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We presentoNETEP (orderN electronic total energy packagea density functional program for
parallel computers whose computational cost scales linearly with the number of atoms and the
number of processors.ONETEPis based on our reformulation of the plane wave pseudopotential
method which exploits the electronic localization that is inherent in systems with a nonvanishing
band gap. We summarize the theoretical developments that enable the direct optimization of strictly
localized quantities expressed in terms of a delocalized plane wave basis. These same localized
quantities lead us to a physical way of dividing the computational effort among many processors to
allow calculations to be performed efficiently on parallel supercomputers. We show with examples
thatoNETEPachieves excellent speedups with increasing numbers of processors and confirm that the
time taken byoNETEPas a function of increasing number of atoms for a given number of processors

is indeed linear. What distinguishes our approach is that the localization is achieved in a controlled
and mathematically consistent manner so threTEP obtains the same accuracy as conventional
cubic-scaling plane wave approaches and offers fast and stable convergence. We expect that
calculations withoNETEP have the potential to provide quantitative theoretical predictions for
problems involving thousands of atoms such as those often encountered in nanoscience and
biophysics. ©2005 American Institute of Physic§DOI: 10.1063/1.1839852

I. INTRODUCTION science, whose theoretical investigation would be possible

The equations of quantum mechanics govern the correQnIy with an accurate quantum mechanical description of the
Rpteractions between thousands of atoms.

lated motions of electrons and nuclei and are thus essential { N
any theoretical description of the chemical or physical prop- N @n attempt to extend the application of DFT to such
erties of matter. Apart from trivial cases, these equations arBroblems, researchers in recent years have put substantial
impossible to solve with pen and paper and highly sophistiﬁﬁort into the construction of DFT methods which are
cated computational methods for their solution have beefinear-scaling***?i.e., with a cost which increases asymp-
devised"? Amongst them the Kohn—Sham density functionaltotically only linearly with the number of atoms. These meth-
theory (DFT) formalisn? for electronic structure calcula- 0ds exploit the electronic localizatibht* that is inherent in
tions has become established as an approach that providesystems with a band gap and seek to optimize quantities that
very good description of electron correlation effects while(in principle) are infinite in extent, but decay exponentially,
keeping the size of calculations tractable. DFT calculationsuch as the single-particle density matfixor Wannier
have become an indispensable tool for the study of matteiunctions*>!® A common point between these methods is
with myriads of applications in areas such as chemstry,that the onset of linear-scaling occurs only after the number
biochemistry, polymers’ and materiaf%® to name a few. of atoms exceeds a critical value. An important performance
However even DFT calculations suffer from an unfavorablecharacteristic then is therossover pointthe number of at-
scaling: the time taken to perform such a calculation on @ms at which a linear-scaling approach becomes faster than a
computer increases asymptotically with the cube of the numeconventional cubic-scaling approach. This crossover point is
ber of atoms. This cubic scaling is a consequence of thgystem dependent but often lies in the order of hundreds of
delocalized nature of the wave functions which are the eigenatoms. As single processor workstations are capable of cal-
solutions of the Kohn—Sham single particle Hamiltorfldfl,  cyjations with roughly no more than 100 atoms, it is impor-
and limits the number of atoms_ we can treatto a few_hundre@ant to use multiprocessdparalle) computers if we are to

at most. There are many e_xcmng problems at t_he mterfacgeeap any benefits from linear-scaling DFT. Conversely, we
betvyeen the microscopic and Mmesoscopic worldsg g argue that only linear-scaling methods are suited to
particularly in the emerging fields of biophysics and nano-,ye pest advantage of parallel computers since, only with
them does an eightfold increase in computational power al-
dauthor to whom correspondence should be addressed. Presedow calculations for eight times as many atoms instead of

address: Department of Physical and Theoretical Chemistry, South Parl ; ; ;
Road, Oxford OX1 302, UK. kcﬁnly twice as many atoms as in conventional approaches. It

