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Preconditioned iterative minimization for linear-scaling electronic
structure calculations

Arash A. Mostofi,a) Peter D. Haynes, Chris-Kriton Skylaris, and Mike C. Payne
Theory of Condensed Matter, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE,
United Kingdom

~Received 24 July 2003; accepted 6 August 2003!

Linear-scaling electronic structure methods are essential for calculations on large systems. Some of
these approaches use asystematicbasis set, the completeness of which may be tuned with an
adjustable parameter similar to the energy cut-off of plane-wave techniques. The search for the
electronic ground state in such methods suffers from an ill-conditioning which is related to the
kinetic contribution to the total energy and which results in unacceptably slow convergence. We
present a general preconditioning scheme to overcome this ill-conditioning and implement it within
our own first-principles linear-scaling density functional theory method. The scheme may be applied
in either real space or reciprocal space with equal success. The rate of convergence is improved by
an order of magnitude and is found to be almost independent of the size of the basis. ©2003
American Institute of Physics.@DOI: 10.1063/1.1613633#
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I. INTRODUCTION

Conventional methods for electronic structure calcu
tions, such as the plane-wave pseudopotential approa1

have proved to be indispensable tools for the study of c
densed matter systems in a diverse range of disciplines.2 The
computational effort required, however, scales asympt
cally with thecubeof the system size, effectively placing
limit on the scientific problems that can be tackled with the
approaches.Linear-scaling methods,3,4 which exploit the
real-space localization that is inherent in systems with a b
gap,5–8 should make these scientific problems tractable.

Several types of linear-scaling scheme exist and a p
of commonality between many of them is the use of loc
ized functions. Some of these approaches use a relati
small basis set of numerical atomic orbitals9 or Gaussian
atomic orbitals10,11 that have been preoptimized for other e
vironments and transferred to the system under consi
ation; other approaches12–16 use much larger localized bas
sets of simple functions such as polynomials,17,18 spherical
waves,19 or bandwidth limited delta functions.20 Each of
these philosophies has its advantages and drawbacks:
former can suffer from transferability problems but is c
pable of providing good accuracy with modest effort; t
latter is computationally more intensive but is capable
giving an accuracy that issystematicallytunable with a pa-
rameter that controls the completeness of the basis set th
being used, akin to the kinetic energy cut-off in plane-wa
methods. It is this latter category of method that we disc
here.

The usefulness of any linear-scaling scheme is ultima
determined by itscrossoverpoint, namely the system size a
which the method begins to be faster than conventio
cubic-scaling approaches. This crossover depends large
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two factors: First the computational cost per iteration p
atom, and second the number of iterations required to rea
given convergence threshold per atom. Even if a metho
constructed in which the computational cost per iteration
atom is small and independent of system size, the numbe
iterations required may be so large that the minimization
prohibitively inefficient. Indeed, it has been observed th
methods which use large basis sets suffer from this v
problem, known asill-conditioning. We present a discussio
of the origin of ill-conditioning and describe a gener
scheme to overcome it.

We briefly outline the formalism of linear-scaling meth
ods in Sec. II. In Sec. III we discuss the cause of the abo
mentioned ill-conditioning, and in Sec. IV, following th
work of Bowler and Gillan,21 we present a general precon
ditioning scheme for alleviating the problem. In particula
we show that the ‘‘diagonal approximation’’ that was in
voked in Ref. 21 is unnecessary and we account for the
sorial nature of the nonorthogonal bases correctly. In Sec
we extend our analysis to the case of an orthogonal ba
and in Sec. VI we use our linear-scaling method16 as a spe-
cific example of the preconditioning scheme. Finally, in S
VII we present results that demonstrate the importance
using preconditioning.

II. FORMULATION OF THE PROBLEM

A system of noninteracting particles in a potentialV is
described by

Ĥcn~r !5F2
\2

2m
¹21V~r !Gcn~r !5encn~r !, ~1!

where Ĥ is the single-particle Hamiltonian of the system
with energy eigenvaluesen and corresponding eigenstate
cn(r ). The eigenstates satisfy the orthogonality constra
given by
il:
2 © 2003 American Institute of Physics
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E cm* ~r !cn~r !dr5dmn , ~2!

for all m and n. For instance, within the Kohn–Sham
scheme of density-functional theory,22–24 Ĥ is the Kohn-
Sham Hamiltonian andV is the effective potential.

