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Nonorthogonal generalized Wannier function pseudopotential plane-wave method
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We present a reformulation of the plane-wave pseudopotential method for insulators. This new approach
allows us to perform density-functional calculations by solving directly for “nonorthogonal generalized Wan-
nier functions” rather than extended Bloch states. We outline the theory on which our method is based and
present test calculations on a variety of systems. Comparison of our results with a standard plane-wave code
shows that they are equivalent. Apart from the usual advantages of the plane-wave approach such as the
applicability to any lattice symmetry and the high accuracy, our method also benefits from the localization
properties of our functions in real space. The localization of all our functions greatly facilitates the future
extension of our method to linear-scaling schemes or calculations of the electric polarization of crystalline
insulators.
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. INTRODUCTION between a set of Bloch orbitals at edcipoint and a unitary
transformation of the results krspacg Wannier transforma-
The pseudopotential plane-wave method for densitytion),
functional theory(DFT) calculations has been developed and

perfected over many years into a reliable tool for predicting Vv .
static and dynamic properties of molecules and sdlids. Gor(r)= 3f e kR wnk(r)Mna}dk, ©)
Kohn—Sham DFT maps the interacting system of electrons (2m)°J182 n

to a fictitious system of noninteracting partickeshich can where the number of NGWEs at each lattice ®@ltan be

be fl;'"y described by the smgle-par_ucle_ density m.amxgreater than or equal to the number of occupied Bloch bands
p(r,r"), expressed as a sum of contributions from single- hk-point. The d itv k Lis th It of Vi
article Bloch statesy,(r) at eac -point. The density erne is the resut_o applying
P nk\® /o the inverse of these transformations on each side on the di-

v agonal occupation number matrix didé(}),

p(rr)=2 fn—af PN PR(rHdk. (D)
n  (2m)°JiBz K”B=E Nr‘ffn(NT)f, 4)

We have assumed that we are dealing with an insulator with "

completely filled(occupation numbef,=1) or empty f,  \whereN=M 1.

=0) states and/ is the volume of the simulation cell. The |y our presentation so far, we have considered the Bloch
k-point integration is carried out in the first Brillouin zone states as the natural representation and starting point from
(1BZ). The single-particle states are the eigenfunctions of thyhich to construct the charge density and NGWFs. This is
Kohn—Sham Hamiltonian at eaghpoint. They are required a|so the usual order which has been followed in discussions
to be orthonormal and, in general, extend over the wholeynq derivations of Wannier functichi the literature. Gen-
simulation cell. The consequence of this orthogonality re-eralized Wannier functions, orthonormal or not, are most
quirement is that the cost of a DFT calculation inVOIVing thecommon|y constructed in a postprocessing fas"h‘i%rafter
{#n} grows cubically with the system-size. The electroniCthe end of a plane-wave band structure calculation.

charge density is equal to the diagonal part of the density Sjnce the energy is variational with respect to the charge
matrix mUltlpled by a factor of 2 to take into account the Spindensity, direcﬂy Varying the NGWFs and the density kernel
degeneracy and is commonly abbreviatech@9=2p(r,r).  of Eq.(2) is equivalent to varying the Bloch states of Et).

The most general representation of the density matrixThe |ocalization properties of the NGWFs are aepriori,
equivalent to(1), and first applied to linear-scaling DFT cal- j.e., each NGWF is nonzero only within a predefined local-
culations by Hernadez and Gillari, is in terms of a set of jzation region. As a result, the computational cost of a
localized nonorthogonal functiorsp .}, density-functional calculation scales only quadratically with

system-size rather than cubically. Furthermore, it can be
N B a% o1 made to scale linearly with one extra variational approxima-
p(r.r )_aEB ER bar(NK B¢BR(r ), @) tion: the truncation of the density kernel in E) when the
centers of the functiong g (r) and ¢ gr(r) lie beyond some
where the sum oveR runs over the lattice vectors of the cutoff distance??
crystal and the matriXkK*? is called the density kernel, a The NGWFs are expanded in terms of a basis of periodic,
generalization of the occupation numbéfg}. We will call  bandwidth limited delta functionéAppendix A). These are
the {¢,r} “nonorthogonal generalized Wannier functions” centered on the points of a regular real-space grid and are
(NGWF39 as they can be derived from a subspace rotdlon related to an equivalent plane-wave basis through a unitary
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transformation(the Fourier transform Hence, the method Il. CHARGE DENSITY AND TOTAL ELECTRONIC
we present is directly equivalent to the Bloch state pseudo- ENERGY WITH NONORTHOGONAL GENERALIZED
potential plane-wave density-functional approach. The delta WANNIER FUNCTIONS

function basis allows us to restrict our NGWF expansions to Linear-scaling DFT calculations are aimed at large sys-

contain only the delta functions that are included in S0M&ems and in particular, large unit cells. Thus in this work we

spherical localization region. This should be an accurate asyj|| pe concerned with calculations only at thepoint, i.e.,

sumption for insulators in which the NGWFs decay—q. This means that the Bloch bands and therefore the

exponentially’ Our approach is closely related to that of Her- NGWEs can be chosen to be real. We can also drop the

nandezet al!° who developed a method to do calculations dependence of the NGWFs &) so thate (1) = ¢,(r).

