
1
Motion of Systems of Particles

This chapter contains formal arguments showing (i) that thetotal external force act-
ing on a system of particles is equal to the rate of change of its total linear momentum
and (ii) that the total external torque acting is equal to therate of change of the total
angular momentum. Although you should ensure you understand the arguments, the
important point is the simple and useful general results which emerge.

1.1 Linear Motion

Consider a system ofN particles labelled 1;2; : : :;N with massesmi at positionsri.
Let the momentum of theith particle bepi. The total force acting and the total linear
momentum are

F = N

∑
i=1

Fi and P = N

∑
i=1

pi;
respectively. Summing the equations of motion,Fi = ṗi (Newton’s second law), for
all the particles immediately leads to

F= Ṗ:
To make this more useful, we divide up the forceFi on theith particle into the

external force plus the sum of all the internal forces due to the other particles:

Fi = Fext
i +∑

j 6=i

Fi j:
Here,Fi j is the force on theith particle due to thejth. The payoff for using this
decomposition is that the internal forces are related in pairs by Newton’s third law,

Fi j =�F ji;
and therefore,

F = N

∑
i=1

�
Fext

i +∑
j 6=i

Fi j

�= N

∑
i=1

Fext
i + N

∑
i; j=1
i6= j

Fi j:
The first term on the RHS is simply the total external force,Fext, and the second term
vanishes because the internal forces cancel in pairs. Thus we end up with the result:

Fext= Ṗ : (1.1)
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2 1 Motion of Systems of Particles� The total external force is equal to the rate of change of the total linear mo-
mentum of the system.� We used Newton’s third law to cancel the internal forces in pairs.� If the external force vanishes,Fext = 0, thenṖ = 0, soP is constant and we
can state:

The linear momentum of a system subject to
no net external force is conserved.

1.1.1 Centre of Mass

Define the centre of mass,R, by,

R = ∑N
i=1 miri

∑N
i=1 mi

= 1
M

N

∑
i=1

miri;
whereM = ∑mi is the total mass.

If the individual masses are constant, then the velocity of the centre of mass is
found from,

MṘ = N

∑
i=1

miṙi = P:
Furthermore, we just saw above thatFext= dP=dt. So we have the following results:

P = MṘ and Fext= MR̈ : (1.2)� In theabsence of a net external force, the centre of mass moves with constant
velocity. This says (once again) that:

The linear momentum of a system subject to
no net external force is conserved.� If the net external force is non-zero, the centre of mass moves as if the total

mass of the system were there, acted on by the total external force.

It is often useful to look at the system of particles with positions measured rela-
tive to the centre of mass. Ifρρρi is the location of theith particle with respect to the
centre of mass then (see figure 1.1),

ri = R+ρρρi : (1.3)

1.1.2 Kinetic Energy of a System of Particles

Let’s look at the total kinetic energyT of the system using the decomposition in
equation (1.3).

T = N

∑
i=1

1
2

miṙ2
i = N

∑
i=1

1
2

mi(Ṙ+ ρ̇ρρi)2= N

∑
i=1

1
2

miṘ2+ N

∑
i=1

miρ̇ρρi�Ṙ+ N

∑
i=1

1
2

miρ̇ρρ2
i :
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Figure 1.1 Particle positions measured with respect to the Centre of Mass

The second term on the RHS vanishes since∑miρρρi = 0 and∑miρ̇ρρi = 0 by the defi-
nition of the centre of mass. This leaves,

T = 1
2

MṘ2+ N

∑
i=1

1
2

miρ̇ρρ2
i ;

which we write as,

T = 1
2

MṘ2+TCM : (1.4)

The total kinetic energy has one term from the motion of the centre of mass and
a second term from the kinetic energy of motion with respect to the centre of mass.
Since particle velocities are different when measured in different inertial reference
frames, the kinetic energy will in general be different in different frames. However,
TCM, the kinetic energy with respect to the center of mass is thesame in all inertial
frames and is an “internal” kinetic energy of the system (thesum ofTCM and the
potential energy due to the internal interactions is the total internal energy,U , as
used in thermodynamics). To prove this, note that a Galileantransformation from a
frameS to a frameS0 moving at velocityv with respect toS changes particle positions
by:

ri ! r0
i = ri�vt:

The centre of mass transforms similarly,

R= ∑miri

∑mi
! R0 = ∑mir0

i

∑mi
= R�vt;

so that positions and velocities with respect to the centre of mass areunchanged:

ρρρ0
i = r0

i�R0 = (ri�vt)� (R�vt) = ri�R = ρρρi

ρ̇ρρ0
i = ṙ0

i� Ṙ0 = (ṙi�v)� (Ṙ�v) = ṙi� Ṙ = ρ̇ρρi

The decomposition of the kinetic energy in equation (1.4) can be useful in prob-
lem solving. For example, if a ball rolls down a ramp, you can express the kinetic
energy as a sum of one term coming from the linear motion of thecentre of mass plus
another term for the rotational motion about the centre of mass (the kinetic energy
of rotational motion is discussed further later in the notes).