The total band-structure energy is given by

E5(
n

f nen5(
n

f nE cn* ~r !Ĥcn~r !dr , ~3!

where f n is the occupancy of statecn(r ):25 At the energy
minimum, all states below and above the Fermi level ha
occupancy unity and zero, respectively.

In the case of linear-scaling calculations, theN lowest
extended eigenstatescn(r ) (nP$1,...,N%) are expressed in
terms of a set of N localized functions fa(r ) (a
P$1,...,N%) that are generally nonorthogonal:

cn~r !5(
a

fa~r !M n
a , ~4!

whereM is a square~N by N!, nonsingular matrix of coef-
ficients, andN can be equal to or greater than the number
occupied eigenstates. The overlap matrixSab of the local-
ized functionsfa(r ) is

Sab5E fa* ~r !fb~r !dr , ~5!

and on substitution of Eq.~4! into the orthogonality relation
given by Eq.~2! we find thatSab satisfies

~M†!n
aSabM m

b 5dnm , ~6!

where a distinction has been made between contravarian
covariant quantities26,27 through the use of superscript an
subscript Greek suffixes, respectively.

Substituting Eq.~4! into the energy expression of Eq
~3!, and defining

Kab5(
n

M n
a f n~M†!n

b , ~7!

Hab5E fa* ~r !Ĥfb~r !dr , ~8!

the band-structure energy becomes

E5(
ab

HabKba, ~9!

whereKab is referred to as thedensity kernel.28

We consider the localized functionsfa(r ) to be repre-
sented in terms of a basisDm(r ) as follows:

fa~r !5(
m

Dm~r !c a
m , ~10!

for some coefficientsc a
m . As the basis functionsDm(r ) may

be in general nonorthogonal, the tensor properties mus
taken into account through the use of superscript and s
script Greek suffixes.

Defining
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hmn5E Dm* ~r !ĤDn~r !dr , ~11!

and using Eqs.~7!–~10!, the energy may be written as

E5~c†!a
mhmnc b

n Kba

5(
n

f n~M†!n
a~c†!a

mhmnc b
n M n

b . ~12!

Suffixesa andb run over the localized functions$f%, m and
n run over the basis functions$D%, and n runs over the
extended orthogonal orbitals$c%. We have adopted the Ein
stein summation convention for all repeated Greek suffix
and continue to do so from here on.

It is both convenient and physically meaningful to pe
form the minimization of the energy functional in two nest
loops, as in the ensemble density-functional method
Marzari et al.:29 In the inner loop we minimize the energ
with respect to the elements of the density kernelKab using
one of a number of methods30–32 to impose the constrain
that the ground state density matrix be idempotent and g
the correct number of electrons; in the outer loop we op
mize the localized functionsfa(r ) with respect to their co-
efficientsc a

m in the basisDm(r ).16

III. PRINCIPLES OF KINETIC ENERGY
ILL-CONDITIONING

The phenomenon of kinetic energy or length-scale
conditioning is a familiar one within the plane-wave a
proach to electronic structure calculations.1 It is not, how-
ever, restricted to this approach and its effects are see
many methods which use a large basis set.21,33,34

The efficiency with which a function can be minimize
using iterative techniques such as steepest descents or
jugate gradients is related to thecondition number k
5vmax/vmin , wherevmax and vmin are the extremal curva
tures of the function about the minimum.35 Minimization is
most efficient when the condition number is small and
curvatures have a narrow range of values. On the other h
when the curvatures take a wide range of values, the num
of iterations required for convergence can become unacc
ably large and the minimization is said to be ill-conditione

The curvatures of the total energy functional are det
mined by the eigenvalues of the Hamiltonian. Hence,
condition numberk depends upon the ratio of the largest a
smallest eigenvalues in the basis representation that is b
used. With alarge systematic basis, these eigenvalues spa
broad range. As a result, the condition number is large, r
dering the problem ill-conditioned. A significant source
this ill-conditioning is associated with the contribution to th
total energy due to the kinetic energyEkin , which is given by

Ekin52
\2

2m(
n

f nE cn* ~r !¹2cn~r !dr . ~13!

