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ABSTRACT

A new forward regression model identification algorithm is
introduced. The derived model parameters, in each forward
regression step, are initially estimated via orthogonal least
squares (OLS) (using the modified Gram-Schmidt proce-
dure), followed by being tuned with a new gradient descent
learning algorithm based on the basis pursuit that minimizes
the � � norm of the parameter estimate vector. The model
subset selection cost function includes a D-optimality de-
sign criterion. Both the parameter tuning procedure, based
on basis pursuit, and the model selection criterion, based
on the D-optimality that is effective in ensuring model ro-
bustness, are integrated with the forward regression, so as
to maintain computational efficiency. An illustrative exam-
ple is included to demonstrate the effectiveness of the new
approach.

1. INTRODUCTION

A main obstacle in non-linear modelling using associative
memory networks or fuzzy logic has been the problem of
the curse of dimensionality [1]. This factor applies to all
lattice based networks or knowledge representations [2, 3,
4, 5]. For these systems it is essential to use some model
construction procedures to overcome the obstacle by deriv-
ing a model with an appropriate dimension. An orthogonal
least squares (OLS) algorithm including parameter regular-
ization technique based on Gram-Schmidt orthogonal de-
composition can be used to determine the significant model
elements and associated parameter estimates, and the over-
all model structure [6, 7, 8]. Model selection criteria such
as the Akaike information criterion (AIC) [9] are usually
incorporated into the procedure to determinate the model
construction process. The use of AIC or other information
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based criteria, if used in forward regression, however only
affects the stopping point of the model selection, but does
not determine which regressor to be selected.

In recent studies, variants of OLS algorithm were intro-
duced to improve model robustness via experimental design
and parameter regularization [10, 11, 12, 13]. Alternatively
the model sparsity can be achieved by a novel concept of
the basis pursuit or least angle regression [14, 15] that aims
to obtain a model by minimizing the � � norm of the param-
eters. Both parameter regularization and basis pursuit can
be integrated into a Bayesian framework [12, 13, 16]. The
advantage of the basis pursuit is that it can achieve much
sparser models by forcing more parameters to zero, than
models derived from the minimization of the � � norm, as
most � � norms will produces parameters small, but nonzero,
values. Compared to method of the regularization [7, 8],
the basis pursuit method, however, will not generally be
computationally efficient, because by simply changing from
� � norm to � � norm in the cost function, this effectively
changes a quadratic optimization problem with a simple so-
lution into a more sophisticated problem for which a con-
vex, nonquadratic optimization is generally required [14,
15].

In this paper, a new model identification technique is in-
troduced by using forward regression with basis pursuit and
D-optimality design. Based on the previous work [11], we
incorporate the concept of basis pursuit to tune the param-
eter estimates as derived from the orthogonal least squares
method. A gradient descent parameter learning method is
initially introduced with proven convergence, followed by
its application to the parameters tuning in the modified Gram-
Schmidt algorithm. It is shown that parameter tuning by
basis pursuit, following the initialization of least squares in-
herent in the Gram-Schmidt procedure will enforce model
sparsity, yet fit well in the procedure automated by the D-
optimality model selective criterion. The computational ef-
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ficiency of the method due to the forward OLS regression
maintains.

2. PRELIMINARIES

A linear regression model (RBF neural network, B-spline
neurofuzzy network) can be formulated as [2, 3]

��� � ���
��
	 


�

� 	 � �
� � � � � 	���� � � � (1)

where ����� � � � � � ��� � , and � is the size of the estima-
tion data set. ��� � � is system output variable, �
� � ����� ��� �
�� � � � � ��� ��� � ���! � � "#� � �$� � � � � ��� "#� � ���!% � & ' is system input
vector with assumed known dimension of � �! � �!% � . "#� � �
is system input variable. � 	 � ( � is a known nonlinear basis
function, such as RBF, or B-spline fuzzy membership func-
tions. � � � � is an uncorrelated model residual sequence with
zero mean and variance of ) � . Eq.(1) can be written in the
matrix form as * �,+.- �0/ (2)

where
* �1� ��� � � � � � ��� ��� �2� & ' is the output vector. -��� �

�
� � � ��� � � & ' is parameter vector, / �3� � � � � � � � �!� � � �2� & '

is the residual vector, and + is the regression matrix +4�� 5
�
� 6 6 6 5 � & , where 5 	 �3� � 	 � � � � � � ��� � 	 � �2� & ' , with � 	 � � �
�� 	 � �#� � � � . An orthogonal decomposition of + is

+3�,738 (3)

where 89�;: <#= > ? is an @BAC@ unit upper triangular matrix
and 7 is an � A�@ matrix with orthogonal columns that
satisfy 7 ' 7D�;E F G H�: I

�
� � � ��� I � ? (4)

with I 	 �0J '	 J 	 �LK$�M� � � � ��� @ (5)

so that (2) can be expressed as* �3� +�8�N � � � 8�O�� �P/ �,71Q �0/ (6)

where Q2�3� R �
� � � ��� R � & ' is an auxiliary vector.

