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Robust Neurofuzzy Rule Base Knowledge
Extraction and Estimation using Subspace
Decomposition Combined with Regularization and
D-optimality
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Abstract— A new robust neurofuzzy model construction algo-
rithm has been introduced for the modelling of a priori unknown
dynamical systems from observed finite data sets in the form
of a set of fuzzy rules. Based on a Takagi and Sugeno (T-S)
inference mechanism a one to one mapping between a fuzzy
rule base and a model matrix feature subspace is established.
This link enables rule based knowledge to be extracted from
matrix subspace to enhance model transparency. In order to
achieve maximized model robustness and sparsity, a new robust
extended Gram-Schmidt method has been introduced via two
effective and complementary approaches of regularization and D-
optimality experimental design. Model rule bases are decomposed
into orthogonal subspaces, so as to enhance model transparency
with the capability of interpreting the derived rule base energy
level. A locally regularized orthogonal least squares algorithm,
combined with a D-optimality used for subspace based rule
selection, has been extended for fuzzy rule regularization and
subspace based information extraction. By using a weighting
for the D-optimality cost function, the entire model construction
procedure becomes automatic. Numerical examples are included
to demonstrate the effectiveness of the proposed new algorithm.

Index Terms— Neurofuzzy networks, orthogonal decomposi-
tion, subspace, regularization, optimal experimental design.

I. INTRODUCTION

Associative memory networks (such as B-spline networks,
RBF’s, support vector machines (SVM)) have been exten-
sively developed [1], [2], [3], [4]. Most conventional neural
networks lead only to ‘black box’ model representation, yet
a neurofuzzy network has an inherent model transparency
that helps users to understand the system behaviours, oversee
critical system operating regions, and/or extract physical laws
or relationships that underpin the system. Based on the fuzzy
rules inference and model representation of Takagi and Sugeno
[5], a neurofuzzy model can be functionally expressed as an
operating point dependent fuzzy model with a local linear
description that lends itself directly to conventional estima-
tion and control synthesis [1], [6], [7]. The model output
is decomposed into a convex combination of the outputs of
individual rules, and the basis function can be interpreted as
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a fuzzy membership function of individual rules. This prop-
erty is critically desirable for problems requiring insight into
the underlying phenomenology, i.e. internal system behavior
interpretability and/or knowledge (rule) representation of the
underlying process.

The problem of the curse of dimensionality [8] has been
a main obstacle in non-linear modelling using associative
memory networks or fuzzy logic. Networks or knowledge
representations that suffer from the curse of dimensionality
include all lattice based networks such as Fuzzy Logic (FL),
Radial Basis Function (RBF), Karneva distributed memory
maps, and all neurofuzzy networks (e.g. adaptive network
based fuzzy inference system (ANFIS) [9], Takagi and Sugeno
model [5], etc.). This problem also mitigates against model
transparency for high dimensional systems since they generate
massive rule sets, or require too many parameters, making
it impossible for a human to comprehend the resultant rule
set. Consequently the major purpose of neurofuzzy model
construction algorithms is to select a parsimonious model
structure that resolves the bias/variance dilemma (for finite
training data), has a smooth prediction surface (e.g. parameter
control via regularization), produces good generalization (for
unseen data), and with an interpretable representation -often in
the form of (fuzzy) rules. For general linear in the parameter
systems, an orthogonal least squares (OLS) algorithm based on
Gram-Schmidt orthogonal decompaosition can be used to deter-
mine the models significant elements and associated parameter
estimates, and the overall model structure [10]. Regularization
techniques have been incorporated into the orthogonal least
squares (OLS) algorithm to produce a regularized orthogonal
least squares (ROLS) algorithm that reduces the variance of
parameter estimates [11], [12]. To produce a model with good
generalization capabilities, model selection criteria such as the
Akaike information criterion (AIC) [13] are usually incorpo-
rated into the procedure to determinate the model construction
process. Yet the use of AIC or other information based criteria,
if used in forward regression, only affects the stopping point
of the model selection, but does not penalize regressors that
might cause poor model performance, e.g. too large parameter
variance or ill-posedness of the regression matrix, if this is
selected. This is due to the fact that AIC or other information
based criteria are usually simplified measures derived as an
approximation formula that is particularly sensitive to model
complexity.
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In order to achieve a model structure with improved model
generalization, it is natural that a model generalization ca-
pability cost function should be used in the overall model
searching process, rather than only being applied as a measure
of model complexity. Optimum experimental designs have
been used [14] to construct smooth network response surfaces
based on the setting of the experimental variables under well
controlled experimental conditions. In optimum design, model
adequacy is evaluated by design criteria that are statistical
measures of goodness of experimental designs by virtue of de-
sign efficiency and experimental effort. Quantitatively, model
adequacy is measured as function of the eigenvalues of the
design matrix. In recent studies [15], [16], the authors have
outlined efficient learning algorithms, in which composite cost
functions were introduced to optimize the model approxima-
tion ability using the forward orthogonal least squares (OLS)
algorithm [10], and simultaneously determined model ade-
quacy using an A-optimality design criterion (i.e. minimizes
the variance of the parameter estimates), or a D-optimality
criterion (i.e. optimizes the parameter efficiency and model
robustness via the maximization of the determinant of the
design matrix). It was shown that the resultant models can be
improved based on A- or D-optimality. These algorithms lead
automatically to an unbiased model parameter estimate with an
overall robust and parsimonious model structure. Combining
a locally regularized orthogonal least squares (LROLS) model
selection [17] with D-optimality experimental design further
enhances model robustness [18].