by optimizing both the density kernel and the functions Qur basis set is the set of periodic bandwidth limited delta

{¢ar}, Which they call “support functions.” functions that are centered on the poings,, of a regular
Real-space methods, as an alternative to pure reciprocaleal-space grid,

space plane-wave methods, have been used by many other

authors for DFT calculations *8in the past in order to take B

advantage of the benefits of localization in real-space. P Kem(n) = N;N,N3

particular, approaches have been developed that use func- 5 3, 3

thnslgtzréctly Iocallze_d in spherical regions on real-space % 2 2 ¢ (PB1+QB,+RB3)-(r—rcLw)

grids: <" These functions play the same role as the NGWFs P2y, 0520, REZ,

we present here. A different approach is taken bysigsTA

program?t~2® which uses a basis set of numerical atomic )

orbitals. These are generated as described by ArtachwhereB, is one of the reciprocal lattice vectors of the simu-

et al?*?®and are not optimized during the calculations. lation cell.N; is the number of grid points in the direction of
Even though these real-space methods have led to songérect lattice vectoA;, andN;=2J,+ 1. The delta function

important methodological developments, it would be verybasis is equivalent to the plane-waves that can be represented

desirable if they could be directly comparable with plane-by the real-space grid since it is related to them via a unitary

wave pseudopotential DFT. In other words, we wish to havdransformation. An important property of the basis set is that

a method that rigorously adheres to a basis set we can inib€ projection of a functiori(r) on Dy w(r) is

prove systematically, such as the plane-wave basis where its

convergence towards completeness is controlled by the ki- f Dy m(DF(Ndr=Wfp(re m), (6)

netic energy cutoff parameter. Our method achieves this by v

working both in real- and reciprocal-;pace. We demonstra}tg\lherew is the volume per grid point anth(r) is the result
that our approach can actually be viewed as an alternatlvgf bandwidth limiting the functiorf(r) to the same plane-
way of performing plane-wave DFT calculations which is 4.6 components as i%).

easy to turn into a linear-scaling method in the future with \ye represent the NGWFs in the delta function basis by
only trivial modifications. It is thus also directly applicable

to any Bravais lattice symmetry, in contrast to common finite Nij—1 Np—1 N3—1
difference methods that are usually restricted to orthorhom- Pa(r)= Z Z 2 Ckim,oDkim(r), (7)
bic lattices. K=0 L[=0 M=0

We should note at this point that there exist otherand in the plane-wave basis by
basis sets, apart from plane-waves, that can be improved sys-

tematically: the B-splines of Hefndez et al.?® and the oo 2 s

polynomial basis in the finite-element approach of Pask Pu(1)= Vi Z P P,

al.,>"?® who have done some pioneering work using a tech- P QTR R

nigue for solving differential equations common in engineer- X ¢ ,(PB;+QB,+ RB3)e! (PB1t QB2+ RBy) 1

ing applications and adapting it for electronic structure cal-

culations. (8)

In what follows, we begin by describing the calculation of where it is straightforward to show that the amplitudes

the total energy in our scheme, directly with NGWFs, in Sec.3 (pB,+QB,+RB;) are the result of a discrete Fourier
II. In Sec. lll we describe our strategy for total energy opti-transform on the delta function expansion coefficients
mization, i.e., minimization of the energy with respect to CkiM.a -

both the density kernel and the NGWFs. In Sec. IV we |n (7) the sum over th&, L andM indices formally goes
present the FFT box technique, an essential ingredient fasver the grid points of a regular grid that extends over the
lowering the cost of the calculations and for eventuallywholesimulation cell. From now on however, we will restrict
achieving linear-scaling behavior. In Sec. V we present testall NGWFs to have contributionsnly from delta functions

on a variety of systems showing the accuracy and efficiencgentered inside a predefined spherical region. This spherical
of this method and finally we conclude and mention what weregion is in general different for each NGWF. Thus we im-
see as future developments. pose on(7) the condition
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Ckim.a=0 if rg v does notbelong to the spheredf . This quantity can be calculated as a discrete summation on
(9)  the fine grid of the product o¥,(r) with n(r) or equiva-
lently as a trace of the product of the density kernel and the
potential matrix elements. The local potential matrix ele-
ments are integrals that are identically equal to discrete sums
on the regular grid provided of course that{(¢,)p(r) is
first put on the regular grid.
The local pseudopotential energy is calculated in an en-
_ _ ap _opaB tirely analogous manner to the Hartree energy and can be
(1) =2p(r.1)=2¢a(K (1) =2KTpp(r) represented by Eq14) if we put V. in place ofV, and
multiply it by a factor of 2 to take into account the lack of

This of course does not affect the form or the applicability of
Eq. (8).

