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Abstract

We present a novel real space formalism for ab initio electronic structure calculations. We use localized non-orthogonal
functions that are expressed in terms of a basis set that is equivalent to a plane-wave basis. As a result, advantages of the plane-
wave approach also apply to our method: its applicability to any lattice symmetry, and systematic basis set improvement via the
kinetic energy cut-off parameter. The localization of our functions enables the use of fast Fourier transforms over small regions
of the simulation cell to calculate the total energy with efficiency and accuracy. With just one further variational approximation,
namely the truncation of the density matrix, the calculation may be performed with a cost that scales linearly with system size
for insulating systems. 2002 Elsevier Science B.V. All rights reserved.

PACS: 71.15.-m; 31.15.-p; 31.15.Ar
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1. Introduction

Density functional theory (DFT) in conjunction with the plane-wave pseudopotential method has been widely
used as a theoretical tool for studying a variety of condensed matter systems [1]. The original formulation of Kohn
and Sham [2] in terms of extended orthonormal wavefunctions has a computational cost that scales asymptotically
as the cube of the system size. This bottleneck restricts the approach to the study of no more than a few hundred
atoms, even on parallel supercomputers. As a consequence, over the last decade there has been much effort devoted
to the development of methods whose computational cost scales linearly with system size [3]. Such schemes often
rely on a reformulation of the problem in terms of localized functions in real space [4]. One such set of functions are
the orthogonal Wannier functions: a unitary transformation of the extended Bloch wavefunctions [5]. These (and
as a result the density matrix) are known to be exponentially localized in insulators, with the degree of localization
determined by the band gap [6–9]. Furthermore, it is known that an essentially equivalent representation that is non-
orthogonal can be better localized [10] and hereafter we shall refer to such localized functions as non-orthogonal
generalized Wannier functions (NGWFs).
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In our approach we formulate the total energy of the system in terms of NGWFs that are represented on a real
space grid subject to periodic boundary conditions. The localization properties of the NGWFs are seta priori,
i.e. each NGWF (usually atom centered) is confined within a spherical localization region (LR) whose radius is
pre-defined. In general, each NGWF may have a different localization radius. Our basis set consists of a mesh of
cell periodic functions which are a unitary transformation of an equivalent plane-wave basis. As a result, we can
use fast Fourier transform (FFT) methods familiar from plane-wave DFT calculations to switch easily between real
and reciprocal space representations.

Real space techniques have been used by many authors for performing DFT calculations. In particular, there
are methods which use functions that are strictly localized within spherical regions on real space grids [11,12].
These approaches have given rise to some important methodological developments. However, it would be desirable
to have a method with a basis set that can be improved systematically [13,14], just as in plane-wave DFT. Our
approach uses a basis that is directly comparable to a plane-wave basis.

We begin by describing our basis set and its properties in Section 2. In Section 3 we describe how to calculate
the total energy of a system with a set of localized functions and in Section 4 we introduce our novel FFT box
technique and demonstrate how it can be used to calculate the total energy with a computational cost that scales
linearly with system size. Section 5 describes how we minimize the total energy, and we present our results and
conclusions in Sections 6 and 7, respectively.

2. Basis set

We consider a unit cell (which we shall refer to as the simulation cell) with primitive lattice vectorsAi
(i = 1,2,3), volumeV = |A1 · (A2 × A3)|, andNi = 2Ji + 2 grid points along directioni, where theJi are
integers. We define our basis functions to be the cell periodic, bandwidth limited Dirac delta functions (Fig. 1)
given by,

Fig. 1. The form of a basis function,D(r), in two-dimensions.
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DKLM(r) ≡ D(r − rKLM)

= 1

N1N2N3

J1+1∑
p=−J1

J2+1∑
q=−J2

J3+1∑
s=−J3

ei(pB1+qB2+sB3)·(r−rKLM), (1)

wherep, q ands are integers, and theBi are the reciprocal lattice vectors:

B1 = 2π(A2 × A3)

A1 · (A2 × A3)
, etc. (2)

The NGWFs{φα} are expanded in terms of our basisD(r),

φα(r)=
∑
KLM

CKLM,αD(r − rKLM), (3)

where theCKLM,α are the expansion coefficients ofφα(r) in the basisD(r) and the sum is over all the grid points
of the simulation cell,

rKLM = K

N1
A1 + L

N2
A2 + M

N3
A3, (4)

whereK, L, andM are integers.
There is one basis function centered on each grid point of the simulation cell. They have the property that they

are non-zero at the grid point on which they are centered and zero at all other grid points (A.1). This basis spans
the same Hilbert space as the basis of plane-waves that can be represented by the real space grid of our simulation
cell: a unitary transformation relates the two. Further properties are derived in Appendix A.