Due to the inherent transparency properties of a neurofuzzy
network, a parsimonious model construction approach should
lead also to a logical rule extraction process that increases
model transparency, as simpler models inherently involve
fewer rules which are in turn easier to interpret. One drawback
of most current neurofuzzy learning algorithms is that learning
is based upon a set of one-dimensional regressors, or basis
functions (such as B-splines, Gaussians, etc), but not upon a set
of fuzzy rules (usually in the form of multi-dimensional input
variables), resulting in opaque models during the learning
process. Since modelling is inevitably iterative it can be
greatly enhanced if the modeller can interpret or interrogate
the derived rule base during learning itself, allowing him/her
to terminate the process when his/her objectives are achieved.
There are valuable recent developments on rule based learning
and model construction, including a linear approximation
approach combined with uncertainty modelling [19], various
fuzzy similarity measures combined with genetic algorithms
[20], [21]. Recently the authors have introduced a new neuro-
fuzzy model construction and parameter estimation algorithm
from observed finite data sets, based on a Takagi and Sugeno
(T-S) inference mechanism and a new extended Gram-Schmidt
orthogonal decomposition algorithm, for the modelling of a
priori unknown dynamical systems in the form of a set of
fuzzy rules [22], which, based on a Takagi and Sugeno (T-S)
inference mechanism, establishes a one to one mapping be-
tween a fuzzy rule base and a model matrix feature subspace.

In this paper, a new neurofuzzy model construction and
parameter estimation algorithm has been introduced. Based
on a Takagi and Sugeno (T-S) inference mechanism a one to

one mapping between a fuzzy rule base and a model matrix
feature subspace is established [22]. This link enables rule
based knowledge to be extracted from matrix subspace to
enhance model transparency. In order to achieve maximized
model robustness and sparsity, a new robust extended Gram-
Schmidt algorithm has been introduced via two effective and
complementary approaches of regularization and D-optimality
experimental design. This new algorithm decomposes the
model rule bases via an orthogonal subspace decomposition
approach, so as to enhance model transparency with the
capability of interpreting the derived rule base energy level. A
locally regularized orthogonal least squares algorithm tailored
for rule regularization has been combined with a D-optimality
for subspace selection. By using a weighting for the D-
optimality cost function, the entire model construction pro-
cedure becomes automatic. The proposed algorithm enhances
the previous algorithm [22] via the combined LOLS and
D-optimality for robust rule selection, and is based on the
extension of the combined LOLS and D-optimality algorithm
[18] from conventional regressor regression to orthogonal
subspace regression.

This paper is organized as follows. Section 2 introduces
a general class of neurofuzzy systems as a modelling ap-
proach. Section 3 introduces the proposed new algorithm, with
analysis into the associated model transparency, robustness
enhancement via D-optimality and rule based regularization.
Numerical examples are provided in Section 4 to illustrate
the effectiveness of the approach and Section 5 is devoted to
conclusions.

Il. A NEUROFUZZY MODELLING APPROACH

This section briefly presents a general class of neurofuzzy
systems as a nonlinear data modelling approach within a
coherent framework of both mathematical representation for
learning and linguistic logic rule representation for model
transparency. Given a finite data set Dy = {x(¢),y(t)}}¥,
of observed input/output data pairs, consider the identification
of a general nonlinear system that generates this data

y(t) = F(x(£), ©) + e(?), o)

where

X(t) = [#1, %2, -+, 2n] € X €R" @)

is an observed system input vector, f(e) is a priori unknown.
The observation noise e(t) is assumed uncorrelated with
variance ¢2. ® is an unknown parameter vector associated
with an appropriate but yet to be determined model structure.

Model (1) can be simplified by decomposing it into a set
of K local models f;(x¥(t),®;), i = 1,---,K, where K
is to be determined, each of which operates on a local region
depending on the sub-measurement vector x(¥ € " a subset
of the input vector x, i.e. xX) € &; € R™, (n; < n), X U
.-+ U Xk = X. Each of the local models f;(x(9(¢),®;) can
be represented by a set of linguistic rules

IF x® s A®
THEN y(¢) = £i(xD (1), ®;), (3)
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where the fuzzy set A® = [A ... AD]T denotes a fuzzy
set in the n;-dimensional input space, ™ and is given
as an array of linguistic values, based on a predetermined
input spaces partition into fuzzy sets via some prior system
knowledge of the operating range of the data set. Usually if
x) = x® for j # k, then AD NA® =@ where § denotes
empty set. U{;A(") defines a complete fuzzy partition of the
input space X'. For an appropriate input space decomposition,
the local models can have essentially local linear behavior. In
this case, using the well known Takagi-Sugeno fuzzy inference
mechanism [5], the output of system (1) can be represented

by
Z N; x(’)

where f;(x(® (t),©;) is a linear function of x(9), given by

fi(x9(2),0;) = xD()To; ®)

fixD(®),0;), @

and ©; € R™ denotes parameter vector of the ith fuzzy rule
or local model. N;(x(9) is a fuzzy membership function of
the rule (3), subject to a unity of support condition: 0 <