It is clear that high energy eigenstates are dominated by t
large kinetic energy. These states contribute little to the to
ground state energy, as they are unoccupied, yet they
tribute greatly to the broadening of the eigenspectrum. T
same argument does not hold, however, for the low-ly
states for which the potential and kinetic contributions a
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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more closely matched. This ill-conditioning may be allev
ated, orpreconditioned, by removing the effect of the kinetic
energy operator for the high energy states, making th
more degenerate, and hence reducing the width of
eigenspectrum, whilst leaving the low energy states
changed.

In the plane-wave approach, the effect of kinetic ene
ill-conditioning is reduced by multiplying the steepest d
scents directions in reciprocal space by a diagonal preco
tioning matrix which behaves as the inverse of the kine
energy operator at high wave vectors and is a constant at
wave vectors.1 Such a preconditioner, as pointed out in R
21, is qualitatively equivalent to theexactpreconditioner for
a model HamiltonianX̂ given by

X̂512k0
22¹2. ~14!

The preconditioner for this model problem may be deriv
analytically in any basis, as shown in Sec. IV.

IV. GENERAL FORMALISM FOR KINETIC
ENERGY PRECONDITIONING

We introduce a positive-definite model HamiltonianX̂
and write the energy of the system that it describes as

EX5(
n
E cn* ~r !X̂cn~r !dr . ~15!

We proceed to derive exact expressions for precondition
the minimization of Eq.~15!. For suitable choice ofX̂, these
same expressions may be used to improve the cond
number for minimizing the true energy Eq.~3!. It is worth
noting that all of the occupation numbersf n for the model
system have been set to unity. This amounts to an additi
occupancy preconditioning, first introduced by Gillan36 in
the context of metallic systems and then by Marzariet al.29

in the general framework of ensemble density-funtio
theory.

Following along the same lines as in Sec. II, defining

xmn5E Dm* ~r !X̂Dn~r !dr , ~16!

and substituting this, Eq.~4! and Eq.~10! into Eq. ~15! we
obtain

EX5(
n

~M†!n
a~c†!a

mxmnc b
n M n

b . ~17!

It is at this point that a tensorially incorrect ‘‘diagon
approximation’’ is made in Ref. 21. In our notation, th
would be given by

(
n

M n
b ~M†!n

a5~S21!ba.Jdba , ~18!

whereJ is some constant, and the first equality follows fro
Eq. ~6!. We do not make this unnecessary approximation

Formally, as it has been defined to be positive-defin
the matrix x may be expressed in terms of its uniq
Cholesky factorG:37
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xmn5(
k

Gmk~G†!kn . ~19!

Substituting this into Eq.~17! gives

EX5(
kn

uaknu2, ~20!

where the new variablesakn which make the energy surfac
spherical are given by

akn5~G†!knc b
n M n

b . ~21!

In a steepest descents procedure, although the follow
easily generalizes to the conjugate gradients method, a
minimization is performed along the steepest descents se
direction to find the new values of the coefficientsakn8 :

akn8 5akn2l
]EX

]akn*
, ~22!

wherel is chosen to minimize the energy. We wish to min
mize the energy with respect to the coefficientsc a

m , yet the
functional is spherical~and hence preconditioned! in the new
coefficientsakn . In order to find the new valuesc a8m of the
coefficientsc a

m that minimize the energy, we use the cha
rule to write

]EX

]akn*
5

]EX

]cm
a*
S ]c a

m

]akn
D *

, ~23!

and from this, and Eqs.~21! and ~22!, it may be shown that

c a8m 5c a
m 2l~x21!mn

]EX

]c b
n*

Sba , ~24!

where we have used the relations

(
n

~M 2†!an~M 21!nb5Sab , ~25!

and

(
k

~G2†! k
m ~G21!k

n5~x21!mn, ~26!

obtained from Eqs.~6! and ~19!, respectively.
Choosing the model HamiltonianX̂ introduced in Eq.

~14!, and defining

smn5E Dm* ~r !Dn~r !dr , ~27!

tmn52E Dm* ~r !¹2Dn~r !dr , ~28!

