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Linear-scaling electronic structure methods are essential for calculations on large systems. Some of
these approaches usesgstematichbasis set, the completeness of which may be tuned with an
adjustable parameter similar to the energy cut-off of plane-wave techniques. The search for the
electronic ground state in such methods suffers from an ill-conditioning which is related to the
kinetic contribution to the total energy and which results in unacceptably slow convergence. We
present a general preconditioning scheme to overcome this ill-conditioning and implement it within
our own first-principles linear-scaling density functional theory method. The scheme may be applied
in either real space or reciprocal space with equal success. The rate of convergence is improved by
an order of magnitude and is found to be almost independent of the size of the ba3030©
American Institute of Physics[DOI: 10.1063/1.1613633

I. INTRODUCTION two factors: First the computational cost per iteration per
atom, and second the number of iterations required to reach a
Conventional methods for electronic structure calculagiven convergence threshold per atom. Even if a method is
tions, such as the plane-wave pseudopotential approachsonstructed in which the computational cost per iteration per
have proved to be indispensable tools for the study of conatom is small and independent of system size, the number of
densed matter systems in a diverse range of discipfii®® iterations required may be so large that the minimization is
computational effort required, however, scales asymptotiprohibitively inefficient. Indeed, it has been observed that
cally with the cubeof the system size, effectively placing a methods which use large basis sets suffer from this very
limit on the scientific problems that can be tackled with theseprob|em, known adl-conditioning. We present a discussion
approaches Linear-scaling methods’* which exploit the  of the origin of ill-conditioning and describe a general
real-space localization that is inherent in systems with a bangcheme to overcome it.
gap;~® should make these scientific problems tractable. We briefly outline the formalism of linear-scaling meth-
Several types of linear-scaling scheme exist and a poingds in Sec. II. In Sec. Il we discuss the cause of the above-
of commonality between many of them is the use of local-mentioned ill-conditioning, and in Sec. IV, following the
ized functions. Some of these approaches use a relativelyork of Bowler and Gillarf* we present a general precon-
small basis set of numerical atomic orbifalsr Gaussian itioning scheme for alleviating the problem. In particular,
atomic orbital3***that have been preoptimized for other en-\ye show that the “diagonal approximation” that was in-
vironments and transferred to the system under considefgked in Ref. 21 is unnecessary and we account for the ten-
ation; other approach¥s*®use much larger localized basis sorial nature of the nonorthogonal bases correctly. In Sec. V
sets of simple functions such as polynomidls? spherical e extend our analysis to the case of an orthogonal basis,
Wa.VeS:I,'9 or bandW|dth ||m|ted delta funCtiOI'?bo. EaCh Of and in Sec. VI we use our |inear-sca|ing meﬂ{bﬁb a Spe_
these philosophies has its advantages and drawbacks: T@gic example of the preconditioning scheme. Finally, in Sec.

former can suffer from transferability problems but is ca-vi| we present results that demonstrate the importance of
pable of providing good accuracy with modest effort; theysing preconditioning.

latter is computationally more intensive but is capable of
giving an accuracy that isystematicallytunable with a pa-
rameter that controls the completeness of the basis set that|is FORMULATION OF THE PROBLEM
being used, akin to the kinetic energy cut-off in plane-wave
methods. It is this latter category of method that we discuss A system of noninteracting particles in a potentiais
here. described by

The usefulness of any linear-scaling scheme is ultimately 52
determined by itgrossoverpoint, namely the system size at Hn(r)= [ - %V%V(r)
which the method begins to be faster than conventional
cubic-scaling approaches. This crossover depends largely athere H is the single-particle Hamiltonian of the system,
with energy eigenvalueg, and corresponding eigenstates

3Author to whom all correspondence should be addressed. Electronic maiFﬁ_n(r)- The eigenstates satisfy the orthogonality constraints
aam24@cam.ac.uk given by

(1) = €nihn(r), 1
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f (1) (1) dr =Sy, 2 hW=fD;(r)I3|DV(r)dr, (11
for all m and n. For instance, within the Kohn—Sham and using Eqs(7)—(10), the energy may be written as
scheme of density-functional thed?’;?* A is the Kohn- E=(c) *h,,c* KA
Sham Hamiltonian an¥ is the effective potential. @