Due to the localization of the NGWFs, the expansion coefficient,CKLM,α , of a particular NGWF,φα , is equal
to zero if the grid pointrKLM does not fall within the LR ofφα . Consequently, because the size of each LR is
independent of system size, each NGWF is expanded in terms of a number of basis functions that is independent
of system size.

3. Total energy

In terms of the set of NGWFs{φα}, the single-particle density matrix in the co-ordinate representation is
expressed as

ρ(r, r′)= φα(r)Kαβφβ(r′), (5)

where the density kernel,Kαβ , is the matrix representation of the density matrix in terms of the contravariant
duals of the NGWFs [15,16]. The NGWFs are real, as we are concerned only with calculations at theΓ -point.
Summation over repeated Greek indices is assumed throughout.

The charge density is given by,

n(r)= 2ρ(r, r)= 2Kαβφα(r)φβ(r)≡ 2Kαβραβ(r), (6)

whereραβ(r) is defined as,

ραβ(r)≡ φα(r)φβ(r)=
2N1−1∑
X=0

2N2−1∑
Y=0

2N3−1∑
Z=0

ραβ(rXYZ)BXYZ(r). (7)

This quantity is expanded in terms of the basis functions of the fine grid,BXYZ(r) (see Appendix A), because the
density needs to be represented in terms of a basis with twice the cut-off frequency of the NGWFs.
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Neglecting the contribution due to the fixed background of ionic charges, the total energy,E[n], of the system is
the sum of the kinetic energy (EK), the Hartree energy (EH), the local pseudopotential energy (Eloc), the non-local
pseudopotential energy (Enl), and the exchange-correlation energy (Exc).

The kinetic energy is given by

EK[n] = −
∫
V

dr′ [∇2
rρ(r, r

′)
]

r=r′ = 2Kαβ〈φβ |T̂ |φα〉, (8)

whereT̂ is related to the Laplacian operator bŷT = −1
2∇2. This is most conveniently applied in reciprocal space,

where it is diagonal. We see that the kinetic energy involves matrix elements of the form〈φβ |T̂ |φα〉. Thus, one
way of proceeding would be to FFTφα in the whole simulation cell, apply the Laplacian, FFT back and perform
the integral over real space as a summation over grid points as suggested by Eq. (A.5). IfN is the number of grid
points in the simulation cell (which is proportional to system size), this procedure has a computational cost that
scales as O(N logN) for each NGWF and hence as O(N2 logN) overall. We will see later how linear-scaling can
be achieved for all the terms that composeE[n].

The Hartree energy is given by,

EH[n] = 1

2

∫ ∫
dr dr′ n(r)n(r′)

|r − r′| = 1

2

∫
drVH(r)n(r)

= Kαβ〈φβ |VH|φα〉, (9)

where the Hartree potentialVH(r) is,

VH(r)=
∫

dr′ n(r′)
|r − r′| =

2N1−1∑
X=0

2N2−1∑
Y=0

2N3−1∑
Z=0

VH(rXYZ)BXYZ(r). (10)

We see thatVH is the result of a convolution between the charge density and the Coulomb potential, and is thus
represented by the fine grid basis functions.
VH is calculated on the fine grid in reciprocal space, where the real space convolution becomes a simple product,

and fast Fourier transformed back to real space.φα is Fourier interpolated onto the fine grid and its product with
VH is taken. The result is Fourier filtered to the standard grid, and the matrix elements〈φβ |[VHφα]D〉 calculated by
summation over the grid points of thestandard grid, where the subscriptD shows that we only need to consider
frequency components represented by the basis functions{D(r)} as shown in Eq. (A.5).