Electronic mail: chris-kriton.skylaris@chem.ox.ac.uk is not surprising therefore that the development of linear-
URL: http://www.chem.ox.ac.uk/researchguide/ckskylaris.html scaling methods has often advanced hand in hand with the
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development of suitable algorithms for calculations on parwhere the factor of 2 above is included to account for elec-

allel computerg/=20 tronic spin as we assume here a closed shell description.
To be useful, a linear-scaling method should have a sysProvided there is a band gap in the system, the density ma-

tematic way to reduce error to any value desired, in the sameix (2) decays exponentiaff)~3? as a function of the dis-

way as conventional methods. However progress toward&nce betweem’ andr. This property can be exploited to

this goal has been slow as it has been difficult to deviséruncate the density matrix to a sparse band-diagonal form

generally applicable schemes to truncate the exponentiallpuch that the amount of information it contains increases

decreasing “tails” of the density matrix or Wannier functions linearly with its size. To achieve this in practice, the density

while maintaining control over the accuracy or the stability matrix is expressed in the equivalent fofthroughout this

of the iterative minimization procedure. Most linear-scalingpaper a summation will be implied over repeated Greek in-

approaches useonorthogonal localizethasis sets to express diceg

their (also localized functions. These approaches can be

classified into methods which use atomic-like basis sets such  p(r,1")= ¢ (N)KLe%(r’), 4

as Gaussian functiorf$,Slater functiong? spherical Bessel

function€® or numerical atomic orbita® and methods Where the{¢,} are a set obpatially localized, nonorthogo-

which use simpler localized basis sets such as polynoffialsnal basis functions and the matri, as defined by the above
or real-space grid¥2® equation, is called thdensity kernef® This form allows for
our linear-scaling methdd is different from all other @ practical, “coarse-grained” truncation of the density matrix
approaches as it uses a basis set of highly localized functiorf§rough truncation of the density kernel. Thus we ensure the
which areorthogonal This approach allows for systematic density kernel is sparse by enforcing the condition
control of truncation errors and is compatible with an accu-
rate representation of the kinetic energy oper&tamhich
ensures variational behavior with respect to the basi&’set.
Our linear-scaling method is implementeddneTEP (order-
N electronic total energy packagehich has been developed
with algorithms intended for calculations on parallel super-
computers and is the subject of this paper.
We give a brief presentation of the formalism of linear-
scaling methods in Sec. Il. In Sec. Ill we focus ORETER,
and explain its capabilities with theoretical arguments an

ex.amp:e Cﬂcﬁl.ago?ﬁ I Setl:l' :V_welglve a;ntp verwf\(law of theprograrr"f7 where instead of the density kernel, orthogonal
principies benin € parallel implementation ONETEP .Wannier-like functions are truncated. All these sets of func-

which is based again on the real space localization. Finallyn?ions are taken preoptimized and remain fixed during the
Sec. Vwe demo_nstrate hoanETEP takes advgntage_of Par” - calculation. Based on only operations with a linear cost such
allel computers in order to perform calculations with thou-as the construction of the Hamiltonian matrix in the LCAO
sands of atoms. basis and sparse matrix algebra, a number of efficient
technique¥~*! have been developed that minimize the en-
ergy while satisfying the difficult nonlinear constraints of
density matrix idempotency or Wannier-like function
Our aim is to solve a set of single-particle Safirger  orthogonality??

K*¥=0 when |[R,—Rg|>rqy, %)

whereR, and R, are the “centers” of the localization re-
gions of the functionsp,(r) and ¢4(r).