System of Two Particles Now apply the kinetic energy expression in equa-
tion (1.4) to a system of two particles. Write the particle velocities asu1 = ṙ1 and
u2 = ṙ2, so that:

u1 = Ṙ+ ρ̇ρρ1 and u2 = Ṙ+ ρ̇ρρ2:
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v v�u v+δv

time t time t+δt
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Figure 1.2 Motion of a rocket. We consider the rocket at two closely spaced instants of
time,t andt+δt.

Subtracting these two equations givesu1�u2 = ρ̇ρρ1� ρ̇ρρ2, while the centre of mass
condition states thatm1ρ̇ρρ1+m2ρ̇ρρ2 = 0. We can thus solve foṙρρρ1 andρ̇ρρ2:

ρ̇ρρ1 = m2(u1�u2)
m1+m2

; ρ̇ρρ2 = �m1(u1�u2)
m1+m2

:
Substituting these in the kinetic energy expression gives,

T = 1
2
(m1+m2)Ṙ2+ 1

2
m1m2

m1+m2
(u1�u2)2:

The quantitym1m2=(m1+m2) appearing here is called thereduced mass. We will
meet it again (briefly) in chapter 3 on Kepler’s laws.

1.1.3 Examples

Rocket Motion We can use our results for the motion of a system of particles
to describe so-called “variable mass” problems, where the mass of the (part of) the
system we are interested in changes with time. A prototypical example is the motion
of a rocket in deep space. The rocket burns fuel and ejects thecombustion products
at high speed (relative to the rocket), thereby propelling itself forward. To describe
this quantitatively, we refer to the diagram in figure 1.2 andproceed as follows.

We consider the rocket at two closely spaced instants of time. At timet the rocket
and its remaining fuel have massm and velocityv. In a short additional intervalδt
the rocket’s mass changes tom+ δm as it burns a mass�δm of fuel (note thatδm
is negative since the rocket uses up fuel for propulsion) and the rocket’s velocity
changes tov+ δv. The exhaust gases are ejected with velocity�u with respect to
the rocket, which is velocityv�u with respect to an external observer. Hence, at
time t+ δt we have a rocket of massm+ δm moving with velocityv+ δv together
with a mass�δm of gas with velocityv�u.

If the rocket is in deep space, far from any stars or planets, there is no gravita-
tional force or other external force on the system, so its overall linear momentum is
conserved. Therefore, we may equate the linear momentum of the system at timest
andt+δt,

mv = (m+δm)(v+δv)�δm(v�u):
Cancelling terms we find,

uδm+mδv+δmδv = 0:
We take the limitδt ! 0, so that theδmδv term, which is second order in infinitesi-
mal quantities, drops out, leaving:

u
dm
m

=�dv:
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If the rocket initially has velocityvi when its mass ismi, and ends up with velocity
v f when its mass ism f , we integrate this equation to find:

v f = vi+u ln

�
mi

m f

� : (1.5)

The fact that the increase in the rocket’s speed depends logarithmically on the ratio
of initial and final masses is the reason why rockets are almost entirely made up of
fuel when they are launched (the function lnx growsvery slowly with x). It also
explains why multi-stage rockets are advantageous: once you have burnt up some
fuel, you don’t want to carry around the structure that contained it, since this will
reduce the ratiomi=m f for the subsequent motion.

Rope Falling Onto a Table Here we’ll consider a system where an external
force acts. A flexible rope with mass per unit lengthρ is suspended just above a
table. The rope is released from rest. Find the force on the table when a lengthx of
the rope has fallen to the table.

Our system here is the rope. The external forces in the vertical direction are the
weight of the rope,ρag, acting downwards plus an upward normal forceF exerted
on the rope by the tabletop. We want to determineF .

The rope falls freely onto the table, so its downward acceleration isg. If we let
v = ẋ, this means that ˙v = g andv2 = 2gx.