The local pseudopotential energy is given by the integral

Eloc[n] =
∫

drVloc(r)n(r)=
∫

dr
[
Vloc(r)

]
B
n(r), (11)

where the second equality makes use of Eq. (A.9), and the subscriptB shows that only frequency components
represented by the fine grid basis functions,BXYZ(r), need to be considered. Thus, it may be calculated in the
same way as the Hartree energy:

Eloc[n] = 2Kαβ〈φβ |[Vloc]B |φα〉 = 2Kαβ
〈
φβ

∣∣([Vloc]Bφα
)
D

〉
. (12)

The non-local pseudopotential energy is given by

Enl = 2Kαβ〈φβ |V̂nl|φα〉, (13)

where the non-local pseudopotential operatorV̂nl that we use is in Kleinman–Bylander form [17],

V̂nl =
∑
I

∑
lm(I )

|δV̂ (I )l Ψ
(I)
lm 〉〈Ψ (I)lm δV̂ (I )l |

〈Ψ (I)lm |δV̂ (I )l |Ψ (I)lm 〉
, (14)
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where the first summation is over the atomsI , and the second is over the angular momentum components for each
atom.δV̂ (I )l is the angular momentum dependent part of the atomic pseudopotential and theΨ

(I)
lm are its associated

pseudo-orbitals. We see that the matrix elements of the non-local potential involve the calculation of integrals of
the form 〈φβ |δV̂ (I )l Ψ

(I)
lm 〉 = 〈φβ |[δV̂ (I )l Ψ

(I)
lm ]D〉, which may be performed by summation over the standard real

space grid.
The exchange-correlation energy within the LDA is given by approximating the integral over the exchange-

correlation energy density,εxc(n(r)), by a summation over the points of the fine grid:

Exc[n] =
∫
V

dr εxc
(
n(r)

)
n(r)

� V

8N1N2N3

2N1−1∑
X=0

2N2−1∑
Y=0

2N3−1∑
Z=0

εxc
(
n(rXYZ)

)
n(rXYZ). (15)

This is approximate as the fine grid cannot represent the exchange-correlationenergy density without some aliasing.
The errors associated with this approximation are expected to be similar to those encountered in traditional plane-
wave codes [1].

We may write the total energy as,

E[n] = 2KαβHβα −EDC[n], (16)

where the matrix elements of the Kohn–Sham Hamiltonian are given by,

Hβα = 〈φβ |
[
T̂ + VH(r)+ Vloc(r)+ V̂nl + Vxc(r)

]|φα〉, (17)

Vxc(r)= δExc[n]
δn(r) is the exchange-correlation potential, andEDC[n] is the double-counting correction,

EDC[n] = 1

2

∫
drn(r)VH(r)+

∫
drn(r)Vxc(r)−Exc[n]. (18)

As we are dealing with a sparse system, the number of non-zero matrix elements will be proportional to the
system size in the limit of large systems. The procedure outlined above for calculating each of these matrix
elements has a computational cost that scales as O(N logN) for each element. This is because FFTs of NGWFs
are performed over the entire simulation cell. Thus the cost of computing all non-zero matrix elements scales as
O(N2 logN).

4. Total energy using the FFT box technique

4.1. The FFT box

Linear-scaling can be achieved by restricting the number of plane waves that each basis function is comprised
of so that it is independent of system-size. In other words, because the NGWFs are strictly zero outside their
respective localization regions, we need not use the entire simulation cell to perform FFTs on them, but may use a
much smaller region. This must be done in such a way as to preserve the Hermiticity of operators, i.e. so that

Oαβ ≡ 〈φα|Ô|φβ〉 =Oβα. (19)

Also, it is important that the representation of an operator in this new, contracted basis is consistent throughout the
calculation: when we compute the two matrix elementsOαβ andOγβ , in both cases we require the quantitŷO|φβ〉,
and in both cases this quantity should be the same.
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Fig. 2. The simulation cell and FFT box for a pair of overlapping NGWFs,|φα〉 and|φβ 〉.

