ �hTh in Section 2, where the

l2 norm is used to penalise the models with high
magnitude of parameter estimator. Consider using an
alternative objective function of JR1 ¼ ½y�(h�T�

½y�(h� þ �khk1, where khk1 ¼
Pm

i¼1 j�ij. The

l1 norm regularisation parameter � is effectively used
in tuning the final model size, since more model
parameters have exactly zero values as � is reduced.

Some recent researches examine the penalty
function using the more general bridge function

as JB ¼ ½y�(h�T½y�(h� þ �khk�, especially for
05�
 1 (Knight and Fu 2000). It has been shown
that for 05�
 1, under appropriate regularity condi-

tions, the limiting distributions can have positive
probability mass at 0 when the true value of the
parameter is zero. This result provides a theoretic
justification for the use of bridge estimators to

distinguish between covariates whose coefficients are
exactly zero and those are non-zeros. Thus, by
appropriate choice of �, bridge estimator can combine
variable selection and parameter estimation within

a single step.
The l1 norm regularisation from Bayesian point

of view is that the parameters have an exponential
distribution prior (Tibshirani 1996). The sparse
model construction has been researched in the

closely-related area of signal approximation
(Mallat 1989; Daubechies 1992). In signal approxima-
tion, a signal is represented using linear superposition

of a minimum number of waveforms, called atoms,
that is selected from a large collection of waveforms,
called the dictionary. Sparse approximation techniques
include the soft-thresholding (Donoho 1995), the

matching pursuit (Mallat and Zhang 1993) and the

basis pursuit (Chen, Donoho, and Saunders 1998). The
LASSO algorithm is equivalent to the basis pursuit
(BP) algorithm of signal approximation theory (Chen

et al. 1998). If the objective function JR1 is modified
such that (1) the basis functions are restricted as the
Mercer kernel basis functions and (2) the first term in
JR1, the approximation error l2 norm, is replaced by

the RKHS norm of the approximation error as
induced by the kernel, then there is an exact
equivalence between the modified BP and SVR

(Girosi 1998). More analysis on general statistical
leaning machine including regularisation network
theory, sparse approximation and SVM can be found
(Evgeniou, Pontil, and Poggio 2000; Hastie,

Tibshirani, and Friedman 2002).
Like SVR, the model construction using the

objective function of JR1 can be formulated as a QP
algorithm and becomes computationally inefficient for
large-sized datasets. This problem has been attacked

successfully by the least angle angle regression (LARS)
algorithm, which is closely related to forward
regression and LASSO.

5. Input selection algorithms

The identification of non-linear systems involves

learning a minimal model representation using finite
datasets for a priori unknown systems. The structural
determination of any model includes the selection of
appropriate causal input variables and the candidate

set of basis functions. For the actual system output,
some input variables may be redundant or would
become insignificant if some other input variables were

present in the model. The effects of overparametrisa-
tion on the system dynamics behaviour have been
empirically studied using the qualitative methods and it
was found that the overparametrisation in the input lag

has the worst effect (Zheng and Billings 1999, 2002).
The input selection of choosing the minimum number
of relevant inputs as a preprocessing procedure should
improve the modelling performance. Optimal input

selection is an intractable task as the system
input/output relationship is non-linear and the input
variables are generally not independent.

Mutual information quantifies the dependence
between two random variables and is a theoretically

suitable measure of input selection (Battiti 1994).
Practical algorithms based on mutual information
have been introduced (Zheng and Billings 1996;

Kwak 2002; Bowden, Dandy, and Maier 2005).
These are greedy algorithms that select input variables
one at a time taking into account the mutual
information between the candidate input variable,
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output variable and that of the set of the selected

variables in previous forward stage. The disadvantage

of the mutual information-based approach is that some

probability density estimator is required and subse-

quently the requirement on the amount of the data for

estimation is high. Alternatively, some simple elimina-

tion algorithm has been introduced to detect redun-

dant inputs based on a clustering algorithm and some

rules based on the properties of a function (Sindelář

and Babuška 2004).
The piecewise local linear model-based input

selection approach has been introduced (Mao and

Billings 1999). Using the Taylor expansion, (1) can be

approximated as

yðtÞ ¼ f ðxðt0ÞÞ þ
Xn
k¼1

@fðxðtÞÞ

@xkðtÞ
jx¼xðt0ÞðxkðtÞ � xkðt0ÞÞ

þ higher order termsþ eðtÞ ð45Þ

where n is the total number of input variables. If the

observation vector x(t) falls into a small neighbour-

hood of x(t0), the input/output relationship is domi-

nated by the first-order derivatives of f(�), then it may

be assumed that the higher order terms in (45) are

negligible and a local linear model would be

appropriate.
The algorithm of (Mao and Billings 1999) involves

dividing the input space into sub-regions and dataset

DN into different groups according to the sub-regions.