Often a linear combination of atomic orbitalt CAO)
approach is followed where the baéis,} consists of atomic
orbitals. Their radial shapes can be expanded in spherical
Bessel functiond® Gaussian¥*>—where sparsity is com-

only imposed via “thresholding® rather than by Eq.
5)—and numerical atomic orbitals as in theliesTa

IIl. THEORETICAL BACKGROUND

equations in a potential(r), as is the case in DFT The main concern with approaches of the LCAO type is
52 the transferability of the basis set. Even with the available

Hi(r)=| — =V2+V(r) | ¢i(r)= € ¢;(r), 1) recipes for the generation of high quality atomic
2m orbitals?#*3~%5the number of such functions per atom can be

where H is the single-particle Hamiltonian of the system 'arge, and a good level of expertize is needed to generate a
with energy eigenvalues, and corresponding spatial eigen- basis set of the size and type that balances efficiency and

functions (also known as “orbitalsy #;(r) which are or- required accuracy for each new problem. The size of sparse
thogonal. matrices for a giverr, increases with the square of the

number of atomic orbitals per atom while the operation cost
(prefactoy for linear-scaling matrix multiplications increases
with the cube. As a rule, preliminary calculations with a
N * /o0 number of basis sets are performed to select the most suitable

p(rr )_Z fn(r)yi (), @ one and “calibrate” the method. This is in contrast to the
“black box” behavior of the plane wave approach where
systematic improvement of the basis is guaranteed by in-
creasing a single parameter. Hence, while low level LCAO
calculations are relatively easy to do, improving the accuracy
quickly becomes both technically demanding and computa-
n(r)=2p(r,r), (3)  tionally very expensive.

All the information about the ground state of our system
is contained in thesingle-particledensity matrixp(r,r’),

wheref; is the occupancy of staig (r) and at zero tempera-
ture it is restricted to either 0 or 1. The charge densfty),
which is the central quantity in DFT, is given by the diagonal
elements of the density matrix
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FIG. 1. (Color) Left, one delocalized orbita;(r) from a conventional DFT calculation with tlaster code(Ref. 50 on a peptide. Right, three optimized
NGWFs ¢,(r), ¢4(r), andé,(r) from aoNeTeP calculation on the same peptide.

Ill. OVERVIEW OF ONETEP fined in its localization sphere of radiug, centered on an

The state of affairs irONETEP is different from other ~&t0m, by truncating its expansion in E), as shown in Fig.
linear-scaling approaches. We overcome the matrix siz& In general, for an arbitrary localized basis set, such an act
problem by using a minimal number 6.} localized func- of truncation would lead to a breakdown of the conjugate
tions per atom and address the transferability issue by opt@radients m|n|m|_zat£n schemes employed in electronic
mizing these functionsluring the calculation. Therefore the Structure calculations: Only for the case of an orthogonal
{¢.} are no longer oufatomic orbital basis set, rather they basis set are the gradient contributions inside and outside the
are quantities to be determined during the calculation alon¢fc@lization sphere decouplEdso that theselective optimi-
with the density kerneK. We call the{,} nonorthogonal zation of quantities inside the localization sphere is stable.
generalized Wannier functioflGWF3 (Ref. 27 (see Fig. BY construction, the psinc basis set is orthogonal.

1). We enforce strict localization on our NGWFs by confin- _ 1he psinc functions, through which all quantities are ul-
ing them to spherical regions centered on atoms and by corfimately expressed iDNETER, are connected to plane waves
stantly truncating any contributions that may develop outsid®Y Means of a Fourier transform. Due to this property
these localization spheresduring our conjugate gradients ONETEP S essentially a Im_ear-scallng reformulation of_the
optimizatiorf® procedure. To achieve this, we expand themPlane wave pseudopotential DFT approach. The quality of

in a basis of periodic sifé or psiné® functions{D,(r)}: the psinc basis set can be systematically improved by vary-
ing only one parameter, the grid spacing of the psincs, which

_ is equivalent to the kinetic energy cutoff of the plane waves.