We investigated these matters in detail in the context of the kinetic energy in an earlier communication [18],
and we found an efficient and accurate solution that we call the ‘FFT box’ technique, which involves performing
computations overrestricted regions of the simulation cell, using the fact that the NGWFs are localized in real
space. First we shall define the FFT box and then show in detail how it is used to compute the matrix elements of
each component of the Hamiltonian in O(N) operations.

We define the FFT box to be a miniature and commensurate version of the simulation cell whose size is such
that it can contain any pair of NGWFs that exhibit any degree of overlap. Its dimensions and shape are determined
at the start of a calculation and are universal throughout that calculation. It should have the same spacing of grid
points in each lattice vector direction as the simulation cell, and its origin (which is in general different for the
calculation of each matrix element) should coincide with a particular grid point of the simulation cell (Fig. 2).
Treating the FFT box as a miniature simulation cell withni = 2ji + 2 points along lattice vectorai (where theji
are integers), and with volumev = |a1 · (a2 × a3)|, we may define a set of basis functions,{dklm(r)}, as we did for
the whole simulation cell in Eq. (1), as follows,

dklm(r)= 1

n1n2n3

j1+1∑
p=−j1

j2+1∑
q=−j2

j3+1∑
s=−j3

ei(pb1+qb2+sb3)·(r−rklm), (20)

where the sum runs over the reciprocal lattice vectors,{bi}, of the FFT box (i.e. a number of plane-waves that is
now independent of system size), and

rklm = k

n1
a1 + l

n2
a2 + m

n3
a3 (21)

for integerk, l, andm. These basis functions have the periodicity of the FFT box, and all the analytic properties
derived for the basis functions of the simulation cell in Appendix A carry over to these functions by making the
replacements

V −→ v

Ni −→ ni

Ai −→ ai
(22)

Bi −→ bi

DKLM(r) −→ dklm(r)

BXYZ(r) −→ bxyz(r).
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4.2. Projection operators

We must also introduce an operator,P̂ (αβ), that is required to project NGWFs between their representation in
terms of the plane-waves of the entire simulation cell and those of the FFT box. This operator has argumentsα and
β as it is dependent upon the exact location of the FFT box within the simulation cell, which in turn depends upon
the particular matrix element that is being calculated. We thus define for the pair of NGWFsφα andφβ :

P̂ (αβ)= 1

Ω

n1−1∑
k=0

n2−1∑
l=0

n3−1∑
m=0

|dklm〉〈D(k+Kαβ)(l+Lαβ)(m+Mαβ)
∣∣, (23)

whereKαβ , Lαβ andMαβ are integers denoting the grid point of the simulation cell at which the origin of the FFT
box (k = l =m= 0) is located, andΩ is the volume per grid point.

When this operator acts upon a function with the periodicity of the simulation cell, i.e. a function given by
Eq. (3), it maps it onto the ‘same’ function with the periodicity of the FFT box:

P̂ (αβ)φα(r)=
n1−1∑
k=0

n2−1∑
l=0

n3−1∑
m=0

cklm,αdklm(r), (24)

wherecklm,α ≡ C(k+Kαβ)(l+Lαβ)(m+Mαβ),α .
Similarly, we define a supplementary operator,Q̂(αβ), that performs the same task, but for the fine grid

representation:

Q̂(αβ)= 8

Ω

2n1−1∑
x=0

2n2−1∑
y=0

2n3−1∑
z=0

|bxyz〉
〈
B(x+2Kαβ)(y+2Lαβ)(z+2Mαβ)

∣∣. (25)

The operatorŝP †(αβ) andQ̂†(αβ)map functions from the FFT box back to the simulation cell on the standard
and fine grids, respectively.