For each sub-region, the linear model form is used and

the forward OLS algorithm is used to select the subset

of input variables. The union of selected input

variables are used in the final model construction.

A fully automatic piecewise local linear model-based

input selection algorithm has been introduced where

the piecewise local linear modelling is integrated in

each forward stage of the forward OLS algorithm

(Hong and Harris 2001b).
An effective approach for simultaneously reducing

both the input variables and the basis functions is to

base the model on an additive decomposition approach

via the well-known analysis of variance (ANOVA)

expansion (Bossley 1997)

f ðxÞ ¼ f0 þ
Xn
i¼1

fiðxiÞ þ
Xn
i¼1

Xn
j¼iþ1

fi, jðxi, xjÞ þ eðxÞ ð46Þ

where each of fi and fi,j is linear in the parameters

model with the basis functions based on sub-vectors of

the input vector. As the orthogonal selection algo-

rithms select the most significant terms to compose

a parsimonious model, some of the terms will not be

present in the final model and only the significant input

variables will be included.

6. On-line system identification algorithms

The model-construction algorithms using orthogonal
selection and SVR are off-line algorithms that can
access the whole dataset DN in training. The recursive
parameter-estimation algorithms, e.g. the recursive
least squares algorithm (RLS) and prediction error
algorithm, are directly applicable to the linear in the
parameters models (Ljung and Söderström 1983;

Söderström and Stoica 1989). A model constructed
using off-line algorithms can be applied to another
dataset that is similar to the estimation dataset, with
the model structure fixed and the parameters updated
using linear recursive algorithms. In the case that the
new data exhibit characteristics significantly different
from the estimation dataset, the model has to be
retrained. Alternatively, on-line system-identification
algorithms are an important class of model construc-
tion algorithms that deal with model-structure and/or
parameter updating on the arrival of a new data
sample. Suppose that a model is identified using the
data samples collected up to time (t� 1). Given a new
data sample at t and the a priori known model of

(t� 1), the on-line model-identification algorithms
address the problem as how to update the model by
including the innovation induced by new data sample.
On-line system identification algorithms are advanta-
geous in that the model is updated following the arrival
of the new data sample rather than to relearn the
model from scratch.

An essential characteristic of on-line non-linear
system-identification algorithms is the capability of
varying model structure to adapt the new data samples.
The resource allocating network (RAN) (Platt 1991) is
an on-line-identification algorithm to grow Gaussian
RBF networks. The growing criteria and parameter
adaptation were extended further, in its variant the
RAN extended Kalman filter (RANEKF)
(Kadirkamanathan and Niranjan 1993). Similarly, the
variable neural network has been introduced and

applied in adaptive control (Liu, Kadirkamanathan,
and Billings 1999). A minimal resource allocating
network (MRAN) was proposed that combines RAN
with a procedure of pruning the redundant neurons
(Yingwei, Sundarajan, and Saratchandran 1998).
Recently, the growing and pruning RBF (GAP–RBF)
networks have been introduced, which used the
concept of ‘significance’ of a neuron as defined as its
contribution, averaged over all the past data, to the
model output (Huang, Saratchandran, and Sundaraja
2004a). The GAP–RBF algorithm is designed to
achieve a high computational efficiency, which is
a critical requirement for on-line algorithms.

The time constraint imposed on any on-line
learning scenario makes the task of choosing the
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optimal model structure a difficult problem.

In practice, in determining the growing and pruning
strategy in various on-linear algorithms, various
thresholds based on the required modelling accuracy
have to be defined by the user, and approximation

formulae for fast calculation are often used to speed up
the calculation. Although the strategy often works well
as demonstrated by empirical studies (Huang et al.
2004a), the connection between the growing and
pruning strategy and the model generalisation is not

well studied with few exceptions in some algorithms
based on the RKHS theory, e.g. the incremental
projection learning (Sugiyama and Ogawa 2001) and
kernel RLS (Engel, Mannor, and Meir 2004). The
kernel RLS-based model is essentially a growing kernel

model with a built in on-line sparsification procedure
for computational efficiency. The computational com-
plexity for kernel algorithm scales with the sparsity of
the kernel machines. The general applicability of kernel
algorithms to on-linear applications is critically depen-

dent on the sparsity of the obtained kernel solutions,
since this would also help to reduce the computation
cost in the on-line sparsification.