The total band-structure energy is given b w .

gy 1s given by =; fo(M1),(ch) #h,,,c"MP, . (12)

E:; fnen:; f“f Y (NHY,(r)dr, (3 suffixese and 8 run over the localized functior}, x and

v run over the basis functionfD}, and n runs over the
where f, is the occupancy of statg,(r):** At the energy  extended orthogonal orbita{g}. We have adopted the Ein-
minimum, all states below and above the Fermi level havestein summation convention for all repeated Greek suffixes,
occupancy unity and zero, respectively. and continue to do so from here on.

In the case of linear-scaling calculations, thelowest It is both convenient and physically meaningful to per-
extended eigenstateg,(r) (ne{1,...,N}) are expressed in form the minimization of the energy functional in two nested
terms of a set of V' localized functions ¢,(r) (a loops, as in the ensemble density-functional method of

e{1,...\}) that are generally nonorthogonal: Marzari et al.? In the inner loop we minimize the energy
with respect to the elements of the density ke&f using
(1) =2, pa(rIM?,, (4)  one of a number of metho#s3?to impose the constraint

that the ground state density matrix be idempotent and give

whereM is a squaréA” by A), nonsingular matrix of coef- the correct number of electrons; in the outer loop we opti-
ficients, and\ can be equal to or greater than the number ofMize the localized funcFion&a(rl)G with respect to their co-
occupied eigenstates. The overlap majy of the local- efficientsc”, in the basisD ,(r).

ized functionse,(r) is lll. PRINCIPLES OF KINETIC ENERGY
ILL-CONDITIONING
Sang o (r)dg(r)dr, 5 The phenomenon of kinetic energy or length-scale ill-

conditioning is a familiar one within the plane-wave ap-
and on substitution of Ed4) into the orthogonality relation proach to electronic structure calculatidng. is not, how-
given by Eq.(2) we find thatS,; satisfies ever, restricted to this approach and its effects are seen in
(M1 eS, MF =5 6 Mmany methods which use a large ba\'c,iszéé?:34 o
n Sap™ mo Znm The efficiency with which a function can be minimized
where a distinction has been made between contravariant anging iterative techniques such as steepest descents or con-
covariant quantiti€§?’ through the use of superscript and jugate gradients is related to theondition number

subscript Greek suffixes, respectively. = Wmax! Omin, Where wqax and o,y are the extremal curva-
Substituting Eq.(4) into the energy expression of Eq. tures of the function about the minimufnMinimization is
(3), and defining most efficient when the condition number is small and the
curvatures have a narrow range of values. On the other hand,
K B = E M f (M1, 2, (7) Wh.en th'e curvatu'res take a wide range of values, the number
n of iterations required for convergence can become unaccept-

ably large and the minimization is said to be ill-conditioned.
Haﬁzf ¢§(r)l:|gb5(r)dr, (8) _ The curvatures of the total energy f_unct_ional are deter-

mined by the eigenvalues of the Hamiltonian. Hence, the
condition numbek depends upon the ratio of the largest and
smallest eigenvalues in the basis representation that is being
used. With darge systematic basis, these eigenvalues span a
broad range. As a result, the condition number is large, ren-
dering the problem ill-conditioned. A significant source of
whereK“# is referred to as theensity kernef® this ill-conditioning is associated with the contribution to the

We consider the localized functiong,(r) to be repre-  total energy due to the kinetic enerBy;,, which is given by
sented in terms of a basi3,(r) as follows:

the band-structure energy becomes

E=2 H,zKF?, 9)
af

ﬁ2

Ekin=— 5 > fnJ Y (N V2y(r)dr. (13)
$a(r)=2) D,(r)ck,, (10 "
. It is clear that high energy eigenstates are dominated by their

for some coefficients” , . As the basis function® ,(r) may large kinetic energy. These states contribute little to the total
be in general nonorthogonal, the tensor properties must bground state energy, as they are unoccupied, yet they con-
taken into account through the use of superscript and suliribute greatly to the broadening of the eigenspectrum. The
script Greek suffixes. same argument does not hold, however, for the low-lying
Defining states for which the potential and kinetic contributions are
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more closely matched. This ill-conditioning may be allevi-

