CHEM3023: Spins, Atoms and Molecules Lecture 10

Normal modes and molecular structure optimisation

C.-K. Skylaris

Learning outcomes

- Be able to describe molecular vibrations and chemical reactions using the potential energy surface
- Be able to perform molecular structure optimisation using Hartree-Fock calculations

Polyatomic molecules: Normal coordinates

- Molecules with more than two atoms can also be treated with the harmonic approximation
- Their 3N_{at} atomic coordinates can be transformed to **normal coordinates**
- In normal coordinates the nuclear Schrödinger equation decomposes into 3N_{at} independent harmonic oscillator equations (see OPTIONAL notes, at the end)
- The vibrational frequencies that result can be used to predict IR spectra
- The zero point vibrational energy of a molecule can be computed by adding to E_{PES} the zero point energy of each normal mode
- Thermodynamic properties (e.g. vibrational entropy and free energy) can also be computed by taking into account the contribution from each normal mode using the laws of statistical mechanics

Normal modes

3N_{at} harmonic oscillator Schrödinger equations

$$E = \epsilon_1 + \epsilon_2 + \ldots + \epsilon_{3N_{at}} \qquad \Psi_{nuc}(\mathbf{Q}) = \Psi_1(Q_1)\Psi_2(Q_2)\ldots\Psi_{3N_{at}}(Q_{3N_{at}})$$

- Each normal mode describes one collective motion that the atoms can do, independently of the other normal modes
- The total motion (within the harmonic approximation) is the superposition of the normal modes
- Many useful properties can be derived from the above. First we will examine how we can use the Hessian eigenvalues to characterise stationary points

Characterisation of stationary points

- For nonlinear molecules 6 normal mode frequencies are zero because they describe the translation and rotation of the entire molecule
- If all the remaining frequencies are positive, the molecular geometry is a minimum point on the PES

• If one of the remaining frequencies is imaginary (square root of negative second derivative w.r.t. normal coordinate) and all the rest are positive, the molecular geometry is a saddle point on the PES (maximum along one normal mode direction and minimum along all others)

Zero-point vibrational energy

Under the harmonic approximation, the nuclear motion at a stationary point on the PES can be split into independent vibrations along the normal coordinates

$$\left[-\frac{1}{2}\frac{\partial^2}{\partial Q_i^2} + \frac{1}{2}k_iQ_i^2\right]\Psi_i(Q_i) = \epsilon_i\Psi_i(Q_i)$$

The solution of the Schrödinger equation for a harmonic oscillator is well known, with energy levels (not in atomic units):

$$\epsilon_i = \left(n_i + \frac{1}{2}\right)h\nu_i \qquad n_i = 0, 1, 2, \dots \qquad \nu_i = \frac{\sqrt{k_i}}{2\pi}$$

Therefore the energy of a molecule (at OK) should include the sum of all its vibrational levels and is called the zero-point vibrational energy

$$U_0 = E_{PES} + \sum_{i=1}^{3N_{at}-6} \frac{1}{2}h\nu_i$$

Example: Nucleophilic attack reaction

Hartree-Fock calculations with 6-31+G* basis set

nucleophiles and functional groups to study how these affect molecular structure and reaction rates

E(PES) = 0kcal/mol E(PES+ZPVE)=0 kcal/mol

Finding the equilibrium geometry

• The Potential Energy Surface (PES), $E_{PES}(\mathbf{X})$, is a function of the $3xN_{at}$ nuclear coordinates:

$$X_1, X_2, \dots, X_{3N_{at}} = R_{1x}, R_{1y}, R_{1z}, R_{2x}, R_{2y}, R_{2z}, \dots, R_{N_{at}x}, R_{N_{at}y}, R_{N_{at}z}$$

• At each point on the PES an atom "feels" a force, according to

$$F_i = -\frac{E_{PES}}{\partial X_i}$$

which points to the direction of lowest energy

• The stationary points (equilibrium geometries and transition states) are defined by:

$$\frac{E_{PES}}{\partial X_1} = \frac{E_{PES}}{\partial X_2} = \dots = \frac{E_{PES}}{\partial X_{3N_{at}}} = 0$$

 To optimise the geometry we need to allow the atoms to move according to the forces that act on them, until these forces become zero. This is also called "geometry relaxation"

Geometry optimisation procedure

Recent developments in quantum chemistry

- Density Functional Theory (DFT) includes electronic correlation at a level of complexity similar to that of Hartree-Fock theory
- Linear-scaling DFT: Quantum simulations are being extended to thousands of atoms. Possible to study entire biomolecules and nanostructures

www.onetep.soton.ac.uk

Silicon nanocrystals

els Protein-protein

Carbon nanopeapods

We have come a long way...

