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Accurate kinetic energy evaluation in electronic structure
calculations with localized functions on real space grids
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Abstract

We present a method for calculating the kinetic energy of localized functions represented on a regular real space grid. This
method uses fast Fourier transforms applied to restricted regions commensurate with the simulation cell and is applicable to
grids of any symmetry. In the limit of large systems it scales linearly with system size. Comparison with the finite difference
approach shows that our method offers significant improvements in accuracy without loss of efficiency. 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Density functional theory (DFT) combined with
the pseudopotential method has been established as
an important theoretical tool for studying a wide
range of problems in condensed matter physics [1].
However, the computational cost of performing a total-
energy calculation on a system scales asymptotically
as the cube of the system size. Consequently, plane-
wave pseudopotential DFT can only be used to study
systems of up to about one hundred atoms on a
single workstation and up to a few hundred atoms
on parallel supercomputers. As a result there has
been considerable recent effort in the development
of methods whose computational cost scales linearly
with system size [2].
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A common feature of many of the linear-scaling
strategies is the expansion of the single-particle den-
sity matrix in terms of a set of localized functions.
We refer to these functions as ‘support functions’ [3].
A support function is required to be non-zero only
within a spherical region, which we refer to as a ‘sup-
port region’, centred on an atomic position. Here we
consider a representation of the support functions in
terms of a regular real space grid, which constitutes
our basis set. If the set of support functions is{φα},
the single-particle density matrix is expressed as

ρ(r′, r)=
∑
α,β

φα(r′)Kαβφ∗
β(r), (1)

whereKαβ is the matrix representation of the density
matrix in terms of the duals of the support functions.
In general the support function set is not orthonormal.

Real space methods have the advantage that they
provide a clear spatial partitioning of all quantities en-

0010-4655/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(01)00248-X



316 C.-K. Skylaris et al. / Computer Physics Communications 140 (2001) 315–322

countered in a density functional calculation, a prop-
erty that is ideal for code parallelization. As a result,
this approach has gained popularity in recent years and
a number of such density functional calculations have
been reported by different authors [4–6]. These ap-
proaches use finite difference (FD) methods [7] for the
calculation of the kinetic energy. In terms of the sup-
port functions the kinetic energy is

ET [ρ] =
∑
α,β

TαβK
βα, (2)

where Tαβ denotes kinetic energy matrix elements
between support functions, given in Hartree atomic
units by

Tαβ = −1

2

∫
φ∗
α(r)∇2φβ(r)dr. (3)

The evaluation of the kinetic energy matrix elements
requires the action of the Laplacian operator on the
support functions. Here we will show that in the case
of localized support functions, fast Fourier transform
(FFT) methods can be adapted for the application of
the Laplacian, providing an algorithm with essentially
the same computational cost as FD but with higher
accuracy and also ready applicability to any grid
symmetry.

In the following two sections we present the FD
method and our new FFT-based method and compare
them both in theory and in practice.

2. Theory

For functions represented as values on a regular
grid, integrals like the one of Eq. (3) can be calculated,
or rather approximated to increasing accuracy, by a
sum over grid points, as long as the value of the
integrand is known at every grid point:

Tαβ 
 −1

2
w

∑
ri

φ∗
α(ri )T̂ φβ(ri ), (4)

where T̂ is the Laplacian operator in the discrete
representation,w is the volume per grid point, and
the sum formally goes over all the grid points in the
simulation cell.

2.1. Finite differences

The most straightforward approach to the evaluation
of the Laplacian operator applied to a function at every
grid point is to approximate the second derivative by
finite differences of increasing order of accuracy [7].
For example, the∂2φ/∂x2 part of the Laplacian on a
grid of orthorhombic symmetry is

∂2φ

∂x2 (xi, yj , zk)


 1

h2
x

A/2∑
n=−A/2

C(A)
n φ

(
xi + nhx, yj , zk

) + O
(
hAx

)
,

(5)

where hx is the grid spacing in thex-direction,A
is the order of accuracy and is an even integer, and
the weightsC(A)

n are even with respect ton, i.e.
C
(A)
n = C

(A)
−n . This equation is exact whenφ is a

polynomial of degree less than or equal toA. The
leading contribution to the error is of orderhAx . The
full Laplacian operator for a single grid point in three
dimensions consists of a sum of(3A+ 1) terms.