The charge density of Eq2) with our NGWFs becomes
(from now on we will use the summation convention for
repeated Greek indicgs

(2N1—1) (2N,—1) (2N3—1)

=2 XZO YZO 220 KeP self-interaction in this case.
B B B The nonlocal pseudopotential eneifgy[ n] is the expec-
XPap(rxyz2) BxyAT), (10)  tation value of the nonlocal potential operafgf, in the

H 0
which involves the fine grid delta functioig,y Ar) that are Kleinman—Bylander fornt,

defined in a si_milar way to th®y m(r) of Eq. (5) but i_n- | S A A 5P|
clude up to twice the maximum wave vectorf, (r) in V.= I = Im Im “ 71
every reciprocal lattice vector directidsee also Appendix "R idh (WO sV e B
A). This is necessary because a product of g \(r) ) )
delta functions is a linear combination of fine grid delta func-where theA-summation runs over the atoms in the system
tions ByyAr), a result reminiscent of the Gaussian functionand thelm-summation runs over the pseudo-atomic orbitals
product rule?® of a particular atom. ThesV(" is an angular momentum
The expressions for the various contributions to the totadependent component of the nonlocal potential of a pseudo-
electronic energy with the NGWFs are simple to derive fromHamiltonian for a particular atom and th&(™ are the
(10). The total energy is the sum of the kinetic enefy,  atomic pseudo-orbitals associated with it. In the NGWF rep-
the Hartree energyE,, the local pseudopotential energy resentation the nonlocal potential energy is again expressed
Enc, the nonlocal pseudopotential enerBy;, and the ex- as a matrix trace,
change and correlation energy,.,

: (19

Enln]=2K*(¢ 5|Vl b.). (16)

(1) The<¢>ﬂ|\7m|¢>a> matrix elements require the calculation of

The kinetic energy is written as a trace of the product of theoverlap integralg ¢,| VAW M) between the NGWFs and
density kernel and of the matrix elements of the kinetic €Nthe nonlocal projector$sVAWw(A) . These are simple to

E[n]=Ex[n]+En[n]+Ejd n]+En[n]+Ex{n].

ergy operatoil = — (1/2)V?, compute as discrete summations on the regular grid, starting
. from the plane-wave representation of the nonlocal projec-
Ex[n]=2K*%(¢4|T|b,). (12 tors which is analogous to the plane-wave representation of

) - the NGWFs in Eq(8). These integrals need only be calcu-

To compute these matrix elements we can appljo the  |5ted when the sphere of functiahy,(r) overlaps the core of

plane-wave representati¢d) of ¢,(r) and then evaluate the 4i5mA.

integral in real-spfice where it is equal to a discrete sum over The exchange-correlation energy is obtained by approxi-

grid points whereT ¢,(r) obviously plays the role of 5(r)  mating the exchange-correlation functional expression as a

of Eq. (6). direct summation on the fine grid, which first involves the
Calculation of the Hartree energy requires first the Hartregvaluation of a functiorF(n(r)) whose particular form de-

potential. From Eq(10) we see that the charge density is a pends on our choice of exchange-correlation functiénal,
fine grid delta function expansion, thus the same should be

true for the Hartree potential, which is a convolution of the \%
charge density with the Coulomb potential. Therefafg(r) Exdn]= J F(n(r)dr=————— > F(N(Ixy2).
) . " ; . v 8N;N2N3 %7z
can be written as a linear combination of fine grid delta func- 17)

tions and extends over the whole simulation cell,

This is the only approximation in integral evaluation in our
method as all direct summations described up to now were
Vi(r)= XZO YZO ZZJO Vu(rxy2)BxyAr). exactly equal to the analytic integrals. However, in the case
(13) of the exchange-correlation energy, the exchange-correlation
functionals usually contain highly nonlinear expressions that
The Hartree energy is can not be represented without any aliasing even when we
1 use the delta functions of the fine grid. The resulting errors
_- _we however will be of the same nature as in conventional plane-

Enlnl= Zf Va(Dn(Ndr=KXglVulda). (14 wave codes and therefore negligiBle.

(2N3-1) (2N~ 1) (2N3~1)
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l1l. TOTAL ENERGY OPTIMIZATION Gaussian basis sets. We emphasize again, though, that any of
The total energy is a functional of the charge densitythe o.ther_e}vailable methqu could havg been used as vyell.
E[n]. From Eq.(10) we see that the charge density is ex- For simplicity of presentation, our anegS{S from_ now on will
pand.ed o = Qrid delta functions whek&% ., (1 xuy) are assume that the energy of E(QZ) is minimized without any
Ba\” XY constraints. In order to take into account the constraints, the

the. e>_<pansion coefficients. Therefore th'e'energy Wi.” have rmulas we derive will have to be modified according to the
variational dependence on these coefficients provided theéf

. ensity kernel minimization method one chooses to use. This
form an N-representable charge density. Consequently, th y

energy should also have a variational dependence on the den a straightforward but tedious exercise.
) ) . " The minimization of Eq(22) can rformed iterativel
sity kernel K** and the NGWF expansion coefficients ° ation of Eq(22) can be performed iteratively

. with the conjugate gradients methttdAs in the simpler
apB
Crim,o SinCe theK®p,(ryy7) are constructed from them steepest descents method, the essential ingredient is the gra-

_ ap dient. It is easy to shoff that this quantity is equal to twice
Eln]=EGK*"H{Chim.ab) (18 the matrix elements of the Kohn—Sham Hamiltonian,
It is thus sufficient to minimize the energy with respect to
{K*F} and{Cy_u o} We must however do this under two
constraints. The first is that the number of electrons corre-
sponding to the charge density

E -
s = 20alAl6). @

The nonorthogonality of our NGWFs has to be taken into
Ne:f n(r)drzZK“BSBa (19 account when computing search directions with the above
v gradient by transforming it to a contravariant second order