N;(x®) <1, 375 Ni(x®) = 1. Each of the linguistic rules
(3) can be evaluated via the known fuzzy membership function
N;(x (1)),

Consider a neurofuzzy network using B-spline functions
[23] as membership functions. A general one-dimensional B-
spline model f'(x) can be formed as a linear combination of
L B-spline basis functions, B, (z), as

L
"(z) =) _6;Bi,(z) (6)
j=1

The coefficients §;’s represent the set of adjustable parameters

associated with the set of basis functions. B, (z)’s, which are

polynomials of a given degree m and are uniquely defined

by an ordered sequence of real values denoted as a knot

vector 7 = {71,72," -, TL+m+1}. The knot sequence forms

a partitioning of the input domain into (L + m) disjoint

intervals. The basis functions set can be defined by recursive
equation [23]

j - _*7T pi
Bm(x) - Titm — Tj Bm—l (.’IJ)
+ Titm+1 — 2
Tj+m+1 — Tj+1

Bl ={ 4

Multidimensional B-spline basis functions are formed by a
direct multiplication of univariate basis functions via

HB, (8)

for i = ,M, where M = H (L, x9 =
9,2 .. ,ng)]T € RY. k; = L L; is the
number of B-spline basis functlons deﬂned in x() the jth
component of x(9),

B, _,(x) 7
with

7 £ < Tjt1

otherwise

Ny(x®) =

Note that for a complete model base, the number of rules
M > K increases exponentially as the input dimension
increases, (which is commonly known as the curse of dimen-
sionality). To alleviate this disadvantage, input dimension or
variable reduction can be used. Notably an ANOVA (Analysis
of Variance) representation of multivariable functions uses
lower dimensional tensor products of models inputs, e.g.
in many practical applications, the number of multiplication
terms maybe limited to as low as 3, yet maintaining suffi-
cient modelling capability [1]. For practical applications, not
only is the ANOVA approach effective in overcoming the
curse of dimensionality, it has additional advantage of model
transparency because a lower input dimension than 3 can be
visualized and interpreted [24].

Substitute (5) & (4) into (1)

K
yt) = Z@(X(i)(t))T@H-e(t)
= ¢(x()"O +e(t), )
where ¢;(x(t)) =[¢pu (¢), - ¢zm( T = Ni(x () x €
R (x(t) = [¢r (x™ (1)), P (X @) e ®e.

e =[e7, ..., 0%]T ¢ ®», Wherep YK
For the finite data set Dy = {x(¢),y(t)}&,, (9) can be
written in a matrix form as

K
3 8000 1 e
i=1

= $O+e

y _=
(10)

where y = [y(1),y(2), ---,y(N)]T € RN is the output
vector, & = [¢;(x(1)), ---,di(x(N)]T € RV*"i is the
regression matrix associated with the ith fuzzy rule, e =
[e(1),---,e(N)]T € RN is the model residual vector. & =
[@W) ..., ®F)] € RV*P js the full regression matrix.

An effective way of overcoming the curse of dimensionality
is to start with a moderate sized rule base according to the
actual data distribution. In this paper, the selection of K
local models as an initial model base is based on model
identifiability via an A-optimality design criterion [14] with
the advantage of enhanced model transparency to quantify and
interpret fuzzy rules and their identifiability.

I11. RULE BASED MODEL CONSTRUCTION AND LEARNING
ALGORITHMS

A. Rule based learning and initial model base construction

Rule based knowledge, i.e. information associated with a
fuzzy rule, is highly appropriate for users to understand a
derived data based model. Most current learning algorithms
in neurofuzzy model are based on an ordinary p-dimensional
linear in the parameter model. Model transparency during
learning cannot be automatically achieved unless these
regressors have a clear physical interpretation, or are directly
associated with physical variables. Alternatively, a neurofuzzy
network is inherently transparent for rule based model
construction. In (10), each of & is constructed based on
a unique fuzzy membership function N;(-), providing a link
between a fuzzy rule base and a matrix feature subspace
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spanned by ®(). Rule based knowledge can be easily
extracted by exploring this link.

Definition 1: Basis of a subspace: If n; vectors ¢(’) € RN,
i = 1,2,.-- ,nl, satlsfy the nonsingular condltlon that
30 = ¢, 6] € RV*ni has a full rank of n;, they
span a n;-dimensional subspace S, then & is the basis
of the subspace S,

Definition 2: Fuzzy rule subspace: Suppose the &) js
nonsingular, clearly ®( is the basis of a n;-dimensional
subspace S, which is a functional representation of the
fuzzy rule (3) by using Takagi-Sugeno fuzzy inference
mechanism with a unique label N;(-). S is defined as a
fuzzy rule subspace of the ith fuzzy rule.

®() | the sub-matrix associated with the ith rule, can be
expanded as

&0 — NO x @ (11)

where NO = diag{N;(1),---,N;(N)} € RN, xO =
[x®@(1),x®(2),---,xO(N)T € RV*"_ (11) shows that
each rule base is simply constructed by a weighting matrix
multiplied to the regression matrix of original input variables.
The weighting matrix N() can be regarded as a data based
spatial prefiltering over the input region. Without loss of
generality, it is assumed that X (9 is nonsingular, and N > n;,
as rank(X®) = n;. As

rank(®®) = min[rank(N®), rank(X )] (12)

For ®® to be nonsingular, then rank(N) > n;, this means
that for the input region denoted by N;(-), its basis function
needs to be excited by at least n; data points.

