
PHYSICAL REVIEW B 66, 073103 ~2002!
Comparison of variational real-space representations of the kinetic energy operator
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We present a comparison of real-space methods based on regular grids for electronic structure calculations
that are designed to have basis set variational properties, using as a reference the conventional method of finite
differences~a real-space method that is not variational! and the reciprocal-space plane-wave method which is
fully variational. We find that a definition of the finite-difference method@P. Maragakis, J. Soler, and E.
Kaxiras, Phys. Rev. B64, 193101~2001!# satisfies one of the two properties of variational behavior at the cost
of larger errors than the conventional finite-difference method. On the other hand, a technique which represents
functions in a number of plane waves which is independent of system size closely follows the plane-wave
method and therefore also the criteria for variational behavior. Its application is only limited by the requirement
of having functions strictly localized in regions of real space, but this is a characteristic of an increasing
number of modern real-space methods, as they are designed to have a computational cost that scales linearly
with system size.
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Electronic structure methods usually require the solut
of Schrödinger’s equation

Ĥc05«0c0 ~1!

for the ground-state energy«0 and wave functionc0 of the
Hamiltonian operatorĤ of the system. Exact solutions exi
only in very simple cases. A common practical way of a
proximating the solution of Eq.~1! is by expandingc0 in
terms of a set of basis functions. It is straightforward to sh
that thisbasis set approachhas two desirable properties.

~1! The approximations of«0 are always upper bounds o
the exact«0, so any algorithm that minimizes«0 with respect
to c0 will yield the optimal solution for a given basis set.

~2! The leading term of the errord«0 in the energy is
proportional to the square of the errordc0 in the wave func-
tion, and thus the energy displays a quadratic converge
with increasing basis set size.

These two properties are referred to as thevariational
principle, and are characteristic of the basis set approxim
tion. Basis sets in common use for calculations on molecu
and solids include Gaussian functions,1,2 Slater functions,3

plane waves,4 spherical Bessel functions,5 pseudoatomic
orbitals,6,7 wavelets,8 ‘‘blip’’ cubic splines,9 and finite
elements.10 In particular, the second property is importa
because it means that even a relatively poor basis set
give relatively good results for the energy, thus saving
sometimes considerable cost associated with using large
sis sets.

In recent years, the ability to perform calculations usi
only quantities that arelocalized in real space, such as the
density matrix or Wannier-type orbitals, has led to line
scaling electronic structure methods that can deal with th
sands of atoms.11 As a consequence, the importance of loc
ized basis sets has grown because they are required fo
efficient representation of localized functions. Delocaliz
basis sets such as plane-waves are not suitable as they
the cost of the electronic structure calculations scale as
cube of the system size.
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n

-

ce

-
s

an
e
a-

-
u-
-
an

d
ake
he

Basis set expansion is by no means the only pract
approximation in electronic structure theory. A set of impo
tant alternatives are the ‘‘real-space’’ methods12,13 which use
a real-space grid to express their solutions. The represe
tion of functions directly on a real-space grid, either regula12

or adapted to the positions of the atoms,14 simplifies the ap-
plication of localization constraints, and for this reason t
importance of real-space methods in recent years has gr
in parallel with that of the localized basis set methods. Re
space methods based on a regular grid bear some simil
to the plane-wave pseudopotential approach, as the spa
of the real-space grid defines a plane-wave kinetic ene
cutoff and is the parameter with respect to which the so
tions are converged. Most real-space methods are base
the finite-difference~FD! approach, so they are not varia
tional, contrary to the plane-wave basis set method. Thi
due to the fact that the Laplacian operator for the kine
energy in the Hamiltonian is represented, or rather appro
mated, as a FD expansion

]2f

]x2
~xi ,yj ,zk!.