The Villa Herwig, where wave mechanics was discovered during the Christmas holidays, 1925–26.

The underlying laws necessary for the mathematical theory of ... the whole of **chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble...

Computational Quantum:

- Chemistry
- Materials Science
- Molecular Biology
- Solid State Physics

HECTOR - UK National Supercomputing Service

...comprises 1416 compute blades, each of which has 4 dual-core processor sockets. This amounts to a total of 11,328 cores, each of which acts as a single CPU. ... peak performance of the system is 59 Tflops.

Summary / Reading assignment

- Normal coordinates (Cramer, pages 336-338)
- Zero-point vibrational energy (Cramer, pages 355-357)
- Molecular geometry optimisation and transition state search on potential energy surface (Cramer, pages 40-46)

OPTIONAL: The nuclear Schrödinger equation

We will work with the Taylor expansion of the PES up to second order

 $E_{PES}(\mathbf{X}) \simeq E_{PES}(\mathbf{X}_0) + (\mathbf{X} - \mathbf{X}_0)^{\dagger} \mathbf{g}(\mathbf{X}_0) + \frac{1}{2} (\mathbf{X} - \mathbf{X}_0)^{\dagger} \mathbf{H}(\mathbf{X}_0) (\mathbf{X} - \mathbf{X}_0)$

where we have $3 \mathbf{x} N_{at}$ nuclear coordinates:

 $X_1, X_2, \dots, X_{3N_{at}} = R_{1x}, R_{1y}, R_{1z}, R_{2x}, R_{2y}, R_{2z}, \dots, R_{N_{at}x}, R_{N_{at}y}, R_{N_{at}z}$

If \mathbf{X}_0 is a stationary point (lets call it point \mathbf{X}_s), the gradient is zero by definition $\mathbf{g}(\mathbf{X}_s) = 0$ and the PES simplifies to:

$$E_{PES}(\mathbf{X}) \simeq E_{PES}(\mathbf{X}_s) + \frac{1}{2}(\mathbf{X} - \mathbf{X}_s)^{\dagger} \mathbf{H}(\mathbf{X}_s)(\mathbf{X} - \mathbf{X}_s)$$

•A stationary point on the PES can be either an equilibrium geometry (reactant, product) or a transition state

CHEM3023 Spins, Atoms and Molecules

The nuclear Schrödinger equation

We will use the second order PES (harmonic approximation), expanded around a stationary point, as the potential in the nuclear Schrödinger equation

$$E_{PES}(\mathbf{X}) \simeq E_{PES}(\mathbf{X}_s) + \frac{1}{2} (\mathbf{X} - \mathbf{X}_s)^{\dagger} \mathbf{H}(\mathbf{X}_s) (\mathbf{X} - \mathbf{X}_s) = E_{PES}(\mathbf{X}_s) + \frac{1}{2} \Delta \mathbf{X}^{\dagger} \mathbf{H}(\mathbf{X}_s) \Delta \mathbf{X}$$

$$\begin{bmatrix} \sum_{i=1}^{3N_{at}} -\frac{1}{2m_{i}} \frac{\partial^{2}}{\partial X_{i}^{2}} + E_{PES}(\mathbf{X}) \end{bmatrix} \Psi_{nuc}(\mathbf{X}) = E' \Psi_{nuc}(\mathbf{X})$$

Kinetic energyPotential energyNuclearof nucleiof nucleiwavefunction

where $m_1 = M_1, m_2 = M_1, m_3 = M_1$ and $m_4 = M_2, m_5 = M_2, m_6 = M_2$ etc.