ated, orpreconditionedby removing the effect of the kinetic Xpy= ; GGy, (19

energy operator for the high energy states, making them

more degenerate, and hence reducing the width of th&ubstituting this into Eq(17) gives

eigenspectrum, whilst leaving the low energy states un-

changed. Ex=>, |ak|% (20)
In the plane-wave approach, the effect of kinetic energy kn

ill-conditioning is reduced by multiplying the steepest de-\here the new variables, , which make the energy surface

scents directions in reciprocal space by a diagonal precondipherical are given by

tioning matrix which behaves as the inverse of the kinetic

energy operator at high wave vectors and is a constant at low kn= (GNi,e” M7, (21

wave vectc_)r§..Such a precond|t|oner, as pomtec_i outin Ref. In a steepest descents procedure, although the following

21, is qualitatively equwalent to thexactpreconditioner for easily generalizes to the conjugate gradients method, a line

a model HamiltoniarX given by minimization is performed along the steepest descents search
5(=1—k52V2. (14) direction to find the new values of the coefficieats,:

The preconditioner for this model problem may be derived a&n:akn_k&_E:(’ (22)

analytically in any basis, as shown in Sec. IV. dayn

where\ is chosen to minimize the energy. We wish to mini-

mize the energy with respect to the coefficieots,, yet the
IV. GENERAL FORMALISM FOR KINETIC functional is sphericaland hence preconditiongth the new
ENERGY PRECONDITIONING coefficientsay,. In order to find the new values *,, of the

~ coefficientsc” , that minimize the energy, we use the chain
We introduce a positive-definite model Hamiltonixnh  ryle to write

and write the energy of the system that it describes as .

JEx _ JEx 03

ExZ? flﬂﬁ(r)f(wn(f)df- (15 dag, dcky,

. ) _. . and from this, and Eqg21) and(22), it may be shown that
We proceed to derive exact expressions for preconditioning

the minimizatiqn of Eq(15). For suitablg choice oX, these. _ C,ﬂazcua_)\(x—l)w ‘9EV>: Sga (24)
same expressions may be used to improve the condition ac”y

number for minimizing the true energy E(B). It is worth
noting that all of the occupation numbefs for the model

system have been set to unity. This amounts to an additional

ac*,,
dayn

where we have used the relations

occupancy preconditioningfirst introduced by Gillaf in ; (M~ an(M l)nB:SaB' (25
the context of metallic systems and then by Marziral 2°
in the general framework of ensemble density-funtionaland
theory.
Following along the same lines as in Sec. Il, defining Ek (G‘T)”k(G‘l)k”=(x‘1)“”, (26)
xw=f D:‘L(r))A(DV(r)dr, (16) obtained from Eqs(6) and(19), respectively.

- _ ) Choosing the model Hamiltoniak introduced in Eq.
and substituting this, Eq4) and Eq.(10) into Eq. (15 we  (14), and defining

obtain
s,,= | DX(r)D,(r)dr, 2
Ex=2 (MN),%(c),*X,,c"sM”",. 17 g f w(Pu1) @0
n

It is at this point that a tensorially incorrect “diagonal t,,= —f DZ(r)VZDv(r)dr, (28
approximation” is made in Ref. 21. In our notation, this
would be given by Eq. (24) becomes

JE
2 MPMD), "= (S7H =5, (18 ¢/t =ct = N(stko ) 11— 5 Spe (29
n B

whereJ is some constant, and the first equality follows from where, following the discussion in Sec. lll, we have replaced
Eg. (6). We do not make this unnecessary approximation. the model energ¥y with the true energye. We see from

Formally, as it has been defined to be positive-definite Eq. (29) that preconditioning is effected by premultiplying
the matrix x may be expressed in terms of its uniquethe steepest descent gradient by the malsixt(k%)‘1 and
Cholesky factoiG:%’ postmultiplying it byS.
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V. THE CASE OF AN ORTHOGONAL BASIS

In the special case of an orthogonal bgd&g there is no

distinction between covariant and contravariant quantities
with respect to the expansion coefficients of this basis, and a: n. |

such we use Latin suffixes to denote them(r). In this
case, Eq(24) becomes

ci’azcia—)\; Xi; 0,%Sga (30)

where we have defineg,”=JE/dc};.