1

hx
2 (

n52A/2

A/2

Cn
(A)f~xi1nhx ,yj ,zk! ~2!

on every grid point (xi ,yj ,zk), wherehx is the grid spacing
in thex direction. Using Eq.~2! is equivalent to applying the
exact Laplacian operator to an approximation of the solut
by a polynomial of degreeA at each point of the grid.15

Therefore, the Hamiltonian operator changes as the
spacing is varied. One consequence of this is the lack
variational behavior in the solution process, a well-know
feature of real-space methods.12

Maragakiset al.16 correctly recognized that the FD coe
ficientsCn

(A) of Eq. ~2! systematically underestimate the k
netic energy. They redetermined them so that they alw
slightly overestimate it, provided one assumes that the s
tion on the grid is the real-space representation of a pla
wave expansion. In practice, this means that with their
coefficients, energies always converge from above as the
©2002 The American Physical Society03-1



f t
D

m
th
fa

d
et
o

in
t

oc

th
n

of
th

,
ic

y
on
ra
a

io
ot
n
a
in
,
o

ne
w
n

a
s
ta
ith
n

iv
e

os
ity
rg
-

m
c

d

v
he
-

h
he
en-

the
er-
rid
of

no-
es.
om
tely
ajor
e-

er of
the
ged

ki-

ve

eal-
20,

ane-
t
qual

BRIEF REPORTS PHYSICAL REVIEW B66, 073103 ~2002!
is made finer. So at least one of the desirable features o
variational principle is restored with this amended F
approach.

A completely different approach which attempted to co
bine the merits of the plane-wave basis set method with
localization properties of the real-space methods is the
Fourier transform~FFT! box technique.17–19 Here a plane-
wave basis is assumed, but the functions are kept localize
they are represented on a real-space grid from the outs
set of plane waves which is proportional to the number
grid points in the regions of the localized functions and
dependent of the size of the system is used whenever
functions are represented in reciprocal space. Functions
calized in real space are smooth and delocalized in recipr
space; therefore,coarse samplingin reciprocal space is a
very good approximation.17 There is no modification of the
Hamiltonian operator, but an intermediate truncation of
basis set is performed; thus the variational behavior can
be guaranteed, but can be expected as a consequence
close resemblance in practice of the FFT box method to
full plane-wave approach.

To assess the variational properties of these methods
will first use the exactly solvable model of the harmon
oscillator that Maragakiset al. used for their tests. As the
established in their paper that their modified FD method c
verges from above, here we examine whether the quad
convergence criterion of the variational principle is also s
isfied. We compare their method forA512 with the conven-
tional FDA512 method, and with the plane-wave expans
method which is variational by definition. In Fig. 1 we pl
the absolute error in the ground-state energy as a functio
the rms error in the ground-state wave function. The beh
iors of the two FD methods are very similar; their curves
Fig. 1 almost coincide, and have a slope close to unity or
other words, the error in the energy depends only linearly
the error in the wave function. On the other hand, the pla
wave curve has a slope close to 2 and becomes parallel
the parabolic line~slope 2! as the error in the wave functio
decreases, so it is truly variational as expected.

The fact that none of the FD methods exhibit the qu
dratic convergence of variational behavior may not be a
rious drawback for practical calculations, since compu
tional limitations always preclude high convergence w
respect to grid spacing. However, the speed of converge
is important, as it will determine the speed at which relat
energy differences converge. To examine this aspect we n
to consider an example on a real system. For this purp
we have performed local-density-approximation dens
functional calculations on a silane molecule inside a la
cubic simulation cell of (40a0).3 The atomic cores are rep
resented by norm-conserving pseudopotentials20 and the
charge density is expressed in terms of pseudoato
orbitals6 centered on the atoms and optimized for ea
pseudopotential in spherical regions of 8.0a0 radius. We
compare the FD methods~both the conventional one an
Maragakiset al.’s variant! of order A512 and 28 with the
FFT box technique, and with the conventional plane-wa
basis set approach. In their finite-difference method, C
likowsky et al.13 found that order 12 sufficed for their calcu
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lations. We have chosenA528 as an example of very hig
order of discretization. In all FD calculations we solve t
Poisson equation for the Hartree potential using the conv
tional FD coefficients, as Maragakiset al. did, so the only
difference between the two forms of the FD method is in
calculation of the kinetic energy. Figure 2 shows the conv
gence of the total energy as a function of the number of g
points in every lattice vector direction. The convergence
the energy with the conventional FD methods is not mo
tonic although the effect is minimized as the order increas
At coarse grid spacings, the FD method converges fr
above since there are not enough grid points to accura
represent the charge density near the ions which is the m
contribution to the total energy. When the grid spacing b
comes finer than some threshold that depends on the ord
the FD method, the pseudopotential contribution lowers
energy, but to a value which is less than the grid-conver
result because of the systematic underestimation of the