4.3. Kinetic energy

We want to calculate matrix elements of the form

Tαβ = 〈φα|T̂ |φβ〉. (26)

The NGWFs are localized in real space, so we need only consider those elementsTαβ for which the localization
regions ofφα andφβ overlap, as other contributions will be effectively zero. Once we have established that there
is an overlap, we imagine the pair of NGWFs as being enclosed within the FFT box that has been defined for the
calculation, as shown in Fig. 2. We then apply the operatorP̂ (αβ) to |φβ〉 to give it the periodicity of the FFT
box. P̂ (αβ)|φβ〉 may be then fast Fourier transformed to reciprocal space with a computational cost that scales
as O(Nbox logNbox), whereNbox is the number of grid points in the FFT box and isindependent of system-size.
T̂ is applied toP̂ (αβ)|φβ〉 in reciprocal space by multiplying by|k|2/2 at each reciprocal lattice point,k, in
the FFT box. Performing another FFT, we obtainT̂ P̂ (αβ)|φβ〉 in the real space FFT box, again with a cost of
O(Nbox logNbox). We may then applŷP †(αβ) to this to map it back into the simulation cell where the matrix
elementT box

αβ , given by

T box
αβ = 〈

φα
∣∣P̂ †(αβ)T̂ P̂ (αβ)

∣∣φβ 〉
= Ω

∑
K,L,M∈LRα

CKLM,α
[
P̂ †(αβ)T̂ P̂ (αβ)φβ

]
(rKLM) (27)
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is calculated by summation over the grid points that lie within the localization region ofφα (LRα). The superscript
‘box’ signifies that a quantity has been calculated using the FFT box technique. We will show in Section 6 that
T box
αβ is an accurate approximation toTαβ . This is because the FFT box technique is essentially a method of coarse-

sampling the frequency components of the NGWFs in reciprocal space. As the NGWFs are truly localized in real
space, we expect them to be very smooth in reciprocal space, and thus amenable to coarse-sampling.

For a single matrix element, the FFT box method makes the cost of calculation independent of system size.
Thus, for all non-zero matrix elements the cost scales as O(N).

4.4. Non-local pseudopotential energy

For clarity of notation, we first rewrite the non-local pseudopotential of Eq. (14) as

V̂nl ≡
∑
I

∑
lm(I )

∣∣χ(I)lm 〉〈
χ
(I)
lm

∣∣, (28)

which defines theprojectors |χ(I)lm 〉.
Robust real space methods to calculate the non-local pseudopotential energy exist in the context of traditional

plane-wave DFT through the work of King-Smith et al. [19]. We manage to avoid entirely the complications
involved in their method through use of the FFT box.

We need to calculate matrix elements such as

Vnl,αβ = 〈φα|V̂nl|φβ〉 =
∑
I

∑
lm(I )

〈
φα

∣∣χ(I)lm 〉〈
χ
(I)
lm

∣∣φβ 〉, (29)

which is just a matter of computing quantities like〈φα|χ(I)lm 〉. There will only be a contribution to a particular matrix
elementVnl,αβ if there is at least one projector that overlaps with both|φα〉 and|φβ〉 (see Fig. 3). We begin with

the radial part of the projectors,ζ (I )l (k), on a reciprocal space, linear, radial grid, up to arbitrarily high wavevector.
Given that the overlap condition with the NGWFs is satisfied, we then continue to calculate each overlap in turn.
For example, to compute〈φα|χ(I)lm 〉, we envisage a real space FFT box that contains the NGWF|φα〉 and the

projector|χ(I)lm 〉. The reciprocal representation of the projector is interpolated onto the corresponding reciprocal
space FFT box using

χ
(I)
lm (k)= e−ik·R(I )4π(−i)lZlm(Ωk)ζ

(I )
l (k), (30)

whereR(I ) is the position vector of atomI , andZlm are real spherical harmonics.

Fig. 3. An example of a typical contribution to the non-local potential matrix elementVnl,αβ . The overlap of the projector,|χ〉, with |φα〉 is
calculated using the FFT box with solid outline, and that with|φβ 〉 is done using the FFT box with dashed outline.
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Performing a FFT on the projector, we obtain it in the real space FFT box, project it into the simulation cell, and
take the overlap with the NGWF by summation over the grid points that lie within the localization region of|φα〉.
In terms of the projection operator,̂P , this process is represented by

V box
nl,αβ =

∑
I

∑
lm(I )

〈
φα

∣∣P̂ †
∣∣χ(I)lm 〉〈

χ
(I)
lm

∣∣P̂ ∣∣φβ 〉. (31)

Since the FFTs are performed only on a restricted region of the simulation cell, namely the FFT box, and because
the NGWFs and atom cores are strictly localized, the cost of calculation of the non-local pseudopotential matrix in
this way scales as O(N).