2.1. The modified Gram-Schmidt algorithm and basis
pursuit

Clearly for the orthogonalised system (6), the least squares
estimates is given by

R!S T U	 � J$'	
*

J '	 J 	 �LK$�M� � � � ��� @ (7)

The original model coefficient vector O4�1� � �
� � � �!� � � & '

can then be calculated from 8�O��VQ through back substi-
tution.

The modified Gram-Schmidt procedure, described be-
low, can be used to perform the orthogonalization of (3)
and parameter estimation (7). Starting from K��W� , the
columns 5!> , K � �VXZY9X @ are made orthogonal to
the K th column at the K th stage. The operation is repeated
for �PX4K3X @ �3� . Specifically, denoting 5 S T U> �45#> ,��XPY[X @ , then for K[�3� � � � ��� @ �0�

\�]_^a`#b ] c�d e]
f ] g ^ \.h] `#b ] c�d eg

\ h] \ ]BiLjlk�mln�oCn�p
`!b ] eg ^a`#b ] c�d egrq f�] g \�] iLj�kPmln�oCn�p (8)

where < 	 > ’s are components of the upper triangular ma-
trix 8 . The last stage of the procedure is simply J � �5 S � N � U� . The elements of the auxiliary vector Q are com-
puted by transforming

* S T U � * in a similar way. For��X,K$X @
s�b t e] ^ \�h]�u!b ] c�d e\ h] \�]
u b ] e ^ u b ] c�d e q s�b t e] \�] (9)

It can be easily verified that R S T U	 as derived from (9) is
equivalent to (7). Geometrically the system output vector

*
,

at step K , is projected onto a set of orthogonal basis vectors,: J
�
� 6 6 6 J 	 ? . The model residual is decreased by projecting

the system output vector
*

onto a new basis J 	 at this step.
Effectively, (9) can be regarded as a linear fitting of

* S 	 N � U
by using a single variable J S 	 U , and to derive the new model
residual

* S 	 U , and so on. This observation will be explored
further in Section 3.1 for the development of the proposed
algorithm in Section 3.2. For better model parameter esti-
mation bias/variance tradeoff, the regularization can be ap-
plied [7] with a solution from a quadratic form optimization,
and the regularization parameters can be optimized by be-
ing treated as hyper-parameters in Bayesian approach [12].
Alternatively the basis pursuit method is simply given by
changing the � � norm into � � such that

v � ��!w � � � � � � & �0x '�y Q y � (10)

is minimized for basis pursuit parameter estimates, wherex �V� z
�
� 6 6 6 � z�{ | & ' , y Q y �

�V� } R
�
} � 6 6 6 � } R { | } & ' , and �!~.X @

denotes the size of parameter vector of Q with nonzero pa-
rameters. z 	��V� , are basis pursuit parameters. Note that
only nonzero parameters that are actually included in the
model are penalized, because a regressor with zero param-
eter does not influence model performance. Both parame-
ter regularization and basis pursuit can be integrated into a
Bayesian framework [12, 13, 16]. The basis pursuit method
tends to produce model with greater sparsity than that of � �
parameter regularization. Because the solution of (10) is a
nonquadratic optimization problem, so there is no readily
available closed form solution [14].
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2.2. Model structure selection by D-optimality

A significant advantage due to orthogonalisation is that the
contribution of model regressors to the model can be eval-
uated. The forward OLS estimator involves selecting a set
of �#~ variables 5 	 �3� � 	 � � � � � � �!� � 	 � �2� & ' , K[�3� � � � ��� �!~ ,
from @ regressors to form a set of orthogonal basis J 	 ,K2��� � � � ��� �!~ , in a forward regression manner. As the or-
thogonality property J$'= J[>$� � for F���VY holds, if (6) is
multiplied by itself and then the time average is taken, the
following equation is easily derived

�
�
* ' * � ��

��
	 


�

R �	 J '	 J 	�� �� / ' / (11)