Palr) ; DN Cra- © The equivalence of our method with the conventional plane-

wave pseudopotential approach can be best demonstrated by
example. We have chosen here the case of the hydrogen bond
l}‘Prmed by two water molecules as a rather challenging test
involving a weak chemical bond, close to the limits of the
accuracy of DFT. In Fig. 3 we plot the energy as a function
of the bond distance. Calculations withneTEPand with the
conventional plane wave pseudopotential approach as imple-
mented in theasTEPcode® were carried out using the same
norm-conserving pseudopotentials and plane waves up to the

Each psinc is a highly localized spike-like function and the
index k indicates the grid point on whicB(r) is centered
as the set of psincs covers a regular grid of points througho
the volume of the simulation cell. Eaah,(r) then is con-

@, centre @,, localisation sphere
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FIG. 3. The potential energy curve of two hydrogen bonded water mol-
FIG. 2. Imposing localization on thé,,(r) function in real space. From the ecules as a function of H-bond distance calculated witaTep (this work),
regular grid of psinc function®,(r), only the ones within its localization  casTter(conventional plane wave pseudopotential appraatd NWChem
sphere are allowed to contribute ¢g,(r). (Gaussian basis all-electron approach
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same kinetic energy cutoff of 95 Ry. The NGWF localization  Serial calculation Distribution of data Parallel calculation
sphere radir . in ONETEPwere set to 3.3 A. There is excel- RIRISGESReR
lent agreement betweeaNETEP and CASTEP as the two

curves essentially coincide. The equilibrium bond length and

the curvature of the curve at this length as determined by (o022
ONETEP differ from the CASTEP results by only 0.3% and oS
0.5%, respectively. In the same figure we also show the po- L)
tential energy curve obtained with the all-electron Gaussian P oo’ Simy,,

basis function code NWCheiiRRef. 51 using the cc-pVTZ //' a”°’?ce//d
basis? augmented with its corresponding set of diffuse m{g &

. . . . . A

functions®® This substantial basis set is necessary here tc e )

describe accurately the weak interactions due to the hydro Simalatioreell

gen bond and comprises 280 contracted Gaussian atomic oi-

bitals. In contrast, theNETEP calculation uses only 12 NG- FIG. 4. Schematic two-dimensional example of our data parallelization

WFs (four on each oxygen atom and one on each hydrogeatrategy. For clarity only four processors are shdqnumbered from 0 to)3

atom—these numbers show how large the difference in ma_and nine atoms which are represented as dots. The distribution of atomic
. . . . h data to processors involves partitioning the material into fragments made up

trix sizes In accurate galculat|ons wihNETEPand LCAO- ot atoms in close proximity. The distribution of simulation cell data involves

type codes can be. Given the fact that NWChem performsartitioning the simulation cell into slabs.

all-electron calculations, the agreement WiRETEP is ex-

tremely good: the equilibrium bond length and the curvature

of the curve at this length as deoztermlned ;b'y ETEPd'ﬁer requires distribution across processors both of the computa-
from the NWChem results by 0.6% and 2.3%, respectively. Ittional effort and the data. Our model is such that all proces-

is also worth observing from Fig. 3 the smoothness of the f val K Il i d |

ONETEPcurve. This is a consequence of the strict mathemati-Sors perform equivalent tasks at all times and as a resu tour

cal consisten.c of all operations @NETEPR, such as the fact parallel code can also run on computers with a single pro-

that because Zf the Igne wave nature’ of our basis we arc:eessor without any modification. In our discussion we will
P S ) . use Np to represent the total number of processors, num-

able to calculate both the kinetic and Hartree energies usind. 4 from 0 to Kp—1)

the same Fourier transform methcodsThis, combined with P

the fact that the psinc functions are fixed in space whichA. Data parallelization
means that they do not involve so-called *Pulay forces,” Two types of data are parallelized @\ETER First, there

greatly facilitates the essential calculation of forces on atoms; yata directly associated with each atom such as the expan-