4.5. Charge density

The charge density of Eq. (6) is a quantity that extends over the entire simulation cell. The individual
contributions to the charge density, i.e. theραβ of Eq. (7), however, are localized in real space and may thus
be calculated using the FFT box with a cost that is independent of system-size. For a given pair of overlapping
NGWFs,|φα〉 and|φβ〉, we project them from the simulation cell into their FFT box. Both are then interpolated
onto the fine grid of the FFT box using fast Fourier transforms and zero-padding in reciprocal space. The cost
associated with this procedure is system-size independent as it is done over the grid points of the FFT box only.
The interpolated NGWFs are multiplied together on the fine grid points of the FFT box and the result projected
back onto the fine grid of the simulation cell. In terms of our projection operators, this becomes

ρbox
αβ (r)= Q̂†(αβ)

[(
P̂ (αβ)φα(r)

)(
P̂ (αβ)φβ(r)

)]
. (32)

The total charge density is then built up by summing all the contributions from the FFT boxes of pairs of
overlapping NGWFs according to

n(r)= 2Kαβρbox
αβ (r). (33)

4.6. Hartree, local pseudopotential, and exchange-correlation energy

The matrix elements of the Hartree, the local pseudopotential and the exchange-correlation potential may be
treated together:

VHlxc,αβ = 〈
φα

∣∣[VH(r)+ Vloc(r)
]
B

+ Vxc(r)
∣∣φβ 〉

� 〈
φα

∣∣([VH(r)+ Vloc(r)+ Vxc(r)
]
B
φβ

)
D

〉
, (34)

where the approximation is due to the inability to faithfully represent the exchange-correlation energy-density on
the fine grid. The operator defined by[

VHlxc(r)
]
B

≡ [
VH(r)+ Vloc(r)+ Vxc(r)

]
B

(35)

extends over the fine grid of the whole simulation cell. We calculate matrix elements〈φα|(VHlxc)B |φβ〉, for a pair
of overlapping NGWFs,|φα〉 and |φβ〉, by projecting|φβ〉 onto the FFT box that encloses the pair of functions.
This NGWF is then interpolated onto the fine grid of the FFT box.[VHlxc(r)]B is projected onto the fine grid of the
FFT box and its product taken with|φβ〉 on the grid points. The result is Fourier filtered onto the standard grid of
the FFT box, thus keeping only frequency components represented through the standard grid basis functions,D(r),
and projected back onto the standard grid of the simulation cell. The matrix element is then obtained by computing
the overlap with|φα〉 by summation over the grid points enclosed within its localization region. This procedure
may be represented as

V box
Hlxc,αβ = 〈φα|

(
V box

Hlxc

)
B
|φβ〉 = 〈φα|P̂ †(αβ)

[
Q̂(αβ)(VHlxc)B

]
P̂ (αβ)|φβ〉, (36)

and since all computations are done using the FFT box, the matrix elements can be calculated in O(N) operations.
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Finally, the total energy, calculated using our FFT box method, may be written as

Ebox[n] = 2KαβH box
βα −Ebox

DC [n], (37)

whereH box
βα is given by

H box
βα = T box

βα + V box
nl,βα + V box

Hlxc,βα , (38)

andEbox
DC [n] is as defined in Eq. (18), but with the charge density calculated according to Eq. (33). The FFT box

method enables the sparse matrix represented byHβα to be computed with an effort that scales linearly with system
size. With just one extra variational approximation, namely truncation of the density kernel, the charge density of
Eq. (33) and hence total energy of Eq. (37) may be calculated in O(N) operations.

5. Total energy optimization

The total energy is a functional of the charge density:E = E[n(r)]. The charge density itself is expanded
in terms of the basis{B(r)} and depends upon the density kernel elements,{Kαβ}, and the NGWF expansion
coefficients,{CKLM,α}. Provided that it isN -representable, this dependence should be variational, i.e. the ground
state energy,Emin, is given by

Emin = min
{Kαβ },{CKLM,α }

E
({Kαβ}, {CKLM,α}). (39)

In this work we are concerned principally with the optimization of the elements of the density kernel and we will
consider the NGWF coefficients,{CKLM,α}, as being fixed. We use the pseudo-atomic orbitals (PAOs) of Sankey
et al. [20] as our NGWFs.