In principle, for well behaved functions, the sec-
ond order form of Eq. (5) should converge to the ex-
act Laplacian ash → 0. Therefore to increase the ac-
curacy of a calculation one would need to proceed
to smaller grid spacings. However, in most cases of
interest, this is computationally undesirable and in-
stead, formulae of increasing order are used to im-
prove the accuracy at an affordable cost [8]. Che-
likowsky et al. [9], in their finite difference pseudopo-
tential method, have tested the finite difference expres-
sion for up toA = 18 on calculations of a variety of
diatomic molecules and have suggestedA= 12 as the
most appropriate for their purpose, as the higher orders
did not provide any significant improvement.

Alternative discretizations of the Laplacian operator
are possible, such as the Mehrstellen discretization of
Briggs et al. [5]. This is a fourth order discretization
that includes off-diagonal terms, but only nearest
neighbors to the point of interest. It is more costly
to compute than the standard fourth order formula of
Eq. (5) and it is still not clear whether its fourth order
is sufficient. One may also use FD methods on a grid
with variable spatial resolution, such as that of Modine
et al. [10] which is denser near the ionic positions.
Such a scheme, however, has the added overhead of
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a transformation of the Laplacian from Cartesian to
curvilinear coordinates. In this paper we use only the
FD scheme of Eq. (5).

The FD approach has desirable properties, both in
terms of computational scaling and parallelization.
The Laplacian in the FD representation is a near-local
operator, becoming more delocalized with increasing
order. Therefore, the cost of applying it toN grid
points is strictly linear (compared toN logN for
Fourier transform methods). Also, as a result of its
near-locality, ideal load balancing can be achieved in
parallel implementations by partitioning the real space
grid into subregions of equal size and distributing them
amongst processing elements (PEs) while requiring
little communication for applying the Laplacian at the
bordering points of the subregions.

If Ns represents the size of the system, then the
number of support functions will be proportional to
Ns and so will the total number of grid points in
the simulation cell, resulting in a total computational
cost proportional toN2

s for the application of the
Laplacian on all support functions. More favorable
scaling can be achieved by predicting the region in
space within which the values of a particular function
will be of significant magnitude and operating only
on this region [4,11]. Linear-scaling can be achieved
by strictly restricting from the outset the support
functions to spherical regions centred on atoms [12].
In this case, the cost isqNs with q being the cost
of applying the Laplacian on the points of a spherical
region, which is constant with system size.

FD methods nevertheless have disadvantages that
do not appear in the plane-wave formalism. Firstly,
there is noa priori way of knowing whether a par-
ticular order of FD approximation will be sufficient to
represent a particular support function accurately. In
addition, while plane-wave methods can handle differ-
ent symmetry groups trivially through the reciprocal
lattice vectors of the simulation cell, real space im-
plementations need to consider every symmetry sep-
arately and require considerable modifications to the
code and higher computational cost. Briggs et al. [5]
have demonstrated this difficulty by performing calcu-
lations with hexagonal grids while most common ap-
plications of real space methods in the literature are
limited to grids of cubic or orthorhombic symmetry [4,
6,9,12].

The computational cost for the calculation of the
Laplacian of a single support function with the FD
method scales as(3A + 1)(1 + A/D)3Nreg where
Nreg is the number of grid points within the support
region, andD is the number of grid points along
the support region diameter and is proportional to
N

1/3
reg . This estimate of cost includes all the nonzero

values of the Laplacian, which in general occur not
only at the grid points inside the support region but
also at points outside, up to a distance ofA/2 points
from the region’s boundary. It is important to include
the contribution to the Laplacian from outside the
support region in the sum of Eq. (4) in order to
obtain the best possible accuracy for a given orderA

and also to ensure the Hermiticity of the discretized
representation of the Laplacian,̂T , and hence of the
kinetic energy matrix elementsTαβ .

2.2. Localized discrete Fourier transform

We now present an accurate, linear-scaling method
for calculating the kinetic energy matrix elementsTαβ
of Eq. (3). We use a mixed space Fourier transform
approach that is applicable to any Bravais lattice sym-
metry. Fourier transformation is a natural method to
adopt for this task since in a total-energy calculation
one computes other terms, such as the electron density
and the Hartree energy, using reciprocal space tech-
niques. This implicitly defines the basis set that we use
to be plane-waves and for consistency we should cal-
culate the kinetic energy using the same basis set, i.e.
using Fourier transform methods. Thus we calculate
the ∇2φ term in reciprocal space, where the Lapla-
cian operator is easy to apply, then transform the re-
sult back to real space and obtain the matrix elements
Tαβ by summation over grid points (4). One way to
achieve this would be to perform a discrete FFT on
each support functionφ, using the periodicity of the
entire simulation cell. However, unlike the FD algo-
rithm, the FFT is not a local operation and the cost of
applying the Laplacian to all the support functions in
this way would be proportional toN2

s logNs , which
clearly does not scale linearly with system size.