Eq. ~24! becomes

c a8m 5c a
m 2l@~s1k0

22t !21#mn
]E

]c b
n*

Sba , ~29!

where, following the discussion in Sec. III, we have replac
the model energyEX with the true energyE. We see from
Eq. ~29! that preconditioning is effected by premultiplyin
the steepest descent gradient by the matrix (s1t/k0

2)21 and
postmultiplying it byS.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



tie
d

es

ns

te
or
ne

l

d

to
iar
-
a

ly
m
in
to

ly

ion.
e

r-

n

nc-
grid

8845J. Chem. Phys., Vol. 119, No. 17, 1 November 2003 Preconditioned iterative minimization
V. THE CASE OF AN ORTHOGONAL BASIS

In the special case of an orthogonal basis$D% there is no
distinction between covariant and contravariant quanti
with respect to the expansion coefficients of this basis, an
such we use Latin suffixes to denote them:Di(r ). In this
case, Eq.~24! becomes

cia8 5cia2l(
j

xi j
21gj

bSba , ~30!

where we have definedgj
b[]E/]cj b* .

Let F be that unitary transformation which diagonaliz
the ~Hermitian! matrix x, i.e., FxF†5 x̃, wherex̃ is a matrix
with eigenvaluesjp on its diagonal:

x̃pq5jpdpq . ~31!

Denoting transformed variables byṽp5( jFp jv j , we ap-
ply F to Eq. ~30! to obtain

c̃pa8 5 c̃pa2l(
q

x̃pq
21g̃q

bSba . ~32!

From Eq.~31! we see thatx̃pq
215jp

21dpq is diagonal, hence
Eq. ~32! becomes

c̃pa8 5 c̃pa2l
1

jp
g̃p

bSba . ~33!

In other words, for the case of an orthogonal basis$D%, the
transformed gradientis preconditioned by premultiplying by
a diagonal matrix of inverse eigenvaluesjp

21 . Postmultipli-
cation by the overlap matrixS is still present in order to
account for the non-orthogonality of the localized functio
$f%.

VI. PRECONDITIONING AND PERIODIC
SINC FUNCTIONS

We consider a unit cell~which we shall refer to as the
simulation cell! with primitive lattice vectors A( i ) ( i
P$1,2,3%), volume V5uA(1)"(A(2)3A(3))u, and Ni52Ji

11 grid points along directioni , where theJi are integers.
Our basis set is composed of periodic bandwidth-limi
delta functions,20 from here on referred to as periodic sinc
psinc functions, defined as the following finite sum of pla
waves:

Dklm~r !

5D~r2r klm!5
1

N1N2N3

3 (
p52J1

J1

(
q52J2

J2

(
s52J3

J3

ei (pB(1)1qB(2)1sB(3))"(r2rklm),

~34!

wherep, q, ands are integers, and theB( i ) are the reciproca
lattice vectors:

B(1)5
2p

V
~A(2)3A(3)!, etc. ~35!

and ther klm are the grid points of the simulation cell,
Downloaded 21 Oct 2003 to 131.111.62.240. Redistribution subject to A
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N1
A(1)1

l

N2
A(2)1

m

N3
A(3), ~36!

where k, l , and m are integers:kP$0,1,...,N121%, and
similarly for l and m. There is one psinc function centere
on each grid point of the simulation cell.

The name ‘‘periodic sinc,’’ or psinc, has been chosen
reflect the connection that this function has with the famil
‘‘cardinal sine’’ or sinc function. The sinc function is a con
tinuous integral of plane waves with unit coefficients up to
maximum cut-off frequency. The psinc function differs on
in that this continuous integral is replaced by a finite su
over the reciprocal lattice vectors of the simulation cell, as
Eq. ~34!. As a result, whereas the sinc function decays
zero at infinity, the psinc function is cell-periodic, name
D(r )5D(r1R), where R is any lattice vector. Figure 1
shows a one-dimensional analogue of a single psinc funct

From this point onward, for simplicity of notation, w
write the psinc functions introduced in Eq.~34! as

Di~r !5
1

N (
p

eikp"(r2r i ), ~37!

wherekp denotes a reciprocal lattice point,r i denotes a grid
point of the simulation cell, andN5N1N2N3 is the total
number of grid points in the simulation cell.