The A-optimality design criteria for the weighting matrix
N which is given by [14], [22]

N

Z

=1

A(NDY) = (13)

provides an indication for each fuzzy rule on its identifiability
and hence a metric for selecting appropriate model rules. The
derived model rules can then be rearranged in descending order
of identifiability, followed by utilizing only the first K experts
with identifiability to construct a model rule base set.

B. Orthogonal subspace decomposition and regularization in
orthogonal subspace

For ease of exposition, we initially introduce some notations
and definitions that are used in the development of the new
extended Gram-Schmidt orthogonal decomposition algorithm.

Definition 3: Orthogonal subspaces: For a p-dimensional
matrix space S € RNXP. two of its subspaces
Wi e ®V>xmi c § and WU € ®V*m C S, (n; < p,
n; < p) are orthogonal if and only if any two vectors w(®
and w() that are located in the two subspaces respectively,
ie. wld € W and wl) € WU are orthogonal, that is,

[w®Twl) =0, for i # j.

can be decom-
, K, given

The p-dimensional space S, (p = 3K _1 M),
posed by K orthogonal subspaces W, i =1,
by[25], [26]

WO g...o W =g ¢ gpxNV (14)
where @ denotes sum of orthogonal sets. From Definition
1, if there are any linear uncorrelated n; vectors located in
W@, denoted as wi’ ¢ W®, i = 1,---,n;, then the
matrix W@ = [wi?, ..., wi?], forms a basis of W®. Note
that these n; vectors need not to be mutually orthogonal, i.e.
[WOTWE = DO ¢ Rrxni where D is not required
to be diagonal.

Clearly if two matrix subspaces W@, W) have the basis
of full rank matrices W( ¢ RVxni W) ¢ RN*% | then
they are orthogonal if and only if

[W(i)]TW(J') = Oy, xn; (15)
where Oy, xpn; € R™*™ is a zero matrix.
Definition 4: Vector decomposition to subspace basis: If K

orthogonal subspaces W, i = 1,---, K, are defined by a
series of K matrices W, ¢ = 1,.--, K as subspace basis
based on Definition 3, then an arbitrary vector § € ®Y € S
can be uniquely decomposed as

K n;

yo= D> cigwy
i=1 j=1
K
= ) wi, (16)
i=1
where ¢;;’s are combination coefficients. c; =
[Ci’l, Tty ci,ni]T € i,

As the result of the orthogonality of [w(?)Tw() = 0, (for

i # 7), from (16),

AT A

y'y= 17)

K
Z D(’)c

Clearly the variance of the vector § projected into each
subspace can be computed as ¢! D{¢;, fori =1,---, K.

Consider the nonlinear system (1) given as a vector form
by (10). By introducing an orthogonal subspace decomposition
$ = WA, (10) can be written as

y = Wece+e
K
= Z Wi, +e (18)
=1
where W = [W®) ...  W(K)] spans a p-dimensional space
S with W& ¢ = 1,..., K spanning its subspaces W,

as defined via Definition 3. The auxiliary parameter vector
c=A0 = [c],---,ck]T € RP, where A is a block upper
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triangular matrix

A Aip ALk
0 A2,2 A2,K
B v oxp
A=\ 4 . A eR (19)
0 o - Agk

in which A;; € R™*%. A;; = I, xpn;, @ unit matrix
e §Rni><ni_

Definition 5: The extended Gram-Schmidt orthogonal de-
composition algorithm [22]: An orthogonal subspace de-
composition for model (18) can be realized based on an
extended Gram-Schmidt orthogonal decomposition algorithm
as follows, Set W = &M A, = I, 4y, and, for
j=2,--,K, SetAj,j:Injxnja

j-1
w@ = (@) — Zw(i) *x A; j, (20)
=1
where
(11 . .
A = [D(n] W) T oW
€ Rrixmi (21)

fori=1,---,7— 1.

Definition 6: Locally regularized least squares cost function
in orthogonal subspaces: The orthogonal subspace based
regularized least squares uses the following error criterion:

Jr(c,A) =ele+cTAc (22)

where A = [A,--, )T, A > 0, kK = 1,2,--- M
are regularization parameters, and the diagonal matrix A =
diafg{)\l]:ru ><n17)\21n2 Xngy' " 7)\MInM ng}y I is a unit ma-
trix. The regularized least squares estimates of ¢, is given by
[27]

c=(WI'w + A)'wTly (23)

An appropriate choice of A can smooth parameter estimates
(noise rejection), and A can be optimized by using a separate
procedure, such as Bayesian hyper-parameter optimization
[18], or a genetic algorithm. In this paper, it is assumed that
an appropriate A is predetermined to simplify the procedure.
The regularized least squares solution of (18) is given by

