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Abstract

Ž .An implementation of the Douglas–Kroll DK transformation is described within a new relativistic quantum chemistry
code, MAGIC, which performs calculations on systems containing heavy atoms. This method reduces the computational cost
in terms of memory requirements that are associated with completeness identities in the DK implementation by factorizing
the one-electron matrices into smaller ones that depend only on two atoms at a time. Examples are presented. q 1998
Elsevier Science B.V.

1. Introduction

The consideration of relativistic effects is essen-
tial to the proper understanding of the chemistry of

Ž .heavy elements Z)80 , in particular the actinides
w x1 , which form a major focus for the nuclear indus-
try. The MAGIC quantum chemistry code, newly
developed, is directed at providing a means of per-
forming chemically accurate calculations on systems
containing many atoms, some of which are heavy.

w xThe MAGIC code is described elsewhere 2 , but, in
its essentials, it is a code based on the use of
Gaussian basis sets that allows density functional
calculations within the Kohn–Sham paradigm. The
Coulomb integrals are evaluated by the Rys quadra-

w xture 3 , and an auxiliary basis set is used, according
w x w xto the method of Dunlap 4 , and Eichkorn et al. 5 .

In addition to the standard, non-relativistic all
electron scheme, relativistic effects are considered by

an implementation of the effective core potentials
Ž . w xECP of Kahn, Baybutt and Truhlar 6 . Alterna-
tively, the relativistic methods of Douglas and Kroll
Ž . w x Ž . w xDK 7 or Chang, Pelissier and Durand CPD 8
can be used. There is no claim here that any of the
methods that have been implemented within MAGIC
are new. The only distinct feature is that the code
was written with these concepts in mind, unlike, for
example, many of today’s density functional codes
that have their origins in standard Hartree–Fock
self-consistent Gaussian codes. All the code has been
written from scratch, and, as it has been developed,
some minor improvements, such as the one described
in this Letter, have been implemented.

We must of course reference some of the many
calculations that have been made using two-compo-
nent relativistic codes. Specifically, we refer to cal-
culations using the Amsterdam density functional

w x w xcode 9 , using the CPD Hamiltonian 10 from the
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work of Baerends, and several calculations using the
w xDK transformation 11 . ECP calculations have, of

course, been in existence for many years, but they
are not relevant to this particular study.

The starting point for relativistic calculations is
the Dirac equation

hDCs caPpqVqmc2 by1 CsEC , 1Ž . Ž .Ž .
where a , p , b are defined in the standard manner
w x12,13 .

The four-component wavefunction, C , is written
as a pair of two-spinors

CL
Cs , 2Ž .ž /CS

where C is the large component and C the smallL S

component. Without considering quantum electrody-
namics, the transition to a many electron calculation
is made by adding the Coulomb operator to the Dirac
Hamiltonian, giving the Dirac–Coulomb Hamilto-
nian.

1
DH s h q 3Ž .Ý ÝDC i ri ji i-j

This can be corrected for retardation of the potential
by the addition of the Gaunt and Breit corrections
w x14 , if necessary. For practical chemical applications
the Dirac–Coulomb Hamiltonian has the disadvan-
tage that the ‘small’ and ‘large’ spinors are coupled,
complicating the solution of the equation of motion
with no real benefit since the small spinor, describ-
ing the positronic part of the electronic wavefunc-
tion, is of little chemical significance.

This study is based on the use of the DK method,
in an approach which avoids large storage require-
ments. Section 2 briefly summarises the DK method.
Section 3 presents the problem of the completeness
of the basis set in the resolution of the identity, and
Section 4 develops a method to overcome this prob-
lem. Finally in Section 5 some results are presented.