Using the same model HamiltonianX̂ given by Eq.~14!
along with the definitions presented in Eqs.~27! and~28!, we
write

xi j 5si j 1k0
22t i j . ~38!

As shown in the Appendix, the psinc functions are o
thogonal,

si j 5wd i j , ~39!

and the matrix elements of2¹2 in the psinc basis are give
by

t i j 5
w

N (
p

kp
2eikp"(r i2r j ), ~40!

wherew5V/N, the grid point weight, andkp5ukpu.

FIG. 1. One-dimensional analogue of a single periodic sinc, or psinc fu
tion, centered on the origin. In this example the simulation cell is eleven
points in length.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The operatorF which diagonalizesx is none other than
the discrete Fourier transform:

b̃p5(
j

Fp jbj[
1

AN
(

j
bje

2 ikp"r j , ~41!

bi5(
p

Fip
† b̃p[

1

AN
(

p
b̃peikp"r i, ~42!

where thebi are values on the real-space grid and theb̃p are
values on the reciprocal-space grid. Using these definitio
along with Eqs.~38!–~40! and Eq.~A3!, it is a simple matter
to show that

x̃pq5(
i j

Fpixi j F jq
† 5wS 11

kp
2

k0
2D dpq . ~43!

Thus the eigenvaluesjp of x are given by jp5w(1
1kp

2/k0
2). Substituting this into Eq.~33! gives the final ex-

pression for our preconditioned line minimization:

c̃pa8 5 c̃pa2
l

w

k0
2

k0
21kp

2 g̃p
bSba . ~44!

VII. RESULTS

We present some illustrative examples of the importa
of kinetic energy preconditioning for the convergence of c
culations with our method, described in more detail in R
16. In all test cases we use norm-conserving pseudopo
tials in Kleinman–Bylander38 form, the local-density
approximation39,40 for the exchange and correlation term
and theG point only for thek-point sampling.

A silane molecule is placed in a cubic simulation cell
side length 40a0 , with a grid-spacing 0.5a0 ~corresponding
to a plane-wave cut-off of 537 eV! in each direction. The
orbitals are initialized to atom-centered fireballs41 which are
strictly localized within spheres of radius 6.0a0 . Each or-
bital is allowed to vary freely within its localization region
There is one orbital on each hydrogen atom and four on
silicon. In Fig. 2 we show the convergence of the total e
ergy as a function of iteration number. The effect of usi
different fixed values of the kinetic energy preconditioni
parameterk0 may be seen. The limitk05` corresponds to
the case of no preconditioning. It can be seen that impro
performance is achieved for a range of values ofk0 .

In Figs. 3 and 4 we show the convergence of the to
energy as a function of iteration number for different g
spacings and localization radii, respectively. For the calcu
tions presented in these two figures we used a kinetic en
preconditioning parameterk054.0 a0

21. As the grid spacing
is reduced, or the localization radius increased, the size o
basis set and the number of variational parameters in
minimization increases. From Figs. 3 and 4 it is clear that
preconditioning scheme is working well as the number
iterations required to reach a given accuracy does not va
great deal with the size of the problem. For instance, in F
3, we see that the calculation with a grid spacing of 1.0a0

~134 eV! reaches an energy convergence of 1026 hartree af-
ter 11 iterations, whilst with a grid spacing of 0.4a0 ~839
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eV!, i.e., almost 16 times as many basis functions, the sa
level of convergence is achieved in just 14 iterations.

Finally, as an alternative to preconditioning the Four
transformed gradientg̃p

b by multiplying it with the precon-
ditioner jp in reciprocal space, in accord with Eq.~44!, we
have developed a real-space implementation of the pre
ditioning scheme. In this weconvolvethe real-space gradien
gi

a with the inverse fast Fourier transform~FFT! of jp . Of
course, a full convolution would be costly: If the gradie
and preconditioner are both of sizeNgrad, then the computa-
tional effort required to perform a full convolution scales
Ngrad

2 . Thus, we truncate the preconditioner in real space
radial cut-offR0 so that it is nonzero over only a small num
ber of pointsNprec!Ngrad. The computational cost of per
forming a convolution between the gradientgi

a and this
truncated preconditioner is much more favorable and sc

FIG. 2. Convergence of the total energy as a function of the iteration n
ber for the calculation on a silane molecule. The grid spacing was 0.5a0 and
the localized orbitals were confined within spheres of radius 6.0a0 . E0 is
the converged value of the total energy for each run, andk0 is given in units
of a0

21.