¢; = [DW + NI WO Ty (24)

which follows from the fact that W ¢ =1,-.., K are mu-
tually orthogonal subspaces basis, and D = [W®]TW ),
From (16), if the system output vector y is decomposed as
a term ¥ by projecting onto orthogonal subspaces W& ¢ =
1,---, K, and an uncorrelated term e(t) that is unexplained
by the model, such that the projection onto each subspace
basis (or a percentage energy contribution of these subspaces
towards the construction of y) can be readily calculated via

ciTD(i) c;

Ty (25)

lerr]; =

The output variance projected onto each subspace can be
interpreted as the contribution of each fuzzy rule in the fuzzy
system, subject to the existence of previous fuzzy rules. To
include the most significant subspace basis with the largest
[err]; as a forward regression procedure is a direct extension of
conventional forward OLS algorithm [10]. The output variance
projected into each subspace can be interpreted as the output
energy contribution explained by a new rule demonstrating
the significance of the new rule towards the model. At each
regression step, a new orthogonal subspace basis is formed
by using a new fuzzy rule and the existing fuzzy rules in the
model, with the rule basis with the largest [err]; to be included
in the final model until

ny
1-— Z[err]i <p

=1

(26)

satisfies for an error tolerance p to construct a model with
ng < K rules. The parameter vectors @;, i = 1,---,ns can
be computed by the following back substitution procedure: Set
O, =cp,,and, fori=mny —1,---,1

ny
@i:ci— Z Ai’j*®j

j=itl

(27)

The concept of orthogonal subspace decomposition based
on fuzzy rule bases is illustrated in Figure 1. This figure
illustrates (20) that forms the orthogonal bases. Because of the
one to one mapping of a fuzzy rule to a matrix subspace, a
series of orthogonal subspace basis are formed by using fuzzy
rule subspace basis ®(%) in a forward regression manner, such
that, {WH o W @... W= {SO y @ y...80)},
Vi, whilst maximizing the output variance of the model at
each regression step 7. Note that the well known orthogonal
schemes such as the classical Gram-Schmidt method construct
orthogonal vectors as basis based on regression vectors (one
dimensional), but the new algorithm extends the classical
Gram-Schmidt orthogonal decomposition scheme to the or-
thogonalization of subspace bases (multidimensional). The ex-
tended Gram-Schmidt orthogonal decomposition algorithm is
not only an extension from classical Gram-Schmidt orthogonal
axis decomposition to orthogonal subspace decomposition, but
also as an extension from basis function regression to matrix
subspace regression, introducing a significant advantage of
model transparency to interpret fuzzy rule energy level.

C. New extended Gram-Schmidt orthogonal decomposition
algorithm with regularization and D-optimality in orthogonal
subspaces

The above discussion has been largely introduced in [22],
except that in [22], the [err]; was used for subset selection
without parameter regularization (A = 0). Regularization
can be used as an effective resort to overcome overfitting
to noise. Note that the use of [err]; aims to optimize the
model in terms of approximation capability, but not in terms
of model robustness. In addition to parameter regularization,
composite cost function such as least squares plus a penalty
term based D-optimality experimental design criterion can be
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o
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&
W (K) B
rule K oY),

Fig. 1. Orthogonal subspace decomposition based on fuzzy rule bases.

used [16]. To enhance rule model robustness, the proposed
algorithm combines the two separate previous works, the
subspace based rule based model construction [22] and the
combined LOLS and D-optimality algorithm [18] for robust
rule based model construction. The combined LOLS and D-
optimality algorithm [18] was not previously introduced as
a rule based learning algorithm, hence some extensions to
orthogonal subspace decomposition domain are necessary, as
introduced in the following.

The concept of parameter regularization may be incorpo-
rated into a forward orthogonal least squares algorithm as
a locally regularized orthogonal least square estimator for
subspace selection by defining a regularized error reduction
ratio due to the submatrix W as follows.

After some simplification, it can be shown that the criterion
(22) can be expressed as

K
efe+c’Ac=yTy - Z cI'(DD 4+ \T)e;

=1

where D® = [W® "W Normalizing (28) by y”'y yields

(28)

K .

elTe +TcTAc - Z cZT (D(l)T-i- AiIe; . 29)
y'y P y'y

The regularized error reduction ratio [rerr]; due to the sub-

matrix W@

c/ (DD + \T)c;

7Ty (30)

[rerr]; =

Definition 7: D-optimality experimental design cost function
in orthogonal subspaces: In experimental design, the data
covariance matrix (@7 ®) is called the design matrix. The D-
optimality design criterion maximizes the determinant of the
design matrix for the constructed model. Consider a model

with orthogonal subspaces with design matrix as (W7W),
and a subset of these subspaces are selected in order to
construct a ng-subspace (ny < K) model that maximizes
the D-optimality det(WZanf), where W, is a column
subset of W representing a constructed subset model with
ng Ssub-matrices selected from W (consisting of K sub-
matrices). It is straightforward to verify that the maximization
of det(WZanf) is equivalent to the minimization of Jp =
—log(det(W3 W) [22]. Clearly

Jp =

= —log lﬁ det(D(i))]

i=1

= - i log [det(D(i))]

=1

—log(det(W}, W,.))

(31)

It can be easily verify that the maximization of
det(W,, W, ) is identical to the maximization of
det(®) ®,,), where ®,, is a column subset of (&
representing a constructed subset model with ny sub-matrices
selected from & (consisting of K sub-matrices) [22].