Let F be that unitary transformation which diagonalizes _; |

the (Hermitian matrix x, i.e., FXFT=%, whereX is a matrix
with eigenvaluest, on its diagonal:

Xpg=ép0pq- (31

Denoting transformed variables by==;F ,v;, we ap-
ply F to Eq. (30) to obtain

~r = ~— 1

Coa=Cpa— )\% Xpq Oq Spa - (32

From Eq.(31) we see thak, =&, 8,4 is diagonal, hence
Eq. (32) becomes
~ ~ 1 ~
Cha=Cpa— N0, Sga -
&p
In other words, for the case of an orthogonal b48i$, the
transformed gradienis preconditioned by premultiplying by
a diagonal matrix of inverse eigenvalué;l. Postmultipli-
cation by the overlap matris is still present in order to

(33

8845

Preconditioned iterative minimization

o=

n4
nz

=210 1 2°3 4 % 6 T B

g D 10 11 12 13 14 15
Grid points

FIG. 1. One-dimensional analogue of a single periodic sinc, or psinc func-
tion, centered on the origin. In this example the simulation cell is eleven grid
points in length.

k I m
rk|m=N—lA(1)+ N_ZA(2)+ N—3A(3), (36)
where k, I, and m are integerske{0,1,..,N;—1}, and
similarly for | andm. There is one psinc function centered
on each grid point of the simulation cell.

The name “periodic sinc,” or psinc, has been chosen to
reflect the connection that this function has with the familiar
“cardinal sine” or sinc function. The sinc function is a con-
tinuous integral of plane waves with unit coefficients up to a
maximum cut-off frequency. The psinc function differs only

account for the non-orthogonality of the localized functionsin that this continuous integral is replaced by a finite sum

{o}.

VI. PRECONDITIONING AND PERIODIC
SINC FUNCTIONS

We consider a unit cellwhich we shall refer to as the
simulation cell with primitive lattice vectors A®) (i
€{1,2,3), volume V=|AM(A@xA®)|, and N;=2J,
+1 grid points along direction, where theJ; are integers.

over the reciprocal lattice vectors of the simulation cell, as in
Eqg. (34). As a result, whereas the sinc function decays to
zero at infinity, the psinc function is cell-periodic, namely
D(r)=D(r+R), whereR is any lattice vector. Figure 1
shows a one-dimensional analogue of a single psinc function.

From this point onward, for simplicity of notation, we
write the psinc functions introduced in E@®4) as

Di<r>=$§ ko), 37

Our basis set is composed of periodic bandwidth-limited
delta functions? from here on referred to as periodic sinc or wherek, denotes a reciprocal lattice poimf,denotes a grid
psinc functions, defined as the following finite sum of planepoint of the simulation cell, andN=N;N,N; is the total

waves:
Dyim(r)
=D(r—rygm= NyN,N5
J2 J3

J1
% 2 E ei(pB(1)+qB(2)+sB(3)).(r—rk|m)
p=-J1 q=-Jp s=-J3

(39

wherep, g, ands are integers, and tH&") are the reciprocal
lattice vectors:

2
B(l):V(A(Z)xA(S)), etc. (35)

and ther,,, are the grid points of the simulation cell,

number of grid points in the simulation cell.

Using the same model Hamiltoniahgiven by Eq.(14)
along with the definitions presented in E¢®&7) and(28), we
write

(39)

As shown in the Appendix, the psinc functions are or-
thogonal,

— -2
Xij _Sij +k0 t” .

Sij=Wdjj , (39

and the matrix elements of V2 in the psinc basis are given
by
w .
= 2 ke, (40

wherew=V/N, the grid point weight, ané,=[kp|.