Conventional OLS [6] uses an Error Reduction Ratio � w���� &
to select a candidate regressor as the K th basis of the subset
if it produces the largest value of � w���� & 	 from the remain-
ing � @ �PK � � � candidates. By setting an appropriate tol-
erance � , which can be found by trial and error or via some
statistical information criterion such as Akaike’s informa-
tion criterion(AIC) [9] that forms a compromise between
the model performance and model complexity. Equivalently,
this procedure can be expressed as� S 	 U � � S 	 N � U � �� R �	 I 	 (12)

where
� S T U � * ' * . At the K th forward regression stage, a

candidate regressor is selected as the K th regressor if it pro-
duces the smallest

� S 	 U . (12) can be modified to form an al-
ternative model selective criterion to enhance model robust-
ness. D-optimality based cost function is one of robustness
design criterion in experimental design criteria [10]. The
D-optimality criterion is to maximize the determinant of the
design matrix defined as 71'	 7 	 , where 7 	��
	���
 { |
denotes the resultant regression matrix, consisting of �#~ re-
gressors selected from @ regressors in 7 .

��� ��: � � ��� � � � 7 '	 7 	 ��� { |�	 

�

I 	 ? (13)

It can be easily verified that the selection of the a subset of7 	 from 7 is equivalent to the selection of the a subset of�!~ regressors from + [11]. In order to include D-optimality
as a model selective criterion for improved model robust-
ness, construct an augmented cost function as� � �

� / ' /2� <�� � ��� �� � �
� �
� �
* ' * �

{ |�
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�
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where < is a positive small number. Note that this compos-
ite cost function simultaneously minimizes (12) and maxi-
mizes (13) [11]. Eq.(14) can be directly incorporated into

the forward OLS algorithm to select the most relevant K th
regressor at the K th forward regression stage, via� S 	 U � � S 	 N � U � �� R �	 I 	l� <�� � ��� �I 	 & (15)

Because � � ��� �� � � is an increasing function if I 	�� � , which
is true for some K �"! , the selection procedure will ter-
minate if

� S 	 U � � S 	 N � U at the derived model size �!~ if an
proper < is set. The proposed approach can detect a parsi-
monious model size in an automatic manner.

3. MODEL IDENTIFICATION ALGORITHM
USING FORWARD REGRESSION WITH BASIS

PURSUIT AND D-OPTIMALITY

3.1. Parameter estimation by basis pursuit function’s
gradient descent

Before the introduction of the proposed algorithm, we ini-
tially introduce a general concept (algorithm) of parameter
estimation by basis pursuit function’s gradient descent, fol-
lowed by the basic idea as how to incorporate this algorithm
in the modified Gram-Schmidt orthogonal procedure.
Theorem 1(see [16] for the proof): Suppose that the dynam-
ics underlying data set # � can be described by

��� � ����$#� �
� � � � OC� �P� � � � (16)

where functional $#� ( � is given as appropriate. If the follow-
ing parameter learning law is applied

O.� � � � ���;O.� � � �&% � � � �(' $' O � %�x ' sgn � O.� � � � (17)

where the operator � ( � denotes the time averaging, and sgn � O����� sgn � � �
� � 6 6 6 � sgn � � � � & ' , in which,

sgn � "��
�*)+ , � if "-� �� if "�� ��C� if " �,�% is an arbitrarily small positive number, then

(i) � . �/ 0�1(2 v � � �4365 (18)

(ii) � . �/ 0�1(2 y O.� � �#�PO.� �#�PK � y � � for any finite K

where the basis pursuit cost function
v � � �;� �

�
� � � � � �x '�y O y

� , and y O y �
�3� } �

�
} � 6 6 6 � } � { | } & ' is constructed based

on a subvector of O with nonzero parameters (see also (10)).5�����. 7 v � � � is the lower bound of
v � � � .

In the proposed algorithm of Subsection 3.2, the above
gradient descent of basis pursuit error function is combined
with the modified Gram-Schmidt algorithm of Section 2.1
to derive a new model identification procedure. The basic
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idea is introduced here. Consider (9), which can be regarded
as a linear fitting of

* S 	 N � U by using a single variable J S 	 U
with the least squares method. The derived model resid-
ual vector / is then set as

* S 	 U . This observation suggests
that for each step K in the modified Gram-Schmidt algo-
rithm, the parameter estimates, calculated by (9) can be fur-
ther tuned by learning algorithm of (17) that optimizes the
basis pursuit’s function given by (10). Following (9), de-
note
* S 	 N � U �4� � S 	 N � U � � � � � S 	 N � U � � � � 6 6 6 � � S 	 N � U � �2� & ' andJ 	 �1� � 	 � � � � 6 6 6 � � 	 � �2� & ' . The tuning process is an ex-

tremely simple case based on Theorem 1, as illustrated by
the following Theorem.
Theorem 2 (see [16] for the proof): If the learning law given
by (17) is applied to a special case of one dimensional linear
system � S 	 N � U � � ���,R 	 � 	 � � � �P� � � � (19)

with the parameter estimates R 	 initialized as the least square
parameter estimate R S T U	 �� � , given by (9), and if z 	 �

�
� � } J['	 * } , then the final converged parameter estimate R 	

(i) } R 	 } � } R S T U	 }
(ii) sgn � R 	 �
� sgn � R!S T U	 � (20)

The significance of Theorem 2 is that by setting the ba-
sis pursuit parameters z 	 below a certain value, for each
step K , the overall effect of the tuning process is that the pa-
rameters R 	 is pulled towards � . In forward regression, as
model size K increases, the parameter estimates R 	 , as ini-
tialized by least squares algorithm with very small magni-
tudes, followed by basis pursuit gradient tuning, will shrink
below some threshold value, and can therefore be obtained
as zero, to achieve model sparsity. For a sufficiently smallz 	 , the optimality condition can be derived as

� � � � � 	 � � �
��z 	 sgn � R 	 � � � ��� � (21)

or

R 	 � J$'	 * S 	 N � U �P�2z 	 sgn � R 	 �J '	 J 	
� R!S T U	 � �2z 	 sgn � R!S T U	 �J$'	 J 	 (22)

3.2. The new algorithm using combined modified Gram-
Schmidt algorithm, basis pursuit and D-optimality

In this Section a new algorithm is introduced that combines
the modified Gram-Schmidt algorithm with the basis pursuit
gradient tuning for new parameter estimation. The model
selective criteria by D-optimality of Section 2.2 [11] is ap-
plied in the proposed algorithm. The algorithm is intro-
duced as follows, in which, the basis pursuit parameters are
initially assumed to be predetermined.

The modified Gram-Schmidt algorithm combining basis pur-
suit and D-optimality:

The Gram-Schmidt orthogonalisation scheme can be used
to derive a simple and efficient algorithm for selecting sub-
set models. Introducing the definition of + S 	 N � U as

+ S 	 N � U �3� J �
� � � ��� J 	 N �

� 5 S 	 N � U	 � � � �!� 5 S 	 N � U� & (23)

If some of the columns 5 S 	 N � U	 � � � �!� 5 S 	 N � U� in + S 	 N � U have
been interchanged, this will still be referred to as + S 	 N � U
for notational convenience. The K th stage of the forward
regression selection procedure is given below

1. For K$XPY[X @ , compute

s�b g e] ^ � `!b ] c�d eg�� h u!b ] c�d e
� `#b ] c�d eg�� h `#b ] c�d eg (24)

� b ] eg ^ � b ] c�d e q m��� s b g e]�� 	 
 b g e] k f�� 
 � � m
 b g e] �
(25)

2. Find� S 	 U � � S 	 U> � � ��. 7!: � S 	 U> �LK�XPY[X @ ?
(26)

Then the Y 	 th column of + S 	 N � U is interchanged with
the K th column of + S 	 N � U , and the Y 	 th column of8 up to the � K��3� � th row is interchanged with theK th column of 8 . This effectively selects the Y 	 th
candidates as the K th regressor in the subset model.
Then set R S T U	 �,R S > � U	 .

3. Perform the orthogonalization as follows

\ ] ^a` b ] c�d e]
f!] g ^ \.h] `!b ] c�d eg

\ h] \�] iLj�kPmln�oCn�p
` b ] eg ^a` b ] c�d eg q f ] g \ ] iLj�kPmln�oCn�p

(27)

to transform + S 	 N � U into + S 	 U and derive the K th row
of 8 . Update I 	 .

4. With R S T U	 �� � as initialized parameter estimates, the
optimal solution of learning law (17) is given by (22),
and is rewritten here

R 	 �,R S T U	 � �2z 	 sgn � R S T U	 �J '	 J 	 (28)

where z 	�� �
� � } J$'	 * S 	 N � U } .
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5. Update
* S 	 N � U into

* S 	 U by* S 	 U � * S 	 N � U ��R 	 J 	 (29)

and update� S 	 U � � S 	 N � U � �� R �	 I 	l� <�� � ��� �I 	 & (30)

6. The selection is terminated at the �!~ th stage where a
subset model containing �!~ significant regressors by
the D-optimality model selective criteria

� S 	 U achieves
a minimum.