Definition 8: Combined Locally Regularized cost function and
D-optimality in orthogonal subspaces: The combined LROLS
and D-optimality algorithm based on orthogonal subspace
decomposition is based on the combined criterion

Jc(caAaﬂ) :JR(caA)+6JD (32)
for model selection, where 8 is a fixed small positive weight-

ing for the D-optimality cost. Equivalently a combined error
reduction ratio defined as

I (DD + \;I)e; + Blog [det(DO)]
y'y '

[cerr]; = (33)
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is used for model selection, and the selection is terminated
with a ns-subspace model when

[cerr]; <0 for ng+1<i<K (34)

The introduction of D-optimality enhances model robustness
and simplify the model selection procedure [18]. Given a
proper A, the new extended Gram-Schmidt orthogonal sub-
space decomposition algorithm with regularization and D-
optimality for rule based model construction is given in
Appendix I.

IV. NUMERICAL EXAMPLES

Example 1: We start with a simple illustrative mapping exam-
ple. Consider a nonlinear functional approximation of:

2(z) = 2% exp(—3z),
{ y(z) = z(z) + N(0,0.012).

500 data pairs {z,y} are generated where the system input z is
generated as a uniformly distributed random number ranged in
[0,1]. Define a knot vector [—0.2,0,0.2, 0.4,0.6, 0.8,1,1.2],
and use a piecewise linear B-spline fuzzy membership function
to build a one-dimensional model, resulting M = 6 basis
functions. These basis functions, as shown in Figure 2, corre-
sponding to 6 fuzzy rules: (1) If (x = 0) (very small); (2) IF
(x = 0.2) (small); (3) IF (x = 0.4) (medium-small); (4) IF (x
= 0.6) (medium-large); (5) IF (x = 0.8) (large), and (6) If (x
= 1) (very large).

By using the fuzzy model (4) for the approximation of z(z),
the neurofuzzy model is simply given as

6
£(t) = Y Nj(a()=(t)6;, (35)
j=1
where ¢ denotes the data label, with each of the fuzzy rule
&) = N;(z(t))z(t) spanning a one dimensional space,
ie. n; = 1, Vj. The identifiability of these fuzzy rules are
computed based on (13) and are listed in Table I. Because this
example only involves a scalar input variable, the extended
Gram-Schmidt orthogonal decomposition algorithm reduces
to the conventional OLS algorithm, with each rule subspace
being spanned by a one-dimensional rule basis. The proposed
algorithm produces rule based information of percentage en-
ergy increment (or the model error reduction ratio) by the
selected rule to the model, as shown in Table Il (in the order
of selected rules), shown in two cases of with or without
parameter regularization. Each rule contribution in reducing
model error (or increasing the model energy level) provides
model transparency for the fuzzy rules interpretability. To
verify the model’s approximation and robustness, Table I11 lists
the mean squares error (MSE) of model in target to the noisy
observations (y(z)) and the true function (z(x)), respectively.
For this example, the modelling results are insensitive to a
wide range of the parameter 8 associated with D-optimality
(8 =0~ 1x107%). However for (8 = 10~9), the model
selection process automatically terminates at a 5 rule model
(rule 1 is excluded). This insensitivity means that varying
B8 within a certain range will all terminates the modelling
within a suitable structural range. The modelling results of

a model using 5 rules with A = 0.2 is plotted in Figure 3.
This example demonstrates that the proposed method has good
approximation and some robustness improvement. Clearly the
proposed modelling approach is additionally advantageous
via its significant model transparency during the modelling
process.

Example 2: Nonlinear 2-D surface modelling. The Matlab
logo was generated by the first eigenfunction of the L-shaped
membrane. A 51 x 51 meshed data set is generated by using
Matlab commands

z = linspace(0,1,51);
y = linspace(0,1,51);
[X,Y] = meshgrid(z,y);

Z = membrane(l,25); (36)

such that output Z is defined over an unit square input region
[0,1]2. The data set z(z,y), shown in Figure 5.(a), is used
to model the target function (the first eigenfunction of the L-
shaped membrane function).

For both =z,y, define a knot vector [—0.4,-0.2,0,
0.25,0.5,0.75, 1,1.2,1.4], and use a piecewise quadratic B-
spline fuzzy membership function to build a one-dimensional
model, resulting M = 6 basis functions. These basis functions,
as shown in Figure 4, correspond to 6 fuzzy rules: (1) If (x or
y ) is (very small) (VS); (2) IF (x or y ) is (small)(S); (3) IF
(x ory) is (medium-small)(MS); (4) IF (x or y ) is (medium-
large)(ML); (5) IF (x or y ) is (large)(L), and (6) If (x or y )
is (very large)(VL).

The univariate and bivariate membership functions (inter-
action between univariate membership function z and y via
tensor product) are used as model set and shown in Table IV,
in which, the identifiability of fuzzy rules are listed based on
(13). From Table 1V, it is seen that all the rules have been
uniformly excited. There are 48 rules.