7. Applications

Linear-in-the-parameter models have been widely
applied for monitoring, controlling and supervisioning

across all traditional engineering sectors, like mechan-
ical (Parlitz et al. 2004; Govindhasamy, McLoone,
Irwin, French, and Doyle 2005; Altinkok 2006)
electrical and electronic (Park et al. 1991; Leva and
Piroddi 2002), chemical (Soumelidis and Stobart 2006),

energy and power (Glass and Franchek 1999; Jurado
2004; Li, Thompson, and Peng 2004; Basso, Giaue,
Groppi, and Zappa 2005), aerospace and aeronautical
(Faller and Schreck 1996), civil (Flood and Kartam
1998), and environmental systems (Nunnari et al. 2004;

Peng et al. 2004). More recently, applications in newer
areas are being reported including communication
networks (Chen, Gibson, Cowan, and Grant 1991;
Clarkson 1999), biomedical, biochemical and life
systems (Ma and Wang 2000; Gamero, Armentano,

Barra, Simon, and, Levenson 2001; Sargantanis and
Karim 2004; Karayiannis et al. 2006), as well as other
sectors other than engineering, such as financial
(Marose 1990), social (Garson 1991), health care and

medical (Dybowski and Gant 2001). Space prevents
a comprehensive survey of such a vast literature survey
and so only a few detailed examples are included here.

Among the various linear-in-the-parameter struc-
tures available, NARX/NARMAX is one of the
earliest and perhaps most widely-used model types,
with many successful industrial applications reported.

For example, it has been used in the modelling and
control of power systems, such as internal combustion
engine (Glass and Franchek 1999), automotive diesel
engine (Billings, Chen, and Backhouse 1989), power
plant gas turbine and micro-turbine modelling (Basso
et al. 2005; Jurado 2005), magneto-rheological damp-
ing devices (Leva and Piroddi 2002) and fuel cell plants
(Jurado 2004), modelling and control of longitudinal
vehicle dynamics (Kalkkuhl, Hunt, and Fritze 1999),
identification of pre-sliding friction dynamics (Parlitz
et al. 2004), modelling of a pH waste water neutralisa-
tion process (Luo, Morris, Karim, Martin, and Hong
1996), dynamic modelling of three-way catalysts
(Soumelidis and Stobart 2006), and air pollution
modelling and control (Peng et al. 2004; Soumelidis
and Stobart 2006). It has also been used to model
arterial wall dynamics in animals (Gamero et al. 2001),
and modelling and control of a batch Bacillus subtilis
fermentation process (Sargantanis and Karim 2004).

The generalised single hidden-layer neural network,
an important type of linear-in-the-parameter models,
covers a number of well-known neural network
paradigms. These include the most popular ones like
the RBF neural networks, Volterra neural networks
and B-spline neural networks. These have proved
powerful modelling tools, with significant impact
reported in the literature on signal processing and
pattern recognition (Clarkson 1999; Xie and Leung
2005; Lin, Chang, and Lai 2007), time-series prediction
(Leung, Lo, and Wang 2001), and non-linear system
modelling and control (Sanner and Slotine 1992; Irwin,
Warwick, and Hunt 1995; Lewis and Parisini 1998; Ge,
Hang, Lee and Zhang 2001; Liu 2001; Huang, Tan,
and Lee 2006) with many successful applications in
various engineering disciplines (Faller and Schreck
1996; Vemuri, Polycarpou, and Diakourtis 1998;
Flood and Kartam 1998; Wilson, Irwin, and
Lightbody 1999; Soumelidis and Stobart 2006) as
well as social, medical and other sectors (Marose 1990;
Harrison and Garson 1991; Ma and Wang 2000;
Dybowski and Gant 2001; Kennedy 2005).