FIG. 3. Convergence of the total energy as a function of the iteration n
ber for the calculation on a silane molecule. The localized orbitals w
confined within spheres of radius 6.0a0 and kinetic energy preconditioning
with k054.0 a0

21 was used.E0 is the converged value of the total energy fo
each run.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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as NprecNgrad. For typical values ofNgrad and Nprec, this is
comparable to the cost of preconditioning in reciproc
space.

Truncating the preconditioner in real space is not sim
a matter of improving the computational efficiency, for
also makes physical sense: The reason behind precond
ing is to smear out large kinetic energy variations over sh
distances, thus a convolution that islocalized in real-space
over just a few grid points is all that should be required. T
is demonstrated by the results presented in Fig. 5, wh
shows the convergence of the total energy with this re
space scheme for the above-introduced silane molecule.
different curves correspond to various radial cut-offsR0 for
the inverse FFT of the preconditioning functionjp . Compar-
ing Figs. 2 and 5 we see that preconditioning via local c
volution in real space is as successful as the conventi

FIG. 4. Convergence of the total energy as a function of the iteration n
ber for the calculation on a silane molecule. The grid spacing was 0.5a0 and
kinetic energy preconditioning withk054.0 a0

21 was used.E0 is the con-
verged value of the total energy for each run.

FIG. 5. Convergence of the total energy as a function of the iteration n
ber for the calculation on a silane molecule. The grid spacing was 0.5a0 and
the localized orbitals were confined within spheres of radius 6.0a0 . The top
curve is for the case of no preconditioning (k05`), while for the others
k053.0 a0

21. R0 is the convolution radius in real-space.E0 is the converged
value of the total energy for each run.
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reciprocal-space approach, and that there is little sensiti
to the choice of the cut-off radiusR0 , which may be as smal
as 1.0a0 .

VIII. CONCLUSIONS

We have presented a preconditioning scheme to impr
the convergence of iterative steepest descents or conju
gradients total energy minimizations. We have derived a g
eral expression for this preconditioning scheme for non
thogonal basis sets. For the special case of orthogonal b
sets, we have showed that a unitary transformation may
made to a representation in which the preconditioning fu
tion is diagonal. In our linear-scaling density function
theory method, which uses an orthogonal basis set of p
odic sinc~psinc! functions, this representation is accessed
discrete Fourier transformation: In other words, the prec
ditioning function is diagonal in reciprocal space. We ha
also developed an efficient and physically motivated prec
ditioning scheme which uses a localized convolution direc
in real space, with no need for fast Fourier transforms. B
of these approaches~reciprocal space and real space! signifi-
cantly improve the rate of convergence, and this impro
ment is found to be almost independent of the size of
basis set.
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APPENDIX: THE PSINC BASIS

The overlap matrixs of the psinc functions defined in
Eq. ~37! is given by

si j 5E Di* ~r !D j~r !dr

5
1

N2 (
pq

eikp"r i2 ikq"r jE ei (kq2kp)"rdr

5
V

N2 (
pq

eikp"r i2 ikq"r jdpq

5
V

N2 (
p

eikp"(r i2r j )5wd i j , ~A1!

wherew5V/N is the grid point weight, and we have use
the relations

E ei (kp2kq)"rdr5Vdpq , ~A2!

and

(
p

eikp"(r i2r j )5Nd i j . ~A3!

-

-
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Furthermore, the matrix elements of2¹2 in this basis are
given by

t i j 52E Di* ~r !¹2D j~r !dr

52
1

N2 (
pq

eikp"r i2 ikq"r jE e2 ikp"r¹2eikq"rdr

5
1

N2 (
pq

eikp"r i2 ikq"r j ukqu2E ei (kq2kp)"rdr

5
V

N2 (
pq

eikp"r i2 ikq"r j ukqu2dpq

5
w

N (
p

ukpu2eikp"(r i2r j ). ~A4!
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