1,42
should remain constant. The second is that the ground Sta{gnsor‘.‘

density matrix should be idempotent, or in other words the The minimization stage of E2]) is also performed it-

eigenfunctions of the Kohn—Sham Hamiltonian have to beeratively with the conjugate gradients method. In this case,
orthonormal one can show by using the properties of the delta function

basis set that the gradient is

p(r'r/):J p(r,r")p(r",r')dr” it
v (9(:—:4WK (Hép)o(rkim), (24)
KLM,a
or

whereW is the weight associated with each grid point. Here
KP=K7S K. (200 a contravariant-to-covariant tensor correction is needed when

We choose to carry out the total energy minimization in tWOthis gradient is used to calculate the search direction during a
nested loops, in a fashion similar to the ensemble DFFcONugate gradient stéP.The (H¢)o(r) functions in gen-

method of Marzariet al3! The density kernel will play the eral contain contributions from all delta functions of the

role of the generalized occupation numbers and the NwGFSMmulation cell but we wish to keep,(r) restricted to its

will play the role of the orbitals. So we can reach the mini_spherical region. For this reason in every minimization step
mum energy in two constrained-search stages, of (21) we zero all th_e components (#4) that correspond to
delta functions outside the sphere of(r).
Emn= min L{CximaD), (22) When the minimization with respect to the density kernel
{Ckim, o} ' of EqQ. (22) is carried out under the electron number and
idempotency constaints, E@R4) contains extra terms as a
result of the constraints imposed (22). These terms ensure
. « that the electron number and idempotency constraints are
L({Cuum.a) = min EGK}{Crim.od), (22) automatically obeyed if21) and as a rgsult, tr):e optimization
with respect to the support functions can be carried out in an
where the minimization with respect to the density kernel inunconstrained fashion.

Eqg. (22) ensures that of Eqg. (21) is a function of the
NGWF coefficients only. In practice in E¢22) we do not
just minimize the energy with respect #*# but we also
impose the electron number and idempotency constraints Our discussion so far has demonstrated how to localize
(19) and (20). There are a variety of efficient methods for the NGWFs in real-space in a manner that ensures that they
achieving this available in the literature, derived from theare composed by a number of delta functions that is constant
need to perform linear-scaling calculations with a localizedwith system-size. On the other hand, each delta function is
basis®’~3® Any of these methods would ensure that the den-expanded in the plane-waves that can be supported by the
sity kernel in(22) adapts to the current NGWFs so that it regular grid of the simulation cell. The number of these
minimizes the energy within the imposed constraints. plane-waves is proportional to the size of the system. As a
In the present work we have used the variant of the Liresult, the cost of a calculation still scales cubically with
Nunes, and VanderbiltNV) (Ref. 32 method that was de- system-size as in the traditional plane-wave case.
veloped by Millam and Scusefiain calculations with In order to reduce the computational cost we must restrict

with

K}

IV. THE FFT BOX TECHNIQUE
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simulation

cell \ .

here its use to the calculation of all the terms that constitute
the total energy(Sec. I) and all the terms needed for its
subsequent optimization with respect to the density kernel
and NGWF coefficient$Sec. Ill). For this purpose we need
to be able to express or “project” a function from the simu-
lation cell to the FFT box and back. Assuming the function is
expressed entirely by delta functioBg, (r) on grid points
common to the simulation cell and the FFT box, this task is
straighforward and all we have to do is to rewrite the func-
tion as a linear combination of the FFT box delta functions
that lie on the same centers as the simulation cell delta func-

5 tions. This task is expressed formally by tRéa ) projec-

' i tion operator. When this operator acts on a function in the

point (0,0,0)  point (Kap , Lap . Map ) simulation cell, it maps it onto a function in the FFT box.

FIG. 1. The FFT box as defined for the pair of functiahsand Th'.s IS demons_trated .for the function of E(q') by the fol- .-

by lowing expression which can also be conS|dert?d as a defini-
tion of P(aB) [a more explicit expression foP(ap) is

the number of plane-waves that contribute to each delta funggiven in Appendix B:

tion so that it is independent of system-size. This is not such

a straightforward matter as the restriction of the NGWFs in ﬁ(aﬁ)%(r)

real-space. Several factors have to be taken into account the

most important of which is the Hermiticity of operators in

ng—1n,—-1 ng—1

integrals between NGWFs and also a representation of op- = k§=:0 |=Eo m§=:0 Ciim,okim(T)

erators that is consistent when they are acting on different

NGWFs. We have investigated these matters in detail in the ng-1np-1ng—1

context of the evaluation of kinetic energy integrals with => > 2 C(k+KaB)(I+LaB)(m+MaB)dklm(r)
NGWFs in a previous papét,where we have proposed the k=0 120 m=0

