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Comparison of variational real-space representations of the kinetic energy operator
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We present a comparison of real-space methods based on regular grids for electronic structure calculations
that are designed to have basis set variational properties, using as a reference the conventional method of finite
differences(a real-space method that is not variatiored the reciprocal-space plane-wave method which is
fully variational. We find that a definition of the finite-difference metHd Maragakis, J. Soler, and E.
Kaxiras, Phys. Rev. B4, 193101(2001)] satisfies one of the two properties of variational behavior at the cost
of larger errors than the conventional finite-difference method. On the other hand, a technique which represents
functions in a number of plane waves which is independent of system size closely follows the plane-wave
method and therefore also the criteria for variational behavior. Its application is only limited by the requirement
of having functions strictly localized in regions of real space, but this is a characteristic of an increasing
number of modern real-space methods, as they are designed to have a computational cost that scales linearly
with system size.
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Electronic structure methods usually require the solution Basis set expansion is by no means the only practical

of Schralinger’s equation approximation in electronic structure theory. A set of impor-
tant alternatives are the “real-space” methtffS which use
ﬂ,/,ozgo,r/,o ) a real-space grid to express their solutions. The representa-

tion of functions directly on a real-space grid, either regdlar

for the ground-state energy, and wave functionj, of the  or adapted to the positions of the atotfisimplifies the ap-
Hamiltonian operatoH of the system. Exact solutions exist plication of localization constraints, and for this reason the
only in very simple cases. A common practical way of ap-importance of real-space methods in recent years has grown
proximating the solution of Eq(l) is by expandingy, in in parallel with that of the localized basis set methods. Real-
terms of a set of basis functions. It is straightforward to showspace methods based on a regular grid bear some similarity
that thisbasis set approachas two desirable properties.  to the plane-wave pseudopotential approach, as the spacing

(]_) The approximations Qfo are always upper bounds of of the real—space grid defines a plane—wave kinetic energy
the exack, so any algorithm that minimizes, with respect ~ cutoff and is the parameter with respect to which the solu-
to 4, will yield the optimal solution for a given basis set.  tions are converged. Most real-space methods are based on

(2) The leading term of the erroe, in the energy is the finite-difference(FD) approach, so they are not varia-
proportiona| to the square of the errMo in the wave func- tional, contrary to the plane-Wave basis set method. This is
tion, and thus the energy displays a quadratic Convergend@,le to the fact that the Laplacian operator for the kinetic
with increasing basis set size. energy in the Hamiltonian is represented, or rather approxi-

These two properties are referred to as thaiational ~ mated, as a FD expansion
principle, and are characteristic of the basis set approxima-

tion. Basis sets in common use for calculations on molecules ;2 Al2
and solids include Gaussian functiorfsSlater functions, — XY= 2 CPsx+nhoy.z0 2
plane wave$, spherical Bessel functiorspseudoatomic X hy n=-A2