Downloaded 21 Oct 2003 to 131.111.62.240. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



8846 J. Chem. Phys., Vol. 119, No. 17, 1 November 2003 Mostofi et al.

The operato- which diagonalizex is none other than o———— 7 T
the discrete Fourier transform:

- 1 .
b,=>, Fyibj=—=2> bie i, 41
P ; P \/N; : D

g

S Fiby= =3 s
b=2, Flb,=—=2 be*eT, 42 g
S N VS &

where theb; are values on the real-space grid andﬁlaare
values on the reciprocal-space grid. Using these definitions
along with Eqs(38)—(40) and Eq.(A3), it is a simple matter

to show that

k2
1+ =
Ko

Tteration

Spq- (43

v T
Xpq= 2 FoiXijFjg=w i iterati
1 FIG. 2. Convergence of the total energy as a function of the iteration num-

. . _ ber for the calculation on a silane molecule. The grid spacing waaQahd
Thus the elgenvaluefp of x are given by fp—W(l the localized orbitals were confined within spheres of radiusa§.0E, is

2 2 . . . . . .
+ kp/ kp). Substituting this into Eq(33) gives the final €X-  the converged value of the total energy for each run,karid given in units
pression for our preconditioned line minimization: of ag ™.

L
pa=Cpa™ 3y 125 29 SBa- (44) . _ _ .
0" ®p eV), i.e., almost 16 times as many basis functions, the same
level of convergence is achieved in just 14 iterations.
VII. RESULTS Finally, as an alternative to preconditioning the Fourier

transformed gradiertgpﬁ by multiplying it with the precon-

We present some iIIus_t_rati_ve examples of the importanc%itionerfp in reciprocal space, in accord with E@4), we
of kinetic energy preconditioning for the convergence of Cal'have developed a real-space implementation of the precon-
culations with our method, described in more detail in Ref'ditioning scheme. In this weonvolvethe real-space gradient
1.6' In_aII test cases we use norm-conserving pseudolpoteaza with the inverse fast Fourier transfor(RFT) of £,. Of
tials n }i_ler%g%afn—Bt?‘/landé’Fh form, tge Ioclalt-_den?ty course, a full convolution would be costly: If the gradient
apgr;)hxwrna 10 i lorf teh ekxc grlge anl. corretation term. ang preconditioner are both of sidg,q, then the computa-
an A silar?glrrr]]o?gcilgs p?aég(djl?n zaézgiﬁgimulation cell of tional effort required to perform a full convolution scales as

2 . .
side length 4a,, with a grid-spacing 0.5, (corresponding Ngre}d. Thus, we truncatt_e 'Fhe preconditioner in real space at a
0 %0 radial cut-offRy so that it is nonzero over only a small num-

tobf.it ?Iane-wg;{el_cu';(iﬁ OI 237 e\{in Za?h géﬁcﬁpm The ber of pointsNye<Ngaq. The computational cost of per-
orbitals are initiafized 1o atom-centered firebafle/nich are forming a convolution between the gradiegit® and this

SF”Ctl.y localized within sphere; OT rgdlus 68@ Each O  truncated preconditioner is much more favorable and scales
bital is allowed to vary freely within its localization region.
There is one orbital on each hydrogen atom and four on the
silicon. In Fig. 2 we show the convergence of the total en- . . .
ergy as a function of iteration number. The effect of using Grid-spacing
different fixed values of the kinetic energy preconditioning -}
parametetkk, may be seen. The limiky=0cc corresponds to
the case of no preconditioning. It can be seen that improvec
performance is achieved for a range of value&pf

In Figs. 3 and 4 we show the convergence of the total
energy as a function of iteration number for different grid
spacings and localization radii, respectively. For the calcula-g
tions presented in these two figures we used a kinetic energ™ P
preconditioning parametéi,=4.0 agl. As the grid spacing
is reduced, or the localization radius increased, the size of the
basis set and the number of variational parameters in the
minimization increases. From Figs. 3 and 4 itis clear thatthe -8
preconditioning scheme is working well as the number of
iterations required to reach a given accuracy does not vary a
great deal with the size of the problem. For instance, in FigFIG. 3. Convergence of the total energy as a function of the iteration num-

. . . . ber for the calculation on a silane molecule. The localized orbitals were
3, we see that the calculation with a grld spacing OdeO confined within spheres of radius €29 and kinetic energy preconditioning

(134 e\_}) rea_ches an energy convergence of 1@artree af- with ko=4.0a, * was usedE, is the converged value of the total energy for
ter 11 iterations, whilst with a grid spacing of 0a4 (839  each run.