Irespective of_thew position. : _ . sion coefficientsCy , of the NGWFs in the psinc basis ac-
A known d.'ff'CU|.ty of self-consistent calcglatmns is that cording to Eq.{6). The number of such coefficients increases

the number of iterations needed to reach a given CONVErgengRoary with the number of atoms, and since our basis set
thrbeshzkz) p(ler atobm can be very Iar_ge, anr(]j ((:jan Oszn be EXaonsists of a large number of highly localized psinc functions
erh ate h y 1arge basis Sfts' Evefn n rr}net 0dS SUCNEBEP  jistribution of such quantities is essential. Secondly, there is
where t N c_omp.uta_tlona cosF of each NGWF conjugatg 9% ata whose size is proportional to the volume of the simula-
dients iteration is linear-scaling, the number of such |tera—tion cell, such as the charge density and the local potential.
tions can be so large that self-consistent minimization is prog e their size formally does not depend on the number of
hibitively inefficient. To overcome this obstacle, we haveatoms, in practice larger simulation cells are needed to ac-

developed a preconditioning schefhevhich enables our oo gate increasing numbers of atoms and soon distribu-

calc_ulal?ons to cont:/_err]gt_a n da smzll nur?bﬁr of 't%rat'o?stion of simulation cell related quantities becomes essential.
(typically 20_,40 which s independent of the number o Figure 4 illustrates our parallelization strategy fatomic
atoms. We will return to this point in Sec. V. data and forsimulation cell data

Our parallelization strategy for the atomic data takes ad-
vantage of the strict localization of the NGWFs. Each pro-
cessorP is assigned a number of aton!) which is a

Our formulation of theoNETEP algorithm is similar to  subset of the total number of atorhg, in the system. The
that presented in our earlier wfkwith a few exceptions distribution of atoms is performed so that the number of
noted below. We shall only review the parts relevant to the’\IGWFsN&PG)v\,F on each processor is approximately the same
implementation on parallel computers here; for full detailsin order to achieve balance in the load of the computation.
we refer the reader to our earlier papeEurthermore, here Another important issue is the minimization of the necessary
we seek to give the reader a general overview of conceptsommunication between processors. As shown in Fig. 4, we
rather than an exhaustive description of algorithms which welesire the atoms allocated to a processor to be in close prox-
leave for another, more technical paper. imity so that the number of their NGWF localization sphere

We use the Message Passing Interf@d®l) library for  overlaps with those of atoms belonging to other processors is
communication between process6r¥ and note that in this as small as possible. This, in turn, minimizes the number of
parallelization approach each processor possesses its own NGWFs that need to be communicated from one processor to
dependent portion of the data. Our parallelization strategwnother when computing quantities such as the Hamiltonian

IV. PARALLELIZATION STRATEGY
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matrix in the NGWE representatiOHaB=<¢a||:||¢>5>- To A suitable communication model for the above tasks
achieve this goal we create a Peano “space filling” fractalshould allow for pairwise “point-to-point” communication
curve based on which we rearrange the atoms according feetween all distinct pairs of processors. A further demand is
their proximity in spacé® A further positive outcome from that the model must allow processors uninterrupted compu-
this technique is that it leads to clustering of nonzero value&ation while sending and receiving only the NGWFs needed
near the diagonal of our sparse matrices. due to overlapping localization spheres. We have developed
The distribution of simulation cell related quantities suchan efficient communication algorithm which is scalable in
as the charge density to processors is more straightforwar@/inciple to an arbitrary number of processors. Our commu-
as shown in Fig. 4. The simulation cell is partitioned into hication model consists of\,—1 steps and is outlined in
slabs along one of its dimensions and each processor is all&ig. 5. Again, for the sake of conciseness, we focus here on
cated the quantities that belong to its slab. one specific example with four processors, therefore we have
2X4—1=7 steps. At each step we show four boxes num-
bered from 0 to 3, representing the four processors. The ar-
rows connecting them indicate the direction of point-to-point
communication. Next to each communication step we show a
The distribution of data described in the preceding sec4 x4 matrix whose elements represent all the possible pairs
tion allows the division of the computational work among of processors. The shaded elements represent the computa-
the processors. The bulk of the computation goes first intdion taking place at each step: the column is the processor
the calculation of the total electronic energy that performs the computation while receiving data from the
processor of the corresponding row. Step 1 always involves
ELK™ L {¢u}]= ZKQBH&”L Eoc[nl, @) the diagonal elements of the matrix and thus no communica-
where the first term is the band structure energy and th&ion. As a consequence of our parallelization strategy for
second term is the “double-countindg® correction which —atomic data, the matrix of Fig. 5 has increasing sparsity away
contains the exchange-correlation energy and terms compefiom the diagonal. Our algorithm takes this feature into ac-
sating for spurious interactions contained in the first termcount and communicates data only when it is required for
Second, but just as demanding from a computational vieweomputation.
point, we have the calculation of the gradient of the energy  Our parallelization strategies for atomic data and simu-