Suppose that a lengthx of the rope has reached the table top after timet, when the
speed of the falling section isv. A short timeδt later, the length of rope on the table
is x+ δx and the speed of the falling section isv+ δv. The downward components
of the system’s total momentum at timest andt+δt are therefore:

p(t) = ρ(a�x)v;
p(t+δt) = ρ(a�x�δx)(v+δv):

Working to first order in small quantities,

δp = p(t+δt)� p(t) = ρ(a�x)δv�ρvδx:
Taking the limitδt ! 0, we find that the rate of change of momentum is,

dp
dt

= ρ(a�x)v̇�ρvẋ = ρ(a�x)g�2ρxg:
Therefore, equating the external force to the rate of changeof momentum gives,

ρag�F = ρ(a�x)g�2ρxg;
or finally,

F = 3ρxg:
1.2 Angular Motion

The angular equation of motion for each particle is

ri�Fi = d
dt
(ri�pi):
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The total angular momentum of the system and the total torqueacting are:

L = N

∑
i=1

ri�pi and τττ = N

∑
i=1

ri�Fi

As before we split the total force on each particle into external and internal parts.
We then make a corresponding split in the total torque:

τττ = N

∑
i=1

ri�Fext
i + N

∑
i=1

ri�∑
j 6=i

Fi j� τττext+τττint:
Recall that in the linear case, we were able to cancel the internal forces in pairs,

because they satisfied Newton’s third law. What is the corresponding result here? In
other words, when can we ignoreτττint? To answer this, decomposeτττint as follows,

τττint = r1� (F12+F13+ � � �+F1N)+r2� (F21+F23+ � � �+F2N)+ � � �= (r1�r2)�F12+(other pairs):
We have used Newton’s third law to obtain the last line.

Now, if the internal forces act along the lines joining the particle pairs, then all
the terms(ri�r j)�Fi j vanish andτττint = 0. Thusτττint = 0 for central internal forces.
Examples are gravity and the Coulomb force.

With this proviso we obtain the result,

N

∑
i=1

ri�Fext
i = d

dt

N

∑
i=1

ri�pi;
which is rewritten as,

τττext= L̇ :� This result applies when we use coordinates in an inertial frame (one in which
Newton’s laws apply).� Note that we used both Newton’s third law and the condition that the forces
between particles were central in order to reach our result.

1.2.1 Angular Motion About the Centre of Mass

We will now see that taking moments about the centre of mass also leads to a simple
result. To do this, look at the total angular momentum using the centre of mass
coordinates:

L = N

∑
i=1

ri�miṙi = N

∑
i=1
(R+ρρρi)�mi(Ṙ+ ρ̇ρρi)= N

∑
i=1

R�miṘ+ N

∑
i=1

R�miρ̇ρρi+ N

∑
i=1

ρρρi�miṘ+ N

∑
i=1

ρρρi�miρ̇ρρi:
The second and third terms on the RHS vanish since∑miρρρi = 0 and∑miρ̇ρρi = 0 by
the definition of the centre of mass. This leaves,

L = R�MṘ+ N

∑
i=1

ρρρi�miρ̇ρρi;
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which we write as,
L = R�MṘ+LCM : (1.6)

The total angular momentum therefore has two terms, which can be interpreted as
follows. The first arises from the motion of the centre of massabout the origin of
coordinates: this is called theorbital angular momentum and takes different values
in different inertial frames. The second term,LCM, arises from the angular motion
about (relative to) the centre of mass (think of the example of a spinning planet
orbiting the Sun): this is thesame in all inertial frames and is anintrinsic or spin
angular momentum (the proof of this is like the one given forTCM, the kinetic energy
relative to the CM, below equation (1.4) on page 3).

Finally, we take the time derivative of the last equation to obtain,

dLCM

dt
= dL

dt
�R�MR̈ = τττext�R�Fext= N

∑
i=1

ri�Fext
i � N

∑
i=1

R�Fext
i= N

∑
i=1

(ri�R)�Fext
i= N

∑
i=1

ρρρi�Fext
i � τττext

CM:
So we’ve found two results we can use when considering torques applied to a

system:

τττext= L̇ and τττext
CM = L̇CM : (1.7)� These two equations say you can take moments either about theorigin of an

inertial frame, or about the centre of mass (even if the centre of mass is itself
accelerating).� Furthermore, in either case:

The angular momentum of a system subject to
no external torque is constant.

1.3 Commentary

In deriving the general results above we assumed the validity of Newton’s third law,
so that we could cancel internal forces in pairs. We also assumed that the forces were
central so that we could cancel internal torques in pairs. The assumption of central
internal forces is very strong and we know of examples, such as the electromagnetic
forces between moving particles, which arenot central.

All we actually require is the validity of the results in equations (1.1) and (1.7).
It is perhaps better to regard them as basic assumptions whose justification is that
their consequences agree with experiment.

For the puzzle associated with the electromagnetic forces mentioned above, the
resolution is that you have to ascribe energy, momentum and angular momentum to
the electromagnetic field itself.
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