“FFT box” technique as an accurate and efficient solution. It (25

is shown there that all the imposed conditions are satisfied if . . o
the plane-waves that are used to expand the delta functionghile the adjoint operatoP’(«/8) can act on a function in
are restricted to belong to a miniature simulation cell whichthe FFT box and turn it into a function in the simulation cell
we call the “FFT box.” The FFT box must be large enough in an analogous way.
to contain any possible orientation of overlapping NGWFs, With this compact notati.on it is relatively straightfprward
and must be a parallelepiped with a shape commensurat@ devise a way of calculating the total energy by using only
with the simulation cell. It should contain a regular grid the delta functiongand hence the plane-wayegseriodic in
which is a subset of the simulation cell grid and thus thethe FFT box as the basis set for each NWGF. It is also
origin of the grid of the FFT box should coincide with a equally straightforward to write formulas that represent this
particular grid point of the simulation cell. FFT techniquesProce€ss In a concise way. _ _
using smaller boxes have been used in the past to take ad- We start with the charge density of E@), which should
vantage of localized functions: Pasquare#ibal?®*® use Of course extend over the whole simulation cell, however its
them to efficiently deal with the augmentation charges thagontributionsp,,z(r) from pairs of NGWFs need not, and do
arise when using ultrasoft pseudopotentia|s; Hugteal 2’ not, when they are calculated with the FFT box technique.
use them to FFT localized Gaussian orbitals. However, to théherefore the charge density is calculated by replacing these
best of our knowledge, this is the first time that a small FFTPair contributions in(10) by the following expression:
box has been used to define a systematic basis set for the . . ~
entire total energy calculation. pZ"BX(r)=QT(a,B){[P(aﬁ)cﬁa(r)][P(a,B)(ﬁﬁ(r)]},
Figure 1 demonstrates in two dimensions the FFT (
box inside the simulation cell as defined for two overlapping

NGWFs ¢, and ¢;. In the same figure the regular grid is ;

also visible and vee can observe that a portion of it is in-?h"’w.e be((ajn t;a'\n?feqeg ;nto tthe dFFTIbOX an?has alconse(fqltjr?nce

cluded in the FFT box. For the subset of grid points inside €Ir product 1S imited to extend only over the volume of the

' : . FFT box. Here we have made use of the fine grid delta func-

the FFT box we can define delta functions as we did for the C . . ) i

simulation cell. We represent these FFT box delta functiondion Projection operatoQ(a8) which defines a mapping

by dy(r) and in general we follow the convention of using Petween fine grid delta functiorByy A(r) of the simulation

lowercase letters to denote quantities associated with th&€ll and the fine grid delta functiorig, {r) of the FFT box.

FFT boxanduppercase letters for quantities associated withlt is defined in an analogous mannerR¢aB) of Eq. (25).

the simulation cell The matrix elements of one-electron operators, such as
Based on the knowledge gained through the use of th#éhe kinetic energy and nonlocal potential can be easily cal-

FFT box to compute kinetic energy integrfswe extend culated in the FFT box rather than in the simulation cell by

26)
which involves multiplying ¢,(r) with ¢4(r) after they
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simply transferring the NGWFs in the FFT box before evalu- ' ' ' ' ' ' ' '
ating the integrals. The notation for this set of operations
simply involves “sandwiching” the one-electon operator be-

tween the standard grid projector operator and its adjoint.
The kinetic energy expression of Ed.2) becomes

15

M 10
Ex[N]=2K*A(¢,PT(ap)TP(aB)|ps) (2D 2

and a similar expression can be written for the nonlocal po- 4
tential energy.

The matrix elements of the Hartree and local potentials
can be calculated with the same ease provided however w
have a way to transfer these potentials to the FFT box. This o
is indeed possible as these local potentials are expressed - T T A
terms of the fine grid delta functions and therefore we can
transfer them if we use the fine grid delta function projector
Q(a,@). Therefore the Hartree energy of E44) becomes FIG. 2. AE plotted for a butane molecule as a function of FFT

box size. All PAOs were confined to atom centered localization

Eyln]=K*¥ ¢B| IE’T(a,B)[(Q(a,B)VH)(r)]|5(a,8)| ba). regions of radius 64}, and the grid spacing was @&
(28

5

Number of grid points in each lattice vector direction of cubic FFT box

) ) ) ciency comparable to the traditional cubic-scaling plane-

Nothing changes in the evaluation of the exchangewave pseudopotential method and thus it would be possible
correlation energy which is simply an integral over the finetg yse it in its place for systems with a band gap. In that case,
grid of the whole simulation cell except of course for the facty calculation with our method would afford a set of optimal
that the charge density is now calculated by sumrwi%(r) localized functions which could be used directly in applica-
terms in Eq.(10) in place of thep,,4(r). tions such as the calculation of polarization changes in crys-

As far as the optimization of the energy with respect totalline solids!®>° However, the most important application
the density kernel is concerned, the results of Sec. Ill are stijhat we envisage is the extension of the present formalism to
valid provided the Hamiltonian matrix elements that consti-linear-scaling calculations on very large systems. Such an
tute the density kernel gradie(23) are calculated with the extension requires the truncation of the density kernel, an
FFT box method as we have described above. issue which has been already investigated in d&tdfi>*

In the same way, the total energy gradient with respect tarhe resulting linear-scaling method would be directly com-

the NGWF expansion coefficients of E@4) can be calcu- parable to and have the same advantages as the plane-wave
lated in the FFT box provided we use only the part of theapproach.