orbitals®” wavelets$ “blip” cubic splines® and finite
elements? In particular, the second property is important on every grid point X;,y; ,zc), whereh, is the grid spacing
because it means that even a relatively poor basis set canthex direction. Using Eq(2) is equivalent to applying the
give relatively good results for the energy, thus saving theexact Laplacian operator to an approximation of the solution
sometimes considerable cost associated with using large bly @ polynomial of degre@ at each point of the griéf
sis sets. Therefore, the Hamiltonian operator changes as the grid
In recent years, the ability to perform calculations usingspacing is varied. One consequence of this is the lack of
only quantities that aréocalized in real spagesuch as the variational behavior in the solution process, a well-known
density matrix or Wannier-type orbitals, has led to linear-feature of real-space methotfs.
scaling electronic structure methods that can deal with thou- Maragakiset al*® correctly recognized that the FD coef-
sands of atom&: As a consequence, the importance of local-ficients CﬁA) of Eqg. (2) systematically underestimate the ki-
ized basis sets has grown because they are required for aetic energy. They redetermined them so that they always
efficient representation of localized functions. Delocalizedslightly overestimate it, provided one assumes that the solu-
basis sets such as plane-waves are not suitable as they malan on the grid is the real-space representation of a plane-
the cost of the electronic structure calculations scale as thwave expansion. In practice, this means that with their FD
cube of the system size. coefficients, energies always converge from above as the grid
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is made finer. So at least one of the desirable features of thr 1o
variational principle is restored with this amended FD
approach. 2 i
A completely different approach which attempted to com- A—A Conventional FD
bine the merits of the plane-wave basis set method with the v—v Maragakis et al.
localization properties of the real-space methods is the fas 10° —— Parabola
Fourier transform(FFT) box techniqué/~'° Here a plane- [ Linear Curve
wave basis is assumed, but the functions are kept localized & 4
they are represented on a real-space grid from the outset. ,
set of plane waves which is proportional to the number of &
grid points in the regions of the localized functions and in- @ 10°
dependent of the size of the system is used whenever th&
functions are represented in reciprocal space. Functions l0.E 10°
calized in real space are smooth and delocalized in reciproce g
space; thereforegoarse samplingn reciprocal space is a
very good approximatioh’ There is no modification of the
Hamiltonian operator, but an intermediate truncation of the =5
basis set is performed; thus the variational behavior canno 3 10°
be guaranteed, but can be expected as a consequence of
close resemblance in practice of the FFT box method to the
full plane-wave approach. 10°
To assess the variational properties of these methods, w
will first use the exactly solvable model of the harmonic
oscillator that Maragakigt al. used for their tests. As they
established in their paper that their modified FD method con-
verges from above, here we examine whether the quadratic 10
convergence criterion of the variational principle is also sat-
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isfied. We compare their method fér= 12 with the conven- 1072
tional FDA=12 method, and with the plane-wave expansion 10 107 10®  10° 10t 10® 107 10"
method which is variational by definition. In Fig. 1 we plot Error in wave function

the absolute error in the ground-state energy as a function of
the rms error in the ground-state wave function. The behav- FIG. 1. Error in energy as a function of the error in the wave
iors of the two FD methods are very similar; their curves infunction for the harmonic oscillatofarbitrary unit3. The curves
Fig. 1 almost coincide, and have a slope close to unity or, inepresent approximations to the ground-state solution on a real-
other words, the error in the energy depends only linearly orgpace grid as the number of points is increased from 16 to 18 to 20,
the error in the wave function. On the other hand, the plane€tc. in the interval[-10, 10. The conventional FD ordeA=12
wave curve has a slope close to 2 and becomes parallel wifRethod and the methoq of Ref. 16 were used, as well as the plane-
the parabolic lingslope 2 as the error in the wave function Wave basis set expansion methlde number of plane-waves that
decreases, so it is truly variational as expected. can be represented_ on the real-space grid without aliasing is equal
The fact that none of the FD methods exhibit the qualC the number of grid poinis
dratic convergence of variational behavior may not be a se-
rious drawback for practical calculations, since computaiations. We have chosef=28 as an example of very high
tional limitations always preclude high convergence withorder of discretization. In all FD calculations we solve the
respect to grid spacing. However, the speed of convergendeoisson equation for the Hartree potential using the conven-
is important, as it will determine the speed at which relativetional FD coefficients, as Maragakét al. did, so the only
energy differences converge. To examine this aspect we neefifference between the two forms of the FD method is in the
to consider an example on a real system. For this purposealculation of the kinetic energy. Figure 2 shows the conver-
we have performed local-density-approximation density-gence of the total energy as a function of the number of grid
functional calculations on a silane molecule inside a largepoints in every lattice vector direction. The convergence of
cubic simulation cell of (48,).2 The atomic cores are rep- the energy with the conventional FD methods is not mono-
resented by norm-conserving pseudopoterffland the  tonic although the effect is minimized as the order increases.
charge density is expressed in terms of pseudoatomiét coarse grid spacings, the FD method converges from
orbital® centered on the atoms and optimized for eachabove since there are not enough grid points to accurately
pseudopotential in spherical regions of &,0radius. We represent the charge density near the ions which is the major
compare the FD method&oth the conventional one and contribution to the total energy. When the grid spacing be-
Maragakiset al's variany of order A=12 and 28 with the comes finer than some threshold that depends on the order of
FFT box technique, and with the conventional plane-wavahe FD method, the pseudopotential contribution lowers the
basis set approach. In their finite-difference method, Cheenergy, but to a value which is less than the grid-converged
likowsky et al*® found that order 12 sufficed for their calcu- result because of the systematic underestimation of the ki-
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Total energy (E,)