It is shown by analysis [11] that if the parameter esti-
mates are initialized with very small magnitudes from least
squares estimates, the basis pursuit gradient tuning proce-
dure of Step 4, will pull it even more towards zero by ap-
plying Theorem 2. The conclusion is that the proposed algo-
rithm can achieve a sparser model than that of without basis
pursuit gradient tuning procedure. The identification algo-
rithm introduced above uses a predetermined basis pursuit
parameters x , which reflects a tradeoff between modelling
errors and the � � norm of parameter vector. By the general
principle in data modelling of that a model with generaliza-
tion is preferred, the choice of x may be derived based on
the commonly used method of cross-validation. In the fol-
lowing, a simple method of choosing x is introduced, by the
basic principle of cross-validation. i.e. using two data sets,
one for training and another for testing. For simplicity a sin-
gle global basis pursuit z is used, that is, z �

�;z
�
�M6 6 6 �,z .

The complete modelling procedure of iterating the proposed
algorithm, by incrementally increasing z from zero in a con-
trolled manner, is given as follows.

The iterative procedure of the proposed algorithm including
choosing basis pursuit parameters

1. Initialization. Set an arbitrarily small < , applying the
modelling procedure of [11] to derive a model with
size �#S T U~ . (This is equivalent to the proposed algo-
rithm with z,� � .) and set z,� �

� � } J$'{ � � �| * } . Set a

counter for iteration Y.�3� ;
2. Applying the proposed algorithm with the new z , to

derive a model with the size of �
S > U~ � �#S > N � U~ . Set a
new z;� �

� � } J$'{ � � �| * } for next iteration of this step,

while the mean squares errors (MSE) of the test data
set is monitored; Y.�PY � � ;

3. Step 2 is terminated when the MSE of the test data set
achieves a minimum.

It is shown by analysis [11] that as the iteration step Y
increases, the effect of basis pursuit cost function (shrinking

the small parameters to zero) would derive at the smaller
size �#S > U~ compared to previous iteration step. Alternatively,z can be set as a very small value for general improvement
in model sparseness.

4. ILLUSTRATIVE EXAMPLE

Consider the chaotic two dimensional time series, Ikeda map
[17], given by��� � � �� � � �
	 ^ � m#k�� 
 � � � � � q m � � 
 � � � ��q � � � q m � � � � � � � �� 
 � � � � � q m � � � � � � � k � � � q m � � 
 � � � � ��	

with
� ^ � 
 � q � 
 �m#k � 	 � � q m � k � 	 � � q m � (31)

1000 data points were generated with an initial condition�#� � �P� � 6 � � ��� � ��� � 6 � . Two models were constructed
to model �!� � � and ��� � � respectively. For both models, the
input vector is set as �
� � �2��� �#� ���3� � � ��� �l�V� � & ' . 498
data samples from �.�1����� � � , were used as estimation
set, and 500 data samples �$��� � ���1� � � � were used as
test data. The Gaussian radial basis function was used to
construct full model sets by using all the data in the esti-
mation data set as centers � = , Fl��� � 6 6 6 � �  , and ��= � �
� � � ���� � !�: ��" # S / U N%$ & " '( '& ? , with ) =l� � 6 � , ) F . For the first model

that models �!� � � , the modelling starts with z4� � , and<P�3� � N+* (an arbitrarily small coefficient for D-optimality).
The iterative procedure of the proposed algorithm was ap-
plied. The model was automatically terminated at a , - cen-
ters networks. The final basis pursuit parameter was derived
at z,�/. 6 . A � � N+* . The modelling MSE for the test data
set is derived at - 6 � -[A � � N+0 . Equivalently � � 6  � 1 output
variance of the test data has been explained by the model.
For the second model that models ��� � � , the modelling starts
with z�� � , and <0��� � N+* (an arbitrarily small coefficient
for D-optimality). The iterative procedure of the proposed
algorithm was applied. The model was automatically ter-
minated at a , , centers networks. The final basis pursuit
parameter was derived at zP�9� 6 . A � � N+* . The modelling
MSE for the test data set is derived at � 6 - ,.A � � N+0 . Equiv-
alently � � 6 � � 1 output variance of the test data has been ex-
plained by the model. To illustrate the overall performance
of the model in capturing the underlying system dynamics,
the modelling results for both estimation and test data set is
shown in Figure 1.

5. CONCLUSIONS

This paper has introduced a new forward regression model
identification algorithm combining the modified Gram-Schmidt
algorithm with basis pursuit and D-optimality design.
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Figure 1: Modelling results for illustrative example.
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