E,/Ha]

4+

S

o

Iteration
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L atisation radii reciprocal-space approach, and that there is little sensitivity

o0 to the choice of the cut-off radiu’y, which may be as small
2+ o—e 602, .

—a70a, as 1.an .

+—e 802,

VIIl. CONCLUSIONS

We have presented a preconditioning scheme to improve
the convergence of iterative steepest descents or conjugate
gradients total energy minimizations. We have derived a gen-
eral expression for this preconditioning scheme for nonor-
thogonal basis sets. For the special case of orthogonal basis
sets, we have showed that a unitary transformation may be
made to a representation in which the preconditioning func-
o s 10 15 tion is diagonal. In our linear-scaling density functional

Iteration theory method, which uses an orthogonal basis set of peri-
. N odic sinc(psing functions, this representation is accessed via
FIG. 4. Convergenpe of the.total energy as a func_tlon of'the iteration num—discrete Fourier transformation: In other words, the precon-
ber for the calculation on a silane molecule. The grid spacing waa{ahid !
kinetic energy preconditioning witk,=4.0 a5 * was usedE, is the con-  ditioning function is diagonal in reciprocal space. We have
verged value of the total energy for each run. also developed an efficient and physically motivated precon-
ditioning scheme which uses a localized convolution directly
in real space, with no need for fast Fourier transforms. Both
of these approachédeeciprocal space and real spas@nifi-
bl h ¢ ditioning . | cantly improve the rate of convergence, and this improve-
comparable to the cost of preconditioning in FecIprocal- yent is found to be almost independent of the size of the

space. basis set
Truncating the preconditioner in real space is not simply '

a matter of improving the computational efficiency, for it

also makes physical sense: The reason behind preconditioﬁ‘-cKNOWLEDG'vIENTS

ing is to smear out large kinetic energy variations over short  One of the authoréA.A.M.) acknowledges the EPSRC
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different curves correspond to various radial cut-dé¥sfor the manuscript.

the inverse FFT of the preconditioning functign. Compar-
ing Figs. 2 and 5 we see that preconditioning via local conoppeNDIX: THE PSINC BASIS
volution in real space is as successful as the conventional

l0g, [(E - E)/Ha)

-8

as NpredNgrag- For typical values oNg,q and Ny, this is

The overlap matrixs of the psinc functions defined in
Eq. (37) is given by

Sij:J D,*(r)DJ(r)dr

—a R =102,

1 1 ) ) )
o—e No preconditioning = Wz e'kp'rif'kq'rif e'(kqfkp)'rdr
pqg

+—eR =203,
4—a R =303,

\ : .
= e % e'kp'ri_'kQ'ri5pq
v ikp(ri—rj)
o :W% e it =wg (A1)

wherew=V/N is the grid point weight, and we have used
the relations

T} T T B VI VI
100 5 10 15 20

Tteration

_ _ f e'ko K Tdr =V s, (A2)
FIG. 5. Convergence of the total energy as a function of the iteration num-

ber for the calculation on a silane molecule. The grid spacing waa{ehd

the localized orbitals were confined within spheres of radius§.0The top and

curve is for the case of no preconditioning, &), while for the others

ko=3.0a;5 . Ry is the convolution radius in real-spad®, is the converged 2 elkp(ri—rj) = NG;; . (A3)
value of the total energy for each run. p
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Furthermore, the matrix elements efV? in this basis are
given by

tij:_

fDi*(r)Vsz(r)dr
1 ik ik ik 2 Ak
:_WE e'fpTiT! q"if e "¥pTVeekaTdr
Pq

1 : : )
WzE e'kp'ri"kq"ilkq|2j el (ka~kp) gy
pa

\Y

5 % eikp'ri*ikq‘rj|kq|25pq

(Ad)

Zls =z

E |kp|2eikp-(ri7r]—)'
p

IM. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos
Rev. Mod. Phys64, 1045(1992.