We can re-arrange to incorporate the (constant) energy of the stationary point to the right hand side

$$\begin{bmatrix} \sum_{i=1}^{3N_{at}} -\frac{1}{2m_{i}} \frac{\partial^{2}}{\partial X_{i}^{2}} + E_{PES}(\mathbf{X}_{s}) + \frac{1}{2} \Delta \mathbf{X}^{\dagger} \mathbf{H}(\mathbf{X}_{s}) \Delta \mathbf{X} \end{bmatrix} \Psi_{nuc}(\mathbf{X}) = E' \Psi_{nuc}(\mathbf{X})$$
$$\begin{bmatrix} \sum_{i=1}^{3N_{at}} -\frac{1}{2m_{i}} \frac{\partial^{2}}{\partial X_{i}^{2}} + \frac{1}{2} \Delta \mathbf{X}^{\dagger} \mathbf{H}(\mathbf{X}_{s}) \Delta \mathbf{X} \end{bmatrix} \Psi_{nuc}(\mathbf{X}) = (E' - E_{PES}(\mathbf{X}_{s})) \Psi_{nuc}(\mathbf{X})$$
$$\begin{bmatrix} \sum_{i=1}^{3N_{at}} -\frac{1}{2m_{i}} \frac{\partial^{2}}{\partial X_{i}^{2}} + \frac{1}{2} \Delta \mathbf{X}^{\dagger} \mathbf{H}(\mathbf{X}_{s}) \Delta \mathbf{X} \end{bmatrix} \Psi_{nuc}(\mathbf{X}) = E \Psi_{nuc}(\mathbf{X})$$

CHEM3023 Spins, Atoms and Molecules

Southampton School of Chemistry

Mass-weighted coordinates

The next step is to introduce mass-weighted coordinates:

 $Y_i = \sqrt{m_i} \Delta X_i$

- These coordinates are defined in terms of displacements from the point $\mathbf{X}_{\mathbf{s}}$ instead of absolute position
- Using the chain rule for differentiation show that the nuclear Schrödinger equation can be written in terms of the mass-weighted coordinates as follows:

$$\left[\sum_{i=1}^{3N_{at}} -\frac{1}{2}\frac{\partial^2}{\partial Y_i^2} + \frac{1}{2}\mathbf{Y}^{\dagger}\mathbf{H}\mathbf{Y}\right]\Psi_{nuc}(\mathbf{Y}) = E\Psi_{nuc}(\mathbf{Y})$$

Normal coordinates

Finally we need to work with the Hessian matrix. As it is a symmetric matrix, there exists a unitary matrix (of its eigenvectors) that can diagonalise it

$$HU = Uk \Leftrightarrow U^{\dagger}HU = k$$
 $U^{\dagger}U = UU^{\dagger} = I$

The eigenvectors of the matrix can be used to transform the atomic displacement into **normal coordinates**

$$\mathbf{Q} = \mathbf{U}^{\dagger} \mathbf{Y} \Leftrightarrow Q_k = \sum_j U_{kj}^{\dagger} Y_j$$

Then, using the chain rule

$$\frac{\partial}{\partial Y_i} = \sum_k \frac{\partial}{\partial Q_k} \frac{\partial Q_k}{\partial Y_i} = \sum_k \frac{\partial}{\partial Q_k} U_{ki}^{\dagger}$$

and the following relation

$$\mathbf{Y}^{\dagger}\mathbf{H}\mathbf{Y}=\mathbf{Y}^{\dagger}\mathbf{U}\mathbf{U}^{\dagger}\mathbf{H}\mathbf{U}\mathbf{U}^{\dagger}\mathbf{Y}=\mathbf{Q}^{\dagger}\mathbf{k}\mathbf{Q}$$

Substituting all the normal coordinate terms into

$$\left[\sum_{i=1}^{3N_{at}} -\frac{1}{2}\frac{\partial^2}{\partial Y_i^2} + \frac{1}{2}\mathbf{Y}^{\dagger}\mathbf{H}\mathbf{Y}\right]\Psi_{nuc}(\mathbf{Y}) = E\Psi_{nuc}(\mathbf{Y})$$

results in the following form

$$\sum_{i=1}^{3N_{at}} \left[-\frac{1}{2} \frac{\partial^2}{\partial Q_i^2} + \frac{1}{2} k_i Q_i^2 \right] \Psi_{nuc}(\mathbf{Q}) = E \Psi_{nuc}(\mathbf{Q})$$

which is very useful:

- The nuclear Hamiltonian has been split into a sum of $3N_{\rm at}$ independent Hamiltonians
- We can now split it into $3N_{at}$ independent Schrödinger equations, and split the wavefunction into a product of wavefunctions, one for each coordinate

Vibrational Hamiltonian

Each of the 3N_{at} equations is actually a Schrödinger equation for a harmonic oscillator

- Each normal mode describes one collective motion that the atoms can do, independently of the other normal modes
- The total motion (within the harmonic approximation) is the superposition of the normal modes