It is possible to overcome this undesirable scaling
without compromising accuracy by performing the
FFT over a restricted region of the simulation cell,
which we call the ‘FFT box’ (Fig. 1). Before defining
the FFT box, there are two points that should be
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Fig. 1. The simulation cell and an FFT box for a pair of overlapping
support regions.

noted. Firstly, the operator̂T must be Hermitian. This
will ensure that the kinetic energy matrix elements,
Tαβ are Hermitian, and hence the eigenvalues real.
Secondly, when calculating two matrix elements such
asTαβ andTγβ , we require the quantitŷT φβ in both
cases. To be consistent, our method for calculating the
matrix elements must be such thatT̂ φβ is the same in
both cases, i.e. we requirêT φβ to have a unique and
consistent representation throughout the calculation.
It is important that both these conditions are satisfied
when it comes to optimization of the support functions
during a total-energy calculation, and we shall return
to this point later.

In order to fulfill the above requirements, it can be
seen that for a given calculation the FFT box must be
universal in shape and dimensions. As a result, it must
be large enough to enclose any pair of overlapping
support functions within the simulation cell. To define
a suitable FFT box, we first consider a box with the
same unit lattice vectors as the simulation cell, but
of dimensions such that it exactly circumscribes the
largest support region present in the simulation cell.
We then define a box that is commensurate with this,
but with sides that are twice as long (and hence a
volume eight times as large). This we define to be the
FFT box. It is clear that this FFT box is large enough
to enclose any pair of support functions exhibiting any
degree of overlap.

To calculate a particular matrix elementTαβ for
two overlapping support functionsφα and φβ , we
imagine them as being enclosed within the FFT box
defined above and we treat this region of real space
as a miniature simulation cell. We Fourier transform
φβ using the periodicity of the FFT box and apply

the Laplacian at each reciprocal lattice point using
standard plane-wave techniques [1]. It is then a simple
matter of using one more FFT to back-transform
∇2φβ to real space and subsequently calculateTαβ
by summation over the grid points of the FFT box,
according to Eq. (4).

The result obtained by this process is equivalent to
performing a Fourier transform ofφβ over the whole
simulation cell, applying the Laplacian and then inter-
polating to a coarse, but still regular, reciprocal space
grid with onlyNbox points,Nbox being the number of
grid points in the FFT box, before back-transforming
to real space. This coarse sampling in reciprocal space
has a negligible influence on the result because each
support function is strictly localized in real space and
therefore smooth in reciprocal space.

It is worth noting the implicit approximation that
we make in calculating the kinetic energy in the way
prescribed above. In general,∇2φβ is nonzero outside
the support region ofφβ itself, and it is essential
to take this into account in the calculations. By
construction, we neglect contributions to the kinetic
energy from support functions whose support regions
do not overlap as we expect them to be negligibly
small. This approximation may be controlled via a
single parameter, the FFT box size, with respect to
which the calculation may be converged if necessary.
The same approximation is of course present in the FD
method as well.

We expect certain advantages to the FFT box
algorithm over FD based methods. Firstly, the FFT
box method should be more accurate than any FD
scheme since it takes into account information from
every single point of the support function and not only
locally. However, it is still perfectly local as far as
parallelization is concerned since we only deal with
the points within a single FFT box each time, and
this constitutes a very small region of the simulation
cell. The parallelization strategy in this case would
still consist of partitioning the real space grid of
the simulation cell into subregions of equal size and
distributing them amongst PEs. Then, FFTs local to
each PE are performed on FFT boxes enclosing pairs
of overlapping support regions belonging completely
to the simulation cell subregion of the given PE. For
pairs of overlapping support regions containing grid
points common to the subregion of more than one PE,
the pair would have to be attributed to one PE and
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copied as a whole to it for the local FFT to proceed.
This would involve some communication overhead,
as in the FD case for pairs of overlapping support
functions with points in more than one subregion.
Another important advantage of the FFT box method
is that it is applicable, without any modification, to
regular grids of any Bravais lattice symmetry. This is
not true of FD methods.

The number of grid points in a cubic FFT box
is Nbox (which is related toNreg by Nbox = 8 ×
6Nreg/π 
 15.3Nreg). Therefore the computational
cost of applying the FFT method to a single support
function in such an FFT box is 2NboxlogNbox, and
thus for all support functions the cost is proportional to
2NsNbox logNbox, whereNbox is independent ofNs .
In other words the cost scales linearly with the number
of atoms in the system.