2M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S
J. Clark, and M. C. Payne, J. Phys.: Condens. Mdt#er2717(2002.

3G. Galli, Curr. Opin. Solid State Mater. Sdi, 864 (1996.

4S. Goedecker, Rev. Mod. Phyal, 1085(1999.

SW. Kohn, Phys. Revi15 809 (1959.

6. des Cloizeaux, Phys. Re\35, 685 (1964).

’S. Ismail-Beigi and T. A. Arias, Phys. Rev. Le@2, 2127(1999.

8L. He and D. Vanderbilt, Phys. Rev. Le&6, 5341(2001).

9J. M. Soler, E. Artacho, J. D. Gale, A. GaacP. Junquera, P. Ordejoand
D. Sachez-Portal, J. Phys.: Condens. Mattdy 2745 (2002.

10C. E. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon, Chem.
Phys. Lett.253 268(1996.

11G. E. Scuseria, J. Phys. Chem1A3 4782(1999.

12E. Hernadez, M. J. Gillan, and C. M. Goringe, Phys. Rev5B, 7147
(1996.

133, E. Pask, B. M. Klein, P. A. Sterne, and C. Y. Fong, Comput. Phys.
Commun.135, 1 (2001).

Downloaded 21 Oct 2003 to 131.111.62.240. Redistribution subject to Al

Mostofi et al.

14J.-L. Fattebert and J. Bernholc, Phys. Rev6B 1713(2000.

153, R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lég. 1240
(1999.

16C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, O. ijgez, and M. C. Payne,
Phys. Rev. B66, 035119(2002.

E. Hernadez, M. J. Gillan, and C. M. Goringe, Phys. Rev58 13485
(1997.

18], E. Pask, B. M. Klein, C. Y. Fong, and P. A. Sterne, Phys. Re§9B
12352(1999.

19p, D. Haynes and M. C. Payne, Comput. Phys. Comrii08, 17 (1997).

20A. A. Mostofi, C.-K. Skylaris, P. D. Haynes, and M. C. Payne, Compui.
Phys. Commun147, 788 (2002. Also known as periodic sinc or psinc
functions: See Sec. VI.

21D, R. Bowler and M. J. Gillan, Comput. Phys. Commat2, 103(1998.

22p. Hohenberg and W. Kohn, Phys. R&@6, 864 (1964.

BW. Kohn and L. J. Sham, Phys. ReM0, 1133(1965.

24R. 0. Jones and O. Gunnarsson, Rev. Mod. PB§s689 (1989.

25]. F. Janak, Phys. Rev. B3, 7165(19798.

2E. Artacho and L. Milas del Bosch, Phys. Rev. 43, 5770(1997).

27C. A. White, P. Maslen, M. S. Lee, and M. Head-Gordon, Chem. Phys.
Lett. 276, 133(1997).

2R, McWeeny, Rev. Mod. Phy82, 335 (1960).

2N. Marzari, D. Vanderbilt, and M. C. Payne, Phys. Rev. L&8, 1337
(1999.

30X -P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev4B 10891(1993.

313. M. Millam and G. E. Scuseria, J. Chem. Phy86, 5569(1997.

32p, D. Haynes and M. C. Payne, Phys. Re\6® 12173(1999.

33C. K. Gan, P. D. Haynes, and M. C. Payne, Comput. Phys. Comiha4n.
33(2001).

34E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev5® R5471
(1995.

35Y. Saad, Iterative Methods for Sparse Linear SysteffNS, Boston,
1996.

36M. J. Gillan, J. Phys.: Condens. Mattkr689 (1989.

37G. H. Golub and C. F. Van LoaMatrix Computations3rd ed.(The Johns
Hopkins University Press, Baltimore, MD, 1996

38, Kleinman and D. M. Bylander, Phys. Rev. Le48, 1425(1982.

39D, M. Ceperley and B. J. Alder, Phys. Rev. Letb, 566 (1980.

403, P. Perdew and A. Zunger, Phys. Rev2B 5048(1981).

410. F. Sankey and D. J. Niklewski, Phys. Rev4B 3979(1989.

P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