FIG. 1. Error in energy as a function of the error in the wa
function for the harmonic oscillator~arbitrary units!. The curves
represent approximations to the ground-state solution on a r
space grid as the number of points is increased from 16 to 18 to
etc. in the interval@-10, 10#. The conventional FD orderA512
method and the method of Ref. 16 were used, as well as the pl
wave basis set expansion method~the number of plane-waves tha
can be represented on the real-space grid without aliasing is e
to the number of grid points!.
3-2
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FIG. 2. Convergence of the total energy of a silane molecule in a cubic cell with respect to the number of grid points in each dim
The energy is calculated with conventional finite differences~FD’s! of order A512 (n) and 28 (¹), with Maragakiset al.’s ~Ref. 16!
variational FD method of orderA512 (h) and 28 (L), with the FFT box technique~Ref. 17! (*) and with the plane-wave basis se
method (s joined by broken line!. The FFT box curve almost coincides with the plane-wave curve on the scale of these graphs. Si
are using an FFT box large enough to enclose any pair of pseudoatomic orbitals~Ref. 17!, its size will be (32a0) ~Ref. 3!, which implies
using 24324324 grid points for the smallest number of points per cell dimension~30! considered in the graph.
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netic energy. In the case of Maragakiset al.’s FD method,
the convergence with grid spacing is monotonic and alw
from above—as expected, and as we have also confirme
tests with other systems. In terms of the speed of con
gence and deviation from the plane-wave curve which
variational by definition, conventional FD methods do qu
well starting with errors of the order of mEh which decrease
rapidly with the number of points. The convergence of t
variational FD method is not as good, on the other hand
the size of its errors is larger and its rate of convergenc
slower. The FFT box technique closely follows the plan
wave curve as it is expected to do, and has errors that a
least an order of magnitude smaller than the FDA512 curve
throughout its range; thus it apears to coincide with
plane-wave curve on the scale of this graph. Of course
agreement improves whenA528, but it can be seen that th
FFT box method still works better than this very high-ord
FD method.

The computational cost of both FD methods is the sa
for an orderA a FD applied to a function localized within
sphereD grid points in diameter, the number of operations
calculate the Laplacian at all grid points where it is nonzer17

is roughly 2(3A11)(A1D)3. For the same function, th
FFT box has volume (2D),3 and this method therefore re
quires about (120 log2D1152)D3 operations ~assuming
radix-2 FFT’s for real functions are used!. While the scaling
of both methods is essentially the same, the FD method h
smaller prefactor if the discretization order is not very hig
As an example, consider spheres of radius 8.0a0 and a kinetic
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energy cutoff of 20Eh corresponding to a grid spacing o
0.5a0, so that D532. For A512, Nops

FD563106 whereas
Nops

FFT5253106, a factor of 4 larger. The FFT box method
more competitive for smaller spheres, but it should of cou
be remembered that a higher-order FD method would nee
be used in practice to achieve the accuracy of the FFT
method. For example, if we takeA528 in the mentioned tes
case, thenNops

FD5373106, which is 50% more than the num
ber of operations required using the FFT box method. B
the FD and FFT box methods are suitable for implementa
on parallel computers. For the FFT box method, spher
regions can be partitioned among the nodes so that the F
involved in applying the kinetic energy operator can all
performed locally. Some communication would then be
quired in order to calculate the inner product of this res
with functions in other regions, but this would also be ne
essary in the case of the FD method.

In summary, we have carried out a comparison of me
ods for electronic structure calculations directly in real spa
in order to examine if and to what extent they can display
variational behavior of basis sets. The FD representation
the Laplacian for the kinetic-energy operator systematica
underestimates the kinetic energy and this is the source o
problems, as correctly identified by Maragakiset al. Their
proposed modification of FD coefficients systematica
overestimates the kinetic energy and causes the energ
converge from above, albeit with errors up to an order
magnitude larger than conventional FD methods. In prac
3-3
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this means that finer grids may be necessary and this c
be a high price to pay in terms of computational cost. No
of the FD methods display a quadratic convergence of
energy with respect to the wave function, which is the s
ond characteristic of the variational principle. For cas
where the functions are strictly localized in regions of t
real-space grid, as with most real-space methods intende
linear-scaling calculations,7,21 the FFT box technique could
.

e
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be the method of choice as it is designed to follow clos
the behavior of the fully variational plane-wave method.
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