Points in each grid dimension

FIG. 2. Convergence of the total energy of a silane molecule in a cubic cell with respect to the number of grid points in each dimension.
The energy is calculated with conventional finite differen@ed’s) of orderA=12 (A) and 28 §¥), with Maragakiset al's (Ref. 16
variational FD method of ordeA=12 (J) and 28 (¢ ), with the FFT box techniquéRef. 17 (*) and with the plane-wave basis set
method O joined by broken ling The FFT box curve almost coincides with the plane-wave curve on the scale of these graphs. Since we
are using an FFT box large enough to enclose any pair of pseudoatomic ofRiald?, its size will be (32,) (Ref. 3, which implies
using 24x 24x 24 grid points for the smallest number of points per cell dimeng8f considered in the graph.

netic energy. In the case of Maragaldsal's FD method, energy cutoff of 2&,, corresponding to a grid spacing of
the convergence with grid spacing is monotonic and alway$).5a,, so thatD=32. For A=12, Nggszg;x 10° whereas
from above—as expected, and as we have also confirmed NEF;—: 25x 10°, a factor of 4 larger. The FFT box method is
tests with other systems. In terms of the speed of converygre competitive for smaller spheres, but it should of course
gence and deviation from the plane-wave curve which ig)q remembered that a higher-order FD method would need to

variational by definition, conventional FD methods do quite),, | <aq in practice to achieve the accuracy of the FFT box
well starting with errors of the order of B, which decrease method. For example, if we tale=28 in the mentioned test

rapidly with the number of points. The convergence of the FD S

variational FD method is not as good, on the other hand, agase, themOp_S_ 3rx 106.’ wh|ch Is 50% more than the num-
the size of its errors is larger and its rate of convergence i er of operations required using the_ FFT bo>_< method. B(_)th
slower. The FFT box technique closely follows the plane-the FD and FFT box methods are suitable for |mplementa'qon
wave curve as it is expected to do, and has errors that are §f parallel computers. For the FFT box method, spherical
least an order of magnitude smaller than theAB12 curve ~ 'e€gions can be partitioned among the nodes so that the FFT's
throughout its range; thus it apears to coincide with thehvolved in applying the kinetic energy operator can all be
plane-wave curve on the scale of this graph. Of course therformed locally. Some communication would then be re-
agreement improves whek= 28, but it can be seen that the quired in order to calculate the inner product of this result
FFT box method still works better than this very high-orderwith functions in other regions, but this would also be nec-
FD method. essary in the case of the FD method.

The computational cost of both FD methods is the same: In summary, we have carried out a comparison of meth-
for an orderA a FD applied to a function localized within a ods for electronic structure calculations directly in real space
sphereD grid points in diameter, the number of operations toin order to examine if and to what extent they can display the
calculate the Laplacian at all grid points where it is nonZero variational behavior of basis sets. The FD representation of
is roughly 2(3A+1)(A+D)3. For the same function, the the Laplacian for the kinetic-energy operator systematically
FFT box has volume (R),® and this method therefore re- underestimates the kinetic energy and this is the source of the
quires about (120lo@+152)D* operations (assuming problems, as correctly identified by Maragakisal. Their
radix-2 FFT’s for real functions are usedVhile the scaling proposed modification of FD coefficients systematically
of both methods is essentially the same, the FD method hasaverestimates the kinetic energy and causes the energy to
smaller prefactor if the discretization order is not very high.converge from above, albeit with errors up to an order of
As an example, consider spheres of radius Se0al a kinetic  magnitude larger than conventional FD methods. In practice

073103-3



BRIEF REPORTS PHYSICAL REVIEW B56, 073103 (2002

this means that finer grids may be necessary and this coulse the method of choice as it is designed to follow closely
be a high price to pay in terms of computational cost. Nonghe behavior of the fully variational plane-wave method.
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