By using the fuzzy model (4) for the modelling of Z(z, y),
the neurofuzzy model is simply given as

48
Z(t) = Z N;(x(8)xT®;, (37)

where t denotes the data label, and x(¢) = [z,y]? is given
by the meshed values of [z,y] in the input region [0,1]2.
Hence each of the fuzzy rule &) = N;(x(t))x(t) spans
a 2 dimensional space, i.e. n; = 2, Vj. The proposed
algorithm based on the extended Gram-Schmidt orthogonal
decomposition has been applied, in which each rule subspace
being spanned by a 2-dimensional rule basis is mapped into
orthogonal matrix subspaces. The modelling results contain
rule based information of percentage energy increment (or the
model error reduction ratio) by the selected rule to the model
as shown in Table. V for A; = 10=%, 8 = 0.01. The MSE
of the resultant 20-rule model is 3.4527 x 10~%. In Table
V, the selected rules are ordered in the sequence of being
selected, and the model selection automatically terminates at
a 20-rule model ([cerr]21 < 0). The model prediction of the
20-rule model is shown in Figure 5.(b). For this example, the
modelling results are insensitive to value of A;. It has shown
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The fuzzy membership functions for  in Example 1.

rule 1 rule 2 rule 3 rule 4 rule 5 rule 6
L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X
TABLE |
FUZZY RULES IDENTIFIABILITY IN EXAMPLE 1
Rule Index j 1 2 3 4 5 6
LS N;(t) | 0.0892 | 0.2127 | 0.2158 | 0.1816 | 0.2011 | 0.0996
TABLE 1l
SYSTEM ERROR REDUCTION RATIO BY THE SELECTED RULESIN EXAMPLE 1.
Rule Index j 5 3 4 6 2 1
[err]j (®), Aj=0 0.4290 | 0.2959 | 0.1356 | 0.0565 | 0.0386 | 0.0000

| ferr];(®). A; =02 | 0.4251 | 0.2860 | 0.1320 | 0.0556 | 0.0338 | 0.0000 |

TABLE Il

MODEL MEAN SQUARES ERRORS(MSE) FOR NOISY OBSERVATIONSAND UNDERLYING FUNCTION.

Modelling results 6 rule model 5 rule model
E[y(z) — 2(z)]?, Aj =0 | 9.8765 x 1075 | 9.8676 x 1075
E[y(z) — 2(=)]?, A; =0.2 | 9.8866 x 1075 | 9.8853 x 1075
E[z(z) — 2(=)]2, A; =0 | 7.8336 x 10~7 | 7.1251 x 107
E[z(z) — 2(z)]?, Aj = 0.2 | 5.6524 x 107 | 5.5833 x 107
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Fig. 3. The modelling results of a 5-rule model with A; = 0.2 for Example 1.
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Fig. 4. The fuzzy membership functions for x, or y in Example 2.
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TABLE IV
FUZZY RULES IDENTIFIABILITY IN EXAMPLE 2; (A)RULES ABOUT &; (B)RULES ABOUT %; (C)RULES ABOUT X AND Y (THE STAR “* * INDICATES RULES
INCLUDED IN THE FINAL MODEL)

(a)

Rules (x) Vs S MS ML L VL
L7 N;(#) | 0.0510% | 0.2039" | 0.2451% | 0.2451 | 0.2039* | 0.0510
(b)

Rules (y) Vs S MS ML L VL
L7 N;(8) | 0.0510% | 0.2039 | 0.2451 | 0.2451% | 0.2039* | 0.0510
(c)

N
~ Doy Ni(®) Rules (x)
VS S MS ML L VL
VS 0.0026*  0.0104  0.0125  0.0125  0.0104  0.0026*
Rules S 0.0104  0.0416  0.0500*  0.0500  0.0416  0.0104
MS 0.0125  0.0500* 0.0601*  0.0601*  0.0500  0.0125*
) ML 0.0125  0.0500*  0.0601*  0.0601*  0.0500*  0.0125
L 0.0104  0.0416  0.0500  0.0500  0.0416  0.0104
VL 0.0026  0.0104* 0.0125  0.0125  0.0104  0.0026
that by using a weighting for the D-optimality cost function, 1.01.

the entire model construction procedure becomes automatic.
It can be seen that the model has some limitations over the
modelling of corner and edge of the surface due to the data
being only piecewise smooth and piecewise nonlinear. This
factor may contribute to the fact that regularization may not
help in reducing misfit in some strong nonlinear behavior
region. Global nonlinear modelling using B-spline for strong
nonlinear behavior such as piecewise smooth and piecewise
nonlinear data is under investigation.

Example 3: Consider the benchmark Henon time series given
by

y(t) =14 —y*(t—1) +0.3y(t - 2) (38)

500 data points are generated with an initial condition
y(0) = 0,y(1) 0. All the data points were used in
the modelling by using the proposed approach. The mod-
elling process is briefly described here. The input vector
x(t) = [y(t — 1),y — 2)]T. For each input, define a knot
vector [-2.0,—-1.9,—-1.8,0,1.8,1.9,2.0], and use a piecewise
quadratic B-spline fuzzy membership function to build a
one-dimensional model, resulting M = 4 basis functions,
corresponding to 6 fuzzy rules. That is, for ¢ = 1,2, (1) If (y(t-
i) ) is (small) (S); (1) If (y(t-i) ) is (Medium Small) (MS);(1)
If (y(t-i) ) is (Medium Large) (ML);(1) If (y(t-i) ) is (Large)
(L); Then bivariate membership functions are formed by using
tensor product.