B. Parallelization of operations and communication

with respect to the NGWFs in the psinc basis lation cell data cannot be independent of each other; for ex-
ample, the calculation of the Hartrd€oulomb potential
i:4 |:|¢B(r)KBa_ (8)  contribution to theH ,; matrix requires operations between
8ha(r) atomic data such as the,} and simulation cell data such as

ONETEPis designed so that the number of operations to calthe Hartree potentiaVy,(r). These operations are performed
culate these quantities increases asymptotically only linearlin subregions of the simulation cell which are independent of
with the number of atom&. As atomic data are distributed, System size by means of the FFT-box technique which allows
communication between processors is required, and the ets to retain an accurate representation of quantum mechani-
ergy of Eq.(7) is calculated as a sum of contributions from cal operators and their propertiés?*

each processor

Nelt V. LINEAR-SCALING WITH PROCESSORS
E[{K*}{¢a}]= PZO EPK}{¢a}] AND WITH ATOMS
Np—1 [ Np—1 ONETEP is a general purpose electronic structure code
= > | > K ¢(BP’)| A| o) and as such it should be able to take advantage of parallel
P=0 | p'=0 computers in all potential applications. WhielETEPhas alll
the familiar characteristics of the plane wave appro@gts-
+E, [n(p)]] ) tematic basis set, periodic b(_)un(_jary con_ditions, pseudqpo-
c ' tentialg9 most of the computation is done in real space with

, localized functions. Based on these considerations, the par-
where each functiorqﬁ(ﬁP )(r) from a processoP’#P must  allel algorithms we have described in Sec. IV are intended to
be communicated t®, provided its localization sphere over- be scalable with the size of the calculation to an arbitrary
laps with the sphere op{")(r). The second term of Eq9)  number of processors. In practice we need to have more than
is calculated entirely o from its slab of the charge density one atom per processor for the communication not to domi-
n(P), with the exception of the exchange-correlation energynate the total computational time. However, we have ob-
for the case of generalized gradient approximati@GA) served that only ten atoms per procesN:ﬁ,E) is already
functionals where some communication between the procegnough for good parallel scaling in most cases. All the cal-
sors is required to obtain the gradient of the charge densitgulations we report here were performed on the Sun Fire 15K
(Vn)(®. Arelated approach is followed in the calculation of parallel supercomputer of the Cambridge-Cranfield high per-
the NWGF gradient in Eq(8) where each processor only formance computing facilityCCHPCB.
computes and stores the gradient relevant to its functions A straightforward way to assess the performance of our
5E/5¢>Ef)(r). code on parallel computers is by measuring the speedup of
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- FIG. 5. Our point-to-point communi-

cation model. Only four processors are

T 4
MQ:E

3 shown for clarity(numbered from 0 to
3). The arrows indicate the direction
of communication at each step. The
column of each shaded element shows
the processor performing computa-

0 1 ] tions while receiving data from the

_:ﬂ processor of the corresponding row.

3] |2 H

0 1 |

3 2

the computational time on increasing the number of proces?9% of the ideal value for the case of the nanotube and 72%
sors. In Fig. 6 we show the speedups we obtain for calculain the case of polyglycine. The very regular structure of the

tions run on 4, 8, 16, 32, 48, and 64 processors. We focusanotube leads to an ideal partitioning of the atomic data by
here on two examples, an 800-atom chiral boron nitrideour parallelization strategy to achieve a near-optimal balance
nanotube and a 1403-atom polyglycine peptide in a globulaof the computation and communication load, hence the par-
conformation. We observe that both curves show an almosllel speedup in this case is greatest. The irregular three-
linear speedup up to 64 processors. The speedups we achiadienensional structure of the polyglycine is a challenging test
remain substantial even when we get to 64 processors witfor our parallel algorithms. While these irregularities are re-