3. Tests and discussion

We have performed tests of the FD and FFT
box methods for calculating the kinetic energy of
localized functions. Choosing a particular type of
support functionφ with spherical symmetry, placing
one atRα and another atRβ , we rewrite the integral of
Eq. (3) as

T
(|Rα − Rβ |)
= −1

2

∫
φ∗(r − Rα)∇2φ(r − Rβ)dr. (6)

For our first test we calculate the following quantity
as a function of the distanced between the centresRα

andRβ

η1(d)= Tap(d)− Tex(d), (7)

where Tex(d) is the exact value of the integral in
the continuous representation of the support functions
and Tap(d) is its approximation on the real space
grid, either by FD or the FFT box method. We chose
φ(r) to be a 2s valence pseudo-orbital for a carbon
atom, generated using an atomic norm-conserving
carbon pseudopotential [13] within the local density
approximation. The pseudo-orbital is confined in a
spherical region of radius 6.0 a0, and vanishes exactly
at the region boundary [14]. It is initially generated
as a linear combination of spherical Bessel functions,
which are the energy eigenfunctions of a free electron

inside a spherical box. Our functions are limited up
to an energy of 800 eV, resulting in a combination of
fourteen Bessel functions. The formula for calculating
kinetic energy integrals between Bessel functions is
known [15] and we used it to obtainTex(d) for our
valence pseudo-orbital. We then calculatedη1(d) with
a grid spacing of 0.4 a0 (corresponding to a plane-
wave cut-off of 839 eV) in an orthorhombic simulation
cell, as we are restricted to do so by the FD method.
With these parametersNbox is 603, and hence it is
trivial to perform the FFT of one support function on a
single node.η1(d) is plotted for the FFT box method
and for various orders of the FD method in the top
graph of Fig. 2.

It can be seen that low order FD methods are
inaccurate as compared to the FFT box method, and
only when order 28 FD is used does the accuracy
approach that of the FFT box method. The A= 12 FD
scheme, the highest order that has been used in
practice for calculations [9], gives an error of−3.97×
10−5 Hartree atd = 0 as compared to 1.027× 10−5

Hartree for the FFT box method. The feature that
occurs in the top graph of Fig. 2, betweend = 5 a0 and
d = 7 a0, is an artifact of the behaviour of our pseudo-
orbitals at the support region boundaries where they
vanish exactly, but with a finite first derivative. This
causes an enhanced error in all the methods when the
edge of one support function falls on the centre of
another.

The error in the FFT box method is small, yet non-
zero, and we attribute this to the inherent discretization
error associated with representing functions that are
not bandwidth limited on a discrete real space grid.
Convergence to the exact result is observed as the grid
spacing is reduced, as expected.

As our next comparison of the FFT box and FD
methods we used the same pseudo-orbitals as before,
but considered the quantity

η2(d)= Tap(d)− TPW(d) (8)

as the measure of the error, whereTPW is the result ob-
tained by Fourier transforming the support functions
using the periodicity of the entire simulation cell. One
may think ofTPW as being the result that would be ob-
tained from a plane-wave code: the support functions
may be considered as generalized Wannier functions.
Calculating the kinetic energy integrals by perform-
ing a discrete Fourier transform on the support func-
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Fig. 2. Top panel:η1(d) for a carbon 2s valence pseudo-orbital in a spherical support region with a radius of 6.0 a0. Bottom panel:η2(d) for
the same pseudo-orbital. The insets show a magnification of the plots for A= 28 FD and the FFT box method.
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tions over the entire simulation cell (an O(N2
s logNs)

process for all support functions) is equivalent to sum-
ming the contributions to the kinetic energy from all
of the plane-waves up to the cut-off energy determined
by the grid spacing. Thus our FFT box method can be
viewed as equivalent to a plane-wave method that uses
a contracted basis set (i.e. a coarse sampling in recip-
rocal space). In some waysη2(d) is a better measure
of the relative accuracy of the FD and FFT box meth-
ods as our goal is to converge to the ‘exact’ result as
would be obtained using a plane-wave basis set over
the entire simulation cell.η2(d) is plotted in the bot-
tom graph of Fig. 2.
TPW was computed using a cell that contained 256

grid points in each dimension. Increasing the cell
size further had no effect onTPW up to the eleventh
decimal place (10−11 Hartree). The plots show that the
FFT box method performs significantly better than all
orders of FD that were tested. For example, atd = 0
the error for A= 28 FD is −3.49 × 10−6 Hartree
as compared to−1.09 × 10−9 Hartree for the FFT
box method. The fact that the FFT box error is so
small shows that coarse sampling in reciprocal space
has little effect on accuracy, as one would expect for
functions localized in real space.

Our implementation can produce similar FFT box
results to the above in regular grids of arbitrary
symmetry (non-orthogonal lattice vectors) as long as
we include roughly the same number of grid points
in the support region sphere. As we described earlier
the application of the FD method to grids without
orthorhombic symmetry is not straightforward.