The modelling results derived by the subspace forward
regression process, with A = 0.001, 8 = 1 x 10~*, is given
in Table VI, with the final model consisting of 13 fuzzy
rules. This table shows the energy level per rule extracted for
this chaotic time series. Figure6 demonstrates the excellent
approximation of the derived model. The final model MSE
is 0.0041. This is very small compared to signal variance of

V. CONCLUSIONS

This paper has introduced a new robust neurofuzzy model
construction algorithm for the modelling of a priori unknown
dynamical systems in the form of a set of fuzzy rules. A
one to one mapping between a fuzzy rule base and a model
matrix feature subspace has been established by extending a
Takagi and Sugeno (T-S) inference mechanism. Rule based
knowledge are extracted from matrix subspace to enhance
model transparency due to this mapping link. In order to
achieve maximized model robustness and sparsity, a new ro-
bust extended Gram-Schmidt method has been introduced via
two effective and complementary approaches of regularization
and D-optimality experimental design. By combining a sub-
space approach and the concept of robust model construction,
a locally regularized orthogonal least squares algorithm is
extended for fuzzy rule regularization and subspace based
information extraction, and by combined with a D-optimality
for subspace based rule selection. Model rule bases are de-
composed into orthogonal subspaces, so as to enhance model
transparency with the capability of interpreting the derived rule
base energy level, and are automatically selected for a model
with robustness.

APPENDIX |
THE ALGORITHM

An extended classical Gram-Schmidt scheme combined
with parameter regularization and D-optimality selective cri-
terion in orthogonal subspaces can be summarized as the
following procedure:
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TABLE V

SYSTEM ERROR REDUCTION RATIO BY THE SELECTED RULESIN EXAMPLE 2.

Selected | (zis ML) | (x is MS) | (zis ML)
and and (x is MS) | (y is ML)
Rules (y is MS) (y is S) (y is ML)
[err]; (t) 0.7044 0.1181 0.0954 0.0292 0.0193
Selected (zis VL) | (zis MS) (x is S)
(xis VS) and and and (y is L)
Rules (yis MS) | (yis MS) | (yis MS)
lerr];(t) | 0.0086 0.0056 0.0040 0.0028 0.0021
Selected (xis VS) | (xis MS) (zis S)
(y is VL) (x is S) and and and
Rules (yisVS) | (yis ML) | (y is ML)
lerrl;(t) |  0.0037 0.0016 0.0011 0.0004 0.0003
Selected (x is L) (z is VL) (zis S)
and and (x is L) (y is VS) and
Rules (y is ML) | (yis VS) (y is VL)
lerrl;(t) |  0.0002 0.0005 0.0000 0.0002 0.0001

72003
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Modelling results for Example 2.
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SYSTEM ERROR REDUCTION RATIO BY THE SELECTED RULESIN EXAMPLE 3.

Selected
y(t—-2) (ML) | yt-1) (L) | y(t—-1) (ML) | yt—2) (MS) | y(t—1)(S)

Rules
lerr]; (1) 0.5509 0.2281 0.1024 0.0724 0.0307
Selected yt—1) (MS) | y¢—1) (ML) | yt—1) (MS) | y(¢—1) (ML)

y(t —2) (L) and and and and

Rules y(t-2) (L) | y(t—2) ML) | y(t—2) (MS) | y(t-2) (L)
lerr];(£) 0.0102 0.0007 0.0005 0.0001 2 %1075
Selected | y(t —1) (ML) y(t—1) (S) y(t—1) (S)

and and and

Ruless | y(t-2)(5) | wy(t—2)(S) | y(t—2) (MS)

lerr];(2) 3x 1075 1x1077 2x10~7

12
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Fig. 6. Modelling results for Example 3.

1) At the jth forward regression step, where j > 1, for and select
JSlSKi CompUte Az,] _Agl]), forz:]_ .7
l [DO]™ (WO)THW WO =Wl =a - Z w4,
0= fori=1,--,j—1 and ifj#1
L, xn ifi=j [cerr]; = [cerr](} )
c; (l )
€)) T W)
wo _ | 29 if j =1 > W%f ]
® ¢0 — Z.z?;ll w AS? ifj>1 lerr]; = le;] D¥e; ]yTy < (43)
(NB: for selected rule base energy
level information extraction
D) = W1"W) (39) . )
The selected sub-matrix ®(i) exchanges columns with
sub-matrix @) . For notational convenience, all the sub-
, matrices will still be referred as ®%),j = 1,---, K,
() [DE{)) + NI [WE{))] (40) according to the new column sub-matrix order j in ®,

even if some of the column sub-matrices have been
interchanged.
2) The procedure is monitored and terminated at the de-
@ _ P17 +2;1)e+610g[det(DE))] rived j = ny step, when [cerr],, < 0, for a prede-
[cerr]; ¥Ty ) termined 8 > 0. Otherwise, set j = j + 1, goto step
1.

3) Calculate the original parameters according to (27).

Find ACKNOWLEDGMENT

XH gratefully acknowledges that part of this work was
supported by EPSRC in the UK. The authors would like to
thank the referees for the constructive comments.

[cerr]( i) = max{[cerr](), j<I< K}
(NB : for rule base selection) 42)
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