The minimization must be performed under the constraints of constant electron number,

Ne =
∫
V

drn(r)= 2KαβSβα = 2Tr[KS], (40)

and density-matrix idempotency,

ρ(r, r′)=
∫
V

dr′′ ρ(r, r′′)ρ(r′′, r′) ⇒ Kαβ =Kαγ Sγ δKδβ, (41)

where the overlap matrix,Sαβ is given by

Sαβ =
∫
V

drφα(r)φβ(r). (42)

In order to avoid explicitly imposing the idempotency constraint (41), we use the method suggested by Li, Nunes
and Vanderbilt [21] and independently by Daw [22], and generalized to the case of non-orthogonal functions by
Nunes and Vanderbilt [23]. Our implementation follows the simplified version of Millam and Scuseria [24]. We
define the following function of the density kernelK:

L(K)=E(K̃)−µ(
2Tr[KS] −Ne

)
, (43)

whereK̃ is the McWeeny purified density kernel [25],

K̃ = 3KSK − 2KSKSK. (44)

The contravariant, tensor-corrected gradient [15,16] that is used in the steepest descent or conjugate gradient
iterative minimization is given by
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∇L = S−1 ∂L

∂K
S−1

= 6KHS−1 + 6S−1HK − 4S−1HKSK − 4KHK − 4KSKHS−1 − 2µS−1. (45)

The value ofµ is set at each step such that Tr[S∇L] = 0. This ensures that the total electron number remains
unchanged, thus we simply require that our initial guess for the density kernel gives the correct number of electrons.

Fig. 4. Top panel:9E1 plotted for a silane molecule as a function of FFT box size. Bottom panel: the same quantity plotted for cyclohexane.
In both cases all PAOs were confined to atom centered localization regions with radius 6.0a0, and the grid spacing was 0.5a0.
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6. Results and discussion

We now present some results of calculations we have performed using the methods described above. We first
demonstrate the accuracy of the FFT box technique as compared to using the entire simulation cell as the FFT grid.
Fig. 4 shows the quantity9E1, defined as

9E1 ≡Ebox[n] −E[n], (46)

for the molecules silane (SiH4) and cyclohexane (C6H12), for different FFT box sizes. For these tests we used a
cubic simulation cell of side length 50a0, although any other lattice symmetry could easily have been employed.
The PAOs are confined within spherical regions of radius 6.0a0, and vanish exactly at the region boundary [20].

Fig. 5. Top panel: Variation in total energy,9E2, as the LiH molecule is translated by fractions of a grid spacing. The PAOs on both the lithium
and hydrogen atoms had a radius of 10.0a0. Bottom panel: The same quantity, but with optimization of the PAO coefficients [27].
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They were generated using norm-conserving pseudopotentials [26], the local density approximation (LDA), and an
energy cut-off of 538 eV (corresponding to our grid spacing of 0.5a0). In the case of silane, the silicon atom had
one 3s and three 3p PAOs, and for cyclohexane, the carbon atoms had one 2s and three 2p PAOs. The hydrogen
atoms all had a single 1s PAO.

We see that the error associated with the FFT box technique are of the order of a few µHartree per atom, which
is comparable to the inherent errors present in plane-wave DFT. We note that the convergence of the total energy
with FFT box size is not expected to be variational, and indeed it is not: the FFT box technique should be viewed as
a good approximation to the ‘correct’ result that would be obtained by using the entire simulation cell to perform
FFTs for calculating the total energy. For a given FFT box size, however, the kinetic energy cut-off of our basis
functions (and hence the grid spacing)is a variational parameter, just as in traditional plane-wave DFT.