Kohn-Sham Hamiltonian that exists in the FFT box. There-  Since we optimize the NGWFs iteratively, some initial
fore all we have to do is to substituté of Eq. (24) by guesses are required for them. In this work we use pseudo-
atomic orbitals (PAOs that vanish outside a spherical
H(aB)=PT(aB)[T+Vy+(Q(aB)Vux) (1) IP(aB), region>? These orbitals are generated for the isolated atoms
(290  with the same radii, norm-conserving pseudopotentials and
kinetic energy cutoff as in our calculations. Even though

where Viy(r) is the sum of the Hartree potential, local y,e5e NGWF guesses are optimal for the isolated atoms, they
pseudopotential and exchange-correlation potential and QIndergo large changes during our calculations so that in

;:ourser?ow'tm?fKohr)—Sha.m operator is in g?ne;al d”c':erenfbractice any guess that resembles an atomic orbital could be
or each pair of functions since it contains only the parts of seq such as Slater or Gaussian functions.

the local potentials that fall inside the FFT box and therefore \yis first demonstrate the accuracy of the FFT box tech-

changes with the location of the FFT box relative t0 thepiq e as compared to using the entire simulation cell as the

simulation cell. o FFT grid. We define the quantity
As far as implementation is concerned, there are many

more issues and algorithmic details about the use of the FFT ~ bo
box that are beyond the scope of this paper. We describe AE=E>{n]-E[n], (30

these in another papét. _ _
whereEP* is the total energy per atom calculated using the

FFT box technique and is that calculated using the entire
simulation cell. Figure 2 showAE for the butane molecule
(C4H4p) for different FFT box sizes. For this test we used a
We have implemented our method in a new code and weubic simulation cell of side length &9 and grid spacing
have performed extensive tests on a variety of systems. W&5a,. The PAOs on all the atoms were confined within
have also performed comparisons with CASTESR) estab- spherical regions of radius &g The carbon atoms had one
lished pseudopotential plane-wave code that we use as o@s and three p orbitals and the hydrogen atoms had a single
point of reference. We expect our approach to have effids orbital. In this case the PAOs were not optimized during

V. THE NGWF PSEUDOPOTENTIAL PLANE-WAVE
METHOD IN PRACTICE
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FIG. 3. Potential energy curves for LiH generated with the F'C: 4. Total energy of a silane molecule calculated with our
CASTEP plane-wave pseudopotential code and with our method fof€thod for various NGWF radiirt).

l(:lfG6W(; radii of 6.4 and 8.@, and forstype PAOs with a radius ¢ 440 Thus, optimizing the NGWFs improves the esti-
. O.

mate of the bond length. The vibrational frequency obtained
from the PAO case, however, differs by 3.51% from
the calculation. It is seen that the error associated with usin@ASTEP, as compared to 5.33% for thed&WGWF calcu-
the FFT box rather than the entire simulation cell is only oflation. This, we believe, is an artifact of the localization con-
the order of 107 E,, per atom, which is insignificant in the straint imposed on the NGWFs and suggests that in fact lo-
context of DFT calculations. We also note that the convercalization radii greater than @@ should be used in practice.
gence of the total energy with FFT box size is not strictly We now show convergence of the total energy with
variational, as is expected; as the FFT box size is increasetlGWF radius. For our tests we have used a silane (SiH
it is true that the basis set expands, but the smaller basis molecule with the same simulation cell and grid spacing as
not necessarily a subset of the larger one. For a given FF@lescribed above. A local Troullier—Martitts norm-
box size, however, the kinetic energy cutoff of our basisconserving pseudopotential was used on the hydrogen atoms
functions(and hence the grid-spacinig a variational param- and a nonlocal one on the silicon atom. The number of
eter, just as in traditional plane-wave DFT. Further tests antN\GWFs on each atom was as many as in the valence shells
discussion of the FFT box technique are publishedof the isolated atoms, i.e., one on hydrogen and four on
elsewherd® silicon. Figure 4 shows total energy results calculated for this
Our next example involves the potential energy curve ofsystem as a function of NGWF sphere radii. Convergence is
the LiH molecule inside a large cubic simulation cell of side uniform and to ni,, accuracy by the time we get to a radius
length 4@,. In Fig. 3 the potential energy curve is shown asof 7.0a,. Such a NGWF radius should be adequate for prac-
calculated by CASTEP and by our method with the sameical calculations.
kinetic energy cutoff of 538 eV. As we have used norm- Here we also show that large qualitative changes occur to
conserving Troullier—Martim§ pseudopotentials, this is a the shapes of the NGWFs during optimization. In Fig. 5 we
two electron system which we describe by one NGWF orshow plots of isosurfaces of the NGWFs for an ethene mol-
each atom. It can be seen that when we use NGWFs witbcule in a large simulation cell, before and after optimiza-
radii of 8.0ay, we have nit, agreement in total energies with tion. The NGWF radius was 8 for all atoms. In particu-
the CASTEP results. Furthermore, the equilibrium bondlar, the carbon B, orbital, which is collinear with the C-C
length and vibrational frequency for this case differ from theg bond, focuses more around this bond and gains two more
CASTEP results by only-0.19% and 0.74%, respectively. lobes and nodes at the positions of the hydrogen atoms far-
For the smaller radius of 629 the curve diverges from the thest from its carbon center. The hydrogen functions, starting
CASTEP curve at large bond lengths. This is because thffom 1s, obtain after optimization a complicated shape that
NGWEF sphere overlap, and therefore the number of deltaxtends over the whole molecule and has nodal surfaces be-
functions between the atoms, decreases more rapidly for thgven the carbons and the rest of the hydrogens. The deep
small radii as the atoms are pulled apart. Also shown in thejualitative changes to the shapes of the NGWFs that occur
same figure is a curve that has been generated with outuring their optimization with our method are obviously nec-
method but without optimization of the NGWFs, which were essary for obtaining a plane-wave equivalent result. Our op-
kept constant and equal to the initial PAO guesses. This iimized NGWFs in general look nothing like the atomic or-
equivalent to a tight-binding calculation with a minimal PAO bitals they started from and are adjusted to their particular
basis. As can be seen, the total energies deviate significantijolecular environment. We therefore conclude that using the
from the CASTEP result, as one would expect. The equilib-delta function basis set and performing all operations consis-
rium bond length for this case differs by 3.34% from tently with the plane-wave formalism is important for obtain-
CASTEP, as compared te1.24% for the 6.8 NGWF cal-  ing the systematic convergence that plane-waves have.
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initial optimised

