PHYS1022 Formulae

$$
\begin{aligned}
& \underline{F}_{1,2}=\frac{k q_{1} q_{2}}{r_{1,2}^{2}} \hat{r}_{1,2} \\
& \underline{E}=\frac{\underline{\underline{F}}}{q_{0}} \\
& \Phi_{\text {net }}=\oint_{S} \underline{E} \cdot d \underline{A}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& V_{C}=E\left(1-e^{-t / R C}\right)+V_{0} e^{-t / R C} \\
& V=\frac{q}{4 \pi \varepsilon_{0} r} \\
& U=q_{0} V \\
& \Delta V=V_{b}-V_{a}=\frac{\Delta U}{q_{0}}=-\int_{a}^{b} \underline{E} \cdot \underline{d l} \\
& E_{x}=-\frac{\partial V}{\partial x} \\
& C=\frac{Q}{V} \\
& U=\frac{1}{2} C V^{2} \\
& u_{e}=\frac{1}{2} \varepsilon_{0} E^{2} \\
& V=I R \\
& \underline{F}=q \underline{v} \times \underline{B} \\
& d \underline{F}=I \underline{I l} \times \underline{B} \\
& \underline{B}=\frac{\mu_{0}}{4 \pi} \frac{q \underline{v} \times \hat{\hat{r}}}{r^{2}} \\
& d \underline{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \underline{l} \times \underline{\hat{r}}}{r^{2}} \\
& \Phi_{m}=\int_{S} \underline{B} \cdot d \underline{A} \\
& \oint_{C} \underline{B} \cdot \underline{d l}=\mu_{0} I_{C} \\
& \varepsilon=-\frac{d}{d t} \int_{S} \underline{B} \cdot d \underline{A}=-\frac{d \Phi_{m}}{d t}=\oint_{C} \underline{E} \cdot \underline{d l}
\end{aligned}
$$