Furthermore, in our implementation the kinetic en-
ergy matrix elementsTαβ for both the FFT box method
and the FD method (of any order) are Hermitian to
machine precision. This is a direct consequence ofT̂ ,
our representation of the Laplacian operator∇2 on the
grid, being Hermitian. As mentioned earlier, this is an
important point. The matrix elementsTαβ may always
be made Hermitian by construction without̂T itself
being an Hermitian operator. This would ensure real
eigenvalues, as is required. However, when it comes
to optimization of the support functions during a total-
energy calculation, we require the derivative of the ki-
netic energy with respect to the support function val-
ues [12]:

∂ET

∂φ∗
α(ri )

= −1

2

∑
β

KβαT̂ φβ(ri ),

∂ET

∂φα(ri )
= −1

2

∑
β

KαβT̂ φ∗
β(ri ),

(9)

where theri are grid points belonging to the support
region ofφα . These relations both hold only if̂T is an
Hermitian operator, and support function optimization
can only be performed in a consistent manner if there
is one unique representation of̂T φβ for each support
functionφβ . It is also worth noting that the evaluation
of these derivatives is the reason why we prefer to
perform the sum of Eq. (4) for the FFT box method
in real space, rather than in its equivalent form in
reciprocal space. Applying the FFT box method in
reciprocal space would be no more costly as far as
integral evaluation is concerned but we would require
an extra FFT per support function for the subsequent
evaluation of Eq. (9).

For all the methods we describe in this paper we
observe variation in the values of the kinetic energy
integrals when we translate the system of the two sup-
port functions with respect to the real space grid. This
is to be expected as the discrete representation of the
support functions changes with the position of the sup-
port region with respect to the grid. Such variations
may have undesirable consequences when it comes to
calculating the forces on the atoms. In FFT terminol-
ogy, they result from irregular aliasing of the high fre-
quency components of our support functions as they
are translated in real space. Ideally, in order to avoid
this effect, the reciprocal representation of the sup-
port functions should contain frequency components
only up to the maximum frequency that corresponds
to our grid spacing, in other words it should be strictly
localized in reciprocal space. Unfortunately this con-
straint is not simultaneously compatible with strict real
space localization. It should be possible however to
achieve a compromise, thus controlling the translation
error by making it smaller than some threshold. Such
a compromise should involve an increase in the sup-
port region radii of our functions by a small factor.
This situation is similar to the calculation of the in-
tegrals of the nonlocal projectors of pseudopotentials
in real space with the method of King-Smith et al. [16]
which requires an increase of the core radii by a fac-
tor of 1.5 to 2. For example, if we consider two carbon
valence pseudo-orbitals of support radius 6.0 a0 and
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with d = 5.0a0 and translate them both in a certain lat-
tice vector direction over a full grid spacing, the maxi-
mum variation in the value of the integral with the FFT
box method is 8.28× 10−6 Hartree. If we then do the
same with carbon pseudo-orbitals generated with pre-
cisely the same parameters but instead with a support
radius of 10.0 a0, the maximum variation with respect
to translation is reduced to 2.05× 10−8 Hartree.

4. Conclusions

In conclusion, we have presented a new and easy to
implement method for calculating kinetic energy ma-
trix elements of localized functions represented on a
regular real space grid. This FFT box method is based
on a mixed real space–reciprocal space approach. We
use well established FFT algorithms to calculate the
action of the Laplacian operator on localized support
functions, whilst maintaining linear-scaling with sys-
tem size and near locality of the operation. This makes
our FFT box method suitable for implementation in
the order-N code that we are developing. We have per-
formed tests of the FFT box method and various orders
of FD. Comparing to the exact integrals of the con-
tinuous representation, we have demonstrated that our
approach is more accurate than low order FD approx-
imations and only when A= 28 FD is used does the
accuracy become comparable to that of the FFT box
method. We have also highlighted the connection be-
tween the FFT box method and plane-wave methods
and shown that our approach is up to three orders of
magnitude more accurate than A= 28 FD when com-
pared to the ‘exact’ result within the plane-wave ba-
sis set of the entire simulation cell. Furthermore, our
approach for calculating the kinetic energy is consis-
tent with the way in which other quantities in a total-
energy calculation, such as the electron density and
the Hartree energy, are computed as these are also cal-
culated using reciprocal space techniques. Finally, we
also note that our FFT box method is more versatile

than FD as it is applicable to real space grids based on
any lattice symmetry whereas FD schemes are usually
only applied to orthorhombic grids.
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