C 2p,
C 2py
C 2p,
FIG. 6. A portion (SiH,g) of an infinite linear silane chain in a
hexagonal simulation cell.
VI. CONCLUSIONS
H 1s We have developed a new formalism where we have re-

cast the plane-wave pseudopotential method in terms of non-
orthogonal localized functions instead of Kohn—Sham bands.
A key ingredient for computationally efficient calculations
with our approach is the restriction of the local functions

FIG. 5. Isosurfaces of NGWFs for the ethene molecule, beford0th in real and in reciprocal space. We have written a new
and after optimization. The light gray surfaces are positive and th€0de to implement and test this approach. Even though it is
dark gray are negative. A drawing of the ethene molecule is supe€guivalent to plane-waves, our method performs calculations
imposed on each NGWF in order to show its location with respecdirectly with localized functions without ever resorting to
to the atoms. Kohn—Sham states. As a consequence it could be more suit-
able for application to fields such as the theory of electric
fpoIarization of insulators. However we anticipate that the

our method to anv lattice symmetry without an modifica_main use of this approach will be in density-functional cal-
y y y y culations on insulators whose cost scales linearly with the

thn. This is a consequence of being consistent throughmgize of the system. Its extension to linear-scaling calculations
with the plane-wave formalism. As we have shown for the o jires the reduction of the elements of the density kernel
calculation of the kinetic energy in this wa,we also _by truncation. Our test calculations on a variety of systems
achieve better accuracy at no additional cost compared WitBonfirm that such a linear-scaling method should be directly
a finite difference approach. In Fig. 6 we show a portioncomparable to traditional plane-waves. Advantages of our
(SigH;6) of an infinite linear silane chain inside a hexagonalapproach include high accuracy, applicability to any lattice
simulation cell on which we have performed a total energysymmetry, and systematic basis set improvement controlled
calculation at a kinetic energy cutoff of 183 eV. The radii of by the kinetic energy cutoff.

the NGWFs were 64} on silicon and 5.8, on hydrogen. A
total energy of—39.097 E,, was obtained when we opti-
mized the density kernel onlgwith the NGWFs kept con-
stant and equal to PAQsWhen both the density kernel and  C.-K.S. would like to thank the EPSR@Grant No. GR/
the NGWFs were optimized, the energy lowered tomM75525 for postdoctoral research funding. A.A.M. would
—52.216 E;,, which is another manifestation of the fact that like to thank the EPSRC for a Ph.D. studentship. P.D.H.
both the density kernel and the NGWFs should be optimizedvould like to thank Magdalene College, Cambridge for a
in calculations with our method. Research Fellowship. O.D. would like to thank the European

Our final example demonstrates the direct applicability o
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The delta functions act as Dirac delta functions with the
APPENDIX A: DELTA EUNCTIONS added effect of filtering out any plan_e—vv_ave components that
are not part of them. For example,fifr) is a function peri-

In this paper, whenever we refer to “delta functions” we odic with the periodicity of the simulation cell but not band-
will assume a periodic and bandwidth limited version of thewidth limited, it can be expressed in terms of its discrete
Dirac delta functions. These delta functions are threeFourier transform(plane-wave expansion,
dimensional versions of the “impulse function;’;rthat are . . .
common in signal processing applications of FFT#& an 1 < ~
electronic structure, similar functions have been used as f(r):vS;w T;w U;w f(SBy+TB,+UB3)

“mesh delta functions” in the “exact finite difference

method” of Hoshiet al®® and in recent studies of their pos- x @l (SB1+TBa+UBg) 1 (A5)
sible application when we consider the limit of an infinite . . .
simulation celf® whereV is the volume of the simulation cell.