64

56 [

48

40

Speed-up
w
n

24

FIG. 6. Parallel scalability tests aiNeTepon the SUN Fire 15K supercom-

24

32

40

Number of processors

48

56

64

flected in the jumps that the polyglycine curve in Fig. 6
displays with the increasing number of processors, it is par-
ticularly pleasing to note that the speedups remain high
through its range, from which we can conclude that the dis-
tribution of atoms to processors and hence the balancing of
tasks is still done in a satisfactory way.

In addition to the linear decrease of the time for a given
calculation as a function of increasing the number of proces-
sors, the other significant performance advantage of a code
such a®NETEPIs the linear-scaling of the total time with the

TABLE |. Total energy calculations witbneTEPON pieces of DNA with 64
processors. The time taken in hours is shown as a function of the number of
atoms, and equivalently, base pairs. Also shown are the number of NGWF
iterations needed to converge and the final convergence of the energy per
atom.

puter of the CCHPCF. The speedup for the time taken for a single NGWF 1951
iteration is plotted as a function of the number of processors for a polygly- 2606

cine moleculelbroken ling and a boron nitride nanotukigolid line).

Atoms Base pairs  Total timéh) lterations  AE/atom (Ey)
117 2 2.0 26 1.310°8
379 6 6.4 29 6.610°°
641 10 11.2 29 7810°°

1296 20 26.1 30 141078
30 428 29 141078
40 56.9 31 6810°°
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FIG. 7. Total energy calculations withneTEPON pieces of DNA with 64 processors. The total time taken by each DNA piece is plotted as a function of the
number of atoms. Also shown are times for calculations of equivalent qualityoaitter. More details on theneTepcalculations are shown in the inset: on
the left axis the number of NGWF iterations is plotted as a function of the number of &amgles and on the right axis the time per iteration in hours

is plotted as a function of the number of atofsguares

number of atoms for a fixed number of processors. We havenemory taken by our calculations increase only linearly with
used DNA fragments of increasing length to test the linearthe number of atoms rather than as the cube. We have per-
scaling properties oONETEPWith the number of atoms. The formed calculations on fragments with 2, 6, 10, 20, 30, and
structures are oB-DNA which is the form in which DNAis 40 base pairs ranging from 117 to 2606 atoms using 64 pro-
commonly encountered in physiological conditions within cessors. Table | summarizes our results. We considered the
cells and are constructed by repeating an alternating seonjugate gradients optimization of the energy to be con-
guence of adenine-thymine and guanine-cytosine base pairgerged when the root-mean-square value of the gradient with
We have used an orthorhombic simulation cell for these calrespect to all NGWF$Eq. (8)] was less than 10 Ej, a3?.
culations with dimensions 30 A30 Ax220 A. It is pos- This threshold leads to convergence in the energies of
sible to have such massive simulation cells in our calculad0~8 E, per atom or better as shown in Table 1.
tions because in contrast to the conventional plane wave In Fig. 7 we plot the time taken to calculate the total
approach where empty space is very expensive in memorgnergy for each piece of DNA as a function of the number of
ONETEP involves only atom-localized quantities and empty atoms. We observe that the curve obtained is essentially a
space costs little. While our simulation cell obeys periodicstraight line. To compare with a conventional cubic-scaling
boundary conditions, it is so large that th&upercell plane wave code we also show in the same figure calcula-
approximatio® holds extremely well, i.e., all our DNA tions with casTER® again on 64 processors, with the same
pieces are nonperiodittheir chemically active ends were kinetic energy cutoff, pseudopotentials, and convergence
terminated by hydrogen atomsnd are so far apart from thresholds. What differs is that we are restricted to using a
their periodic images that for all intents and purposes thegimulation cell with much smaller dimensions 3080 A
can be considered as isolated. The DNA calculations werex30 A for the CASTEP calculations as the memory require-
performed at a psinc grid spacing equivalent to a plane wavenents for its delocalized orbitals are proportional to the vol-
kinetic energy cutoff of 42 Ry. We have used standard normume of the simulation cell. The largest piece of DNA that can
conserving pseudopotentials for all elements taken from thét in this simulation cell is only eight base pairs 0§10
casTeP(Ref. 50 library of pseudopotentials. The radii of the atoms but as we can see in Fig. 7 the cost of the calculation
NGWF localization spheres{,. were set to 3.2 A for the due to cubic scaling is already so severe that, even without
hydrogens and 3.3 A for other elements while the cutoffthe memory limitations, adding more atoms would soon lead
thresholdr . for the density kerneK was set to 13.2 A. to unfeasibly long computing times. The inset in Fig. 7 fo-
These generous thresholds yield results practically indistineuses on two important points about theeTeP calculation.
guishable from the infinite cutoff limit, yet still the time and First, the cost of each iteration is indeed linear with the num-
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FIG. 8. (Color) oneTEPCalculations on a 20 base-pair piece of DKIR96 atoms Left, electrostatic potential plotted on an isosurface of the charge density.
Right, charge density contours on the plane of the hydrogen bonds of a cytosine-guanine pair.