In addition, we look at a feature common to all real space grid methods, namely the variation of the energy as
the system is translated by fractions of a grid spacing with respect to the simulation cell. We define the quantity
9E2 to be

9E2(d − d0)≡Ebox(d)−Ebox(d0), (47)

whered0 is a reference position of the system, andd is some rigid displacement with respect to the grid. The top
panel in Fig. 5 shows this variation, in steps of 0.1a0, for a lithium hydride (LiH) molecule on a cubic grid with
grid spacing 0.5a0. The PAOs of both lithium and hydrogen had localization radii of 10.0a0, and were generated in
the same way as described above.9E2 can be seen to be of the order of 10−6 Hartree. The bottom panel shows the
same quantity, but this time with optimization of the NGWF coefficients,{CKLM,α}, in addition to the elements of
the density kernel [27]. We see that the variation in total energy is reduced to the 10−7 Hartree level. We expect the
optimization of the NGWF coefficients to be important for performing accurate geometry optimizations.

7. Conclusions

We have presented a novel formalism for performing DFT calculations on a real space grid. Features of our
method include a systematic basis set, non-orthogonal functions localized in spherical regions, and the use of fast
Fourier transforms over small regions of the simulation cell (the FFT box) for efficient and accurate calculation
of matrix elements of the Hamiltonian. The total energy may be obtained in O(N) operations with only a single
further variational approximation, namely the truncation of the density kernel.
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Appendix A. Basis set

A.1. Definition of basis functions

The basis functionsDKLM(r)≡D(r − rKLM) are defined by Eq. (1).

A.2. Localization and orthogonality

Each basis function is localized on the grid, i.e. its value is unity at the grid point at which it is centered and
zero on all other grid points of the simulation cell:

DKLM(rFGH)= δKF δLGδMH . (A.1)
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Furthermore, basis functions centered on different sites are orthogonal:∫
V

drD∗
KLM(r)DFGH (r)=ΩδFKδGLδHM, (A.2)

whereΩ is the volume per grid point of the standard grid.

A.3. Analytic integrals

Consider a cell periodic function,f (r), which may be written in terms of its discrete Fourier series

f (r)= 1

V

∞∑
l=−∞

∞∑
m=−∞

∞∑
n=−∞

f̃ (lB1 +mB2 + nB3)e
i(lB1+mB2+nB3). (A.3)

Consider also the bandwidth limited version of this same function,fD(r), which has only the same frequency
components asD(r):

fD(r)= 1

V

J1+1∑
l=−J1

J2+1∑
m=−J2

J3+1∑
n=−J3

f̃ (lB1 +mB2 + nB3)ei(lB1+mB2+nB3). (A.4)

It can be shown that the projection off (r) onto a particular basis function is exactly equal to that offD(r), and
that furthermore, replacing the integral by a discrete sum over grid points leads toexactly the same answer:∫

V

drf ∗(r)DKLM(r) =
∫
V

drf ∗
D(r)DKLM(r)

= Ω

N1−1∑
X=0

N2−1∑
Y=0

N3−1∑
Z=0

f ∗
D(rFGH )DKLM(rFGH )=Ωf ∗

D(rKLM). (A.5)

This result is very useful for our purposes as it tells us that the overlap integral ofany cell periodic function with a
function that is represented by our basis set, can be evaluatedexactly as a summation over grid points.

A.4. Basis for the fine grid

In addition, we define a set of fine grid basis functions with twice the cut-off frequency as theD(r):

BXYZ(r)= 1

8N1N2N3

N1∑
p=−N1+1

N2∑
q=−N2+1

N3∑
s=−N3+1

ei(pB1+qB2+sB3)·(r−rXYZ), (A.6)

that correspond to a plane-wave representation that has twice the wavevector cutoff of the standard basis functions.
{rXYZ} are the points of the fine grid. This basis is localized on the grid points of the fine grid and is also orthogonal:

BXYZ(rABC)= δXAδYBδZC, (A.7)∫
V

drB∗
XYZ(r)BABC(r)=

Ω

8
δAXδBY δCZ, (A.8)

and satisfies a property analogous to Eq. (A.5):∫
V

drf ∗(r)BXYZ(r)=
∫
V

drf ∗
B(r)BXYZ(r)=

Ω

8
fB(rXYZ), (A.9)

wherefB(r) is a version of the functionf (r) that is bandwidth limited to the same frequencies as the basis
functionsB(r).
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