For example, Govindhasamy et al. (2005) reports
collaborative research with Seagate Technology Media
(Ireland) Ltd., the world’s largest manufacturer of
hard-disc drives, with 159.2 million units shipped in the
12 months ended in June 2007. The aim was optimisa-
tion of a grinding process used to machine the
aluminium substrate disks, the main component of
a disk drive, to a desired thickness in order to minimise
the number of out-of-specification disks produced.
The process involved 12 parts being simultaneously
ground at each machine cycle. A proprietary thickness
control algorithm, employing thickness measurements
before and after grinding, was used to calculate the
average stock removal rate for each machine cycle.
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Unfortunately, this did not adequately account for the
non-linear variation of the cycle-to-cycle removal-rate,
and non-linear system identification was used to enable
removal-rate prediction. A single hidden-layer general-
ised MLP, with its additional direct connections from
the inputs to the output, proved highly effective in
capturing both the linear and the non-linear dynamic
components of removal rate in tests on practical
grindstone data. Further, using the resultant neural
NARX model for thickness control yielded much
tighter process control than the existing proprietary
control scheme. In this application, the generalised
MLP provided an ideal modelling tool, as it can be
initialised as a linear model and then adapted to
produce the required non-linear representation.

Along with the growing popularity of SVM,
successful applications have been reported in engineer-
ing system modelling and control (Drezet and Harrison
1998; Iplikci 2006), such as modelling of proton
exchange membrane fuel cell (Zhong, Zhu, and
Cao 2006) and quality monitoring of a plastic injection
moulding process (Ribeiro 2005), etc. It has also
been widely used in bioinformatics (Bradford and
Westhead 2005; Tothill et al. 2005), Geo- and
environmental sciences (Kanevski et al. 2004; Khan
and Coulibaly 2006), and many other areas (Hong
2006), though one of the major recent contributions is
on bioinformatics for classification of high throughput
‘nomics’ datasets, e.g. Mitra and Hayashi (2006);
Xia and Li (2007).

Finally, some other linear-in-the-parameters (grey-
box) models have also been explored, where the model
structure, non-linear model terms or network activa-
tion functions are mostly system specific (Lorito 1999;
Li et al. 2004; Raghavan et al. 2005; Bohlin 2006;
Bohlin 2006; Li and Peng 2006). For example,
non-linear system identification was successfully
applied to the environmentally important topic of
NOx emissions modelling and prediction of a 200-MW
coal-fired power generation plant (Li et al. 2004).
The fundamental mechanisms governing NOx forma-
tion combined with system identification ideas pro-
duced a semi-physical, grey-box regression model.
While both linear and non-linear ARX models gave
comparable one step ahead, short-term prediction
performances, only the grey-box model was capable
of open-loop predictions of NOx emissions spanning
several weeks. It has also been reported that the
inherent symmetry properties of the system can be
incorporated into the linear-in-the-parameter models
to improve the performance (Aguirre, Lopes, Amaral,
and Letellier 2004; Espinoza, Suykens, and De Moor
2005a; Chen, Wolfgang, Harris, and Hanzon 2007),
system eigenvalues can be used to choose the model
types (Aguirre, Coelho, and Correa 2005), and simple

system a priori information like steady-state relations

of variables has been used in the identification of non-

linear models for a Buck Converter (Aguirre, Donoso-

Gauia, and Santos-Filho 2000). System specific neural

network models have also been studied (Li 2005;

Li and Peng 2006) with application to power plants

and chemical processes, and the activation functions in

the network are system specific, aiming to improve the

model interpretability and generalisation performance

(Connally et al. 2005, 2007).
While the linear-in-the-parameter models have

been widely accepted in industry, it is also worthwhile

to note that some other model types have also become

popular alternatives, for example, the local models and

local model networks for modelling and control of

complex processes and systems with different operating

conditions (Murray-Smith 1994; Gray, Murray-Smith,

Li, and Sharman 1996; McGinnity and Irwin 1996;

Brown, Irwin, and Lightbody 1997; Townsend and

Irwin 2001; Brown, Flynn, and Irwin 2002).

8. Conclusions

In this review article we have covered many of the

major advances in linear-in-the-parameter non-linear

system-identification algorithms that only utilise data

to construct the most parsimonious model of the

underlying process. As these algorithms are accepted

by industry, the number of industrial applications will

increase dramatically as the demand for increasing

accuracy and representation of complex dynamic

processes continues. Whilst the research fields of

kernel methods and associated algorithms such as

SVMs are relatively mature for stationary, stochastic

processes for which batch data are readily available,

on-line, recursive algorithms that simultaneously find

model structure and parameterisation are relatively

new and present an open field for new and demanding

research. Equally, the field of the identification of

unknown non-stationary or time-varying processes is

both vitally important, but not completely open due to

its current intractability. We hope to report progress in

both fields in the future!
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Note

1. Functions that satisfy Mercer’s condition, i.e. for any
g(x) such that

R
g(x)2dx is finite, then

R
k(x, y)g(x)g(y)�

dxdy}� 0.
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