ber of atoms. Second, the linearity of the total computationahreas most likely to be reached by enzymes intended to dock
time as a function of the number of atoms is a result of ouwith DNA. This isosurface is colored according to the values
preconditioning schem® which ensures this “true linear- of the total electrostatic potential, ranging from blue for the
scaling” behavior by making the number of iterations smalllow values to red for the high values. Another useful plot is
and independent of the number of atoms, as mentioned ishown on the right side of Fig. 8 which depicts contours of
Sec. Ill. the charge density on the plane defined by the heterocyclic
Quantum mechanical calculations produce a great dealngs of a cytosine-guanine base pair. These contours clearly
of information that can be difficult to analyze, especially show that the bases are connected with three hydrogen bonds
when very large numbers of atoms are involved as in theand their relative strengths are also indicated.
case ofONETER It is therefore very helpful to have the ca- Due to the relationship abNETEPWith the conventional
pability to extract information in a visual manner. For this plane wave approach, we can often take advantage of the
reason we have built intoNETEPthe functionality to output  significant technical experience which has been accumulated
information from our calculations in a form suitable for vi- when adding functionality to the code. Thus, we have al-
sualization. An example is shown in Fig. 8 where we showready implemented iroNETEP a range of well established
three dimensional plots obtained from our calculation on thaGGA exchange-correlation functionals. We show in Table I
20 base-paif1296 atom piece of DNA. On the left side of how our calculations with these functionals compare with the
Fig. 8 we show an isosurface of the charge density correwell-establishedcASTEP code. As a test system we used the
sponding to a value of 0.0@Iag which is a quantity di- smallest of our DNA piece$two base pairs, 117 atoms, its
rectly comparable with experimental x-ray diffraction data.structure is shown on the left of Fig) @and a much smaller
The shape of this surface is very informative: one can distinsimulation cell(dimensions 20 A 20 Ax 20 A) so that the
guish a major and a minor groove which are characteristic o€AsTEPcalculations do not take excessive amounts of time to
the structure oB-DNA. It also gives us an indication of the run. All the other parameters were kept the same as in our
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TABLE II. The binding energy in kcal/mol for the two strands of a two shifts?g or changes in electric polarizatiéﬂ.By coupling

base-pair piece of DNA117 atom$ as calculated with various exchange- ONETEPWiIth a new hybrid schen&for classical mechanical

correlation functionals witltoneTEP (this work and with casTep (Ref. 50. . lati ith t . ired .

The % difference of theneTerPresults with respect toasTepis also shown. simulations VY' quantum gqcuracy In requ're re_g'ons We
can also envisage a capability to perform simulations with

Functional ONETEP CASTEP Difference (%) millions of atoms and thus approach problems well into the
LDARD 617 614 05 mesoscopic regime.
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