In our derivations we will assume that we have a simula- |t 1S Straightforward to show that the projection tffr)
tion cell of any symmetry, which in general is a parallelepi-°M© Pkim(r) is
ped defined by its primitive lattice vectoss,, A,, andAs.
In this simulation cell we define gegular grid with an odd f Dy m(r)f(r)dr
number of pointsN;=2J;+1, N,=2J,+1, andN3=2J,4 v
+1 in every direction(the adaptation of our results to the

Jq J, J3
case of even numbers of points is straightforyafherefore - _ > T(SB;+TB,+UBy)
point r, v Of this regular grid is defined as NiNaN3 s==5; 7550, uS=0,
” . L - M R - X @ 1(SB1+TBy+UBg) Ty
r —_— - -
KEMTNG TN, 20 N 8 =Wifp(rkim)-
with K=0,1, ... (N;—1), etc. We define herd(r) to be the bandwidth limited version of
Bandwidth limited delta functions centered at points ofthe functionf(r), limited to the same frequency components
the regular grid are defined as asDgpm(r).
As the NGWFs are linear combinations of the delta func-
Dkim(r) =Dood = kim) tions according td7), the result of Eq(A6) is very impor-
tant since it leads to the following relation:
1
= NN N;—1 Np—1 Ng—1
v f b (NFMAr=W > > > Cyim.a folfkim)
J; J, J3 % K=0 L[=0 M=0
x S > S ei(PB1+QBy+RBy (rriim), (A6)

P=7J1Q=7J2 R==J5 which means that the integral in the left-hand side of the

(A2) above equation igxactly equalto a discrete summation of

o ) ) values on the grid, provided we use the bandwidth limited
whereB;, B, andB; are the primitive reciprocal lattice vec- \ arsion of f(r).

tors of the simulation cell. Plane-waves whose wave vector pq 5 corollary we observe that the delta functions are an
is a linear combination of these reciprocal lattice VeCtorSorthogonal set since
have periodicity compatible with the simulation cell and

therefore so do our delta functions, or any other function

expanded in terms of these plane-waves. Thesgodic fDFGH(r)DKLM(r)dr:WDFGH(rKLM)
bandwidth limiteddelta functions are our basis set. A plot of v

a two-dimensional version of one of these delta functions is =Wk 861 8um - (A7)

shown in Fig. 7. It is obvious fronfA2) that the delta func-
tions are real-valued everywhere in space. They are not nor- We also need to define thfine grid delta functions
malized to unity but they are normalized to the grid pointByyAr) (here theXY Zare just grid point indices for the fine

volume (V is the volume of the simulation cell grid, they arenot relatedto any Cartesian coordinajes
These functions are the analogs of the delta functions we
V have just described that would be obtained if we doubled the
W= W (A3) minimum and maximum values that their wave vectors can

take. Consequently, they have the same periodicity but they
Their value at grid points is equal to one when the grid pointcorrespond to a grid with twice the number of points in every
coincides with the center of the function and zero for alldirection, i.e., 2;, 2N,, and 2N; points. They are defined
other grid points, by
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FIG. 7. Atwo-dimensional version of one of the functions that constitute our basis set. Here fubigjionis shown which is identically
equal to 1 at its centdpointryg) and equal to zero at the centéshiown as black dots in the picturef all other functions in the basis set.

Byy A1) =Bood I —xy?) APPENDIX B: FROM THE SIMULATION CELL

TO THE FFT BOX AND BACK
Ny N2 N3

= ; Even though the FFT box is universal in shape and size
8N1NoN3 P=(ZR;+1) Q=(Np+1) R=(“Nz+1) for a given system, its position with respect to the grid of

the simulation cell is determined by the pair of overlapping

NGWFs, say¢,(r) and ¢4(r), we are dealing with at any

given time. An operator therefore that would map,(r)

As expected, the fine grid delta functions also satisfy arfrom one representation to another would depend also on the

equation similar tqA6), position of ¢4(r). We therefore define such an operator for

the pair of functionsp,,(r) and ¢4(r) by

% @l (PB1+QBy+RBg) - (r—ryy2) (A8)

(n1—1) (nz—1) (ng—1)

W
fVBxyz(mf(r)dr:ng(rxvz), (A9) ﬁ(aﬁ)zviv 2 2 2 |dam
=0 S0 m=o
X<D(k+KaB)(I+LaB)(m+Maﬁ)|v (B1)

wherefg(r) is again a bandwidth limited version &€r) but
this time it is limited to contain any of the plane-waves thatwhere the number¥,;, L,z, and M,z denote the grid
constituteByy A1) rather tharD y(r). It is easy to verify  point of the simulation cell on which the origin of the FFT
that any function that can be written as a sum of products obox is located. Here lowercase letters are used to represent
pairs of delta functions can also be written as a fine grid deltguantities related to the FFT box, 89, n,, andn; are the
function expansion. We define and use the fine grid deltaaumbers of grid points in the FFT box in each lattice vector
functions because of this “product rule” property. direction. Because of the periodic boundary conditions it
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should also be understood that if the indices of a delta funce,,(r) and¢(r) to the FFT box. Such an operator is defined
tion of the simulation cell exceed the grid point indices, thenin a similar fashion td®(aB) by

this function coincides with its periodic image that falls

within the simulation cell. As an example, assuig=N,
=N3=20. Then,

D (5)(21)23( 1) =D 5)(1)(3)(1)- (B2)

(2n;-1) (2n,-1) (215-1)
Q(aﬁ)zw E 2 2 |bxyz>
x=0 y=0 z=0
x<B(x+2KQB)(y+2LaB)(z+2MQB)|- (B3)

OperatorsPT(aB) and QT(«B) map a function from the

We also need to define an operator that projects a functioRFT box to the simulation cell in the standard and fine grids,
from the portion of the fine grid associated with functionsrespectively.
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