2. The Douglas–Kroll method

A number of methods in which the large and
Ž .small spinors are decoupled up to some order have

been introduced, starting with the work of Fouldy

Ž . w xand Wouthysen FW 15 . This allows the part of
the Hamiltonian dealing with the small component to
be treated approximately, giving rise to an effective
one-spinor equation, the solution of which is
amenable to the usual techniques of quantum chem-
istry. Since the transformation is applied to the Dirac
Hamiltonian, the practical benefit is a modified one-
electron Hamiltonian containing terms expected on
physical grounds, namely the spin-orbit operator.

One such transformation is that introduced by
Douglas and Kroll and subsequently adapted for use
in the normal quantum chemistry paradigm by Hess
w x12,13,16–18 . This is briefly summarised below.

In a FW transformation the Dirac Hamiltonian is
transformed

UhDUy1C'UEUy1CsEC . 4Ž .

In general a single unitary transformation is insuffi-
cient to separate totally the small and large compo-
nents of the wavefunction, and a separation only up
to certain order in a chosen parameter is achieved.
Repeated application of the unitary transformation
can decouple the wavefunction to any desired order.
Following Hess we define the even operator, EE,
which couples the large components with the large
ones and the small components with the small ones,
and the odd operator, OO, which couples the large
with the small components This definition is equiva-
lent to

w xb ,EE s0, 5Ž .

w xb ,OO s0. 6Ž .q

With this notation the Dirac Hamiltonian can be
written

hD scaPpqVqmc2 by1Ž .

'mc2bqEEqOO . 7Ž .

In the absence of an external magnetic field, a free
particle FW transformation is applied to the Dirac
Hamiltonian. The transformation has the unitary op-
erator

U sA 1qbR , 8Ž . Ž .0

Uy1 s Rbq1 A , 9Ž . Ž .0
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where
1r22E qmcp

As , 10Ž .ž /2 Ep

aPp
Rsc , 11Ž .2E qmcp

1r22 2 2 4E s c p qm c . 12Ž . Ž .p

Working in a momentum space representation, so
that E is diagonal, and using the commutator re-p

sults above, gives the transformed Hamiltonian

hD sU hDUy1 sbE qEE qOO , 13Ž .1 0 0 p 1 1

where the new operators are

EE sA VqRVR A , 14Ž . Ž .1

OO sb A RVyVR A. 15Ž . Ž .1

To further decouple the large and small component,
w xDouglas and Kroll 7 applied the unitary transforma-

tion
1r22U s 1qW qW , 16Ž . Ž .1

Žwhere W is anti-Hermitian for the complete defini-
w x.tion of W see Ref. 7 . We do not enter into the

Ždetails of the further expansions for which the reader
w x.can see the original work by Hess 12,13 , but we

only report the final expression of hDK

DK D y1 w xh sU h U sbE qEE q W ,OO1 1 1 p 1 1

1 2q W ,bE qWbE W ,p p2 q

17Ž .
where terms correct to second order in the potential
contain no coupling between large and small compo-
nents.

In the DK method there are alternative ways of
treating the inter-electronic effects, either by leaving
untransformed the Coulomb potential and exchange-

w xcorrelation potential 16 , or by transforming the
w xtwo-electron potential 13,19 . In the present imple-

mentation we used untransformed Coulomb and ex-
change-correlation potential.

3. Introduction of a basis set

In the case in which an external vector potential is
not considered, p will be replaced by p, and mov-

ing into the chemical scale by subtracting mc2, the
final one-spinor DK Hamiltonian is obtained

hDK sE qV X qV qV ymc2 18Ž .p ext Coul XC

Ž .where E is defined by Eq. 12 , andp

X 1 2w xV sA V qRV R AqWE Wq W Eext ext ext p p2

1 2q E W . 19Ž .p2

The molecular calculations require the elements of
the Fock operator between basis functions. For the
calculation of the matrix elements for V and VCoul XC

we proceed as in a standard density functional pro-
gram. The calculation of the other elements of the
Kohn–Sham matrix, E and V X , are more compli-p ext

cated because of the presence of the square root in
the definitions of E and A. These elements arep

computed by transforming to a momentum space
representation and calculating the matrix elements of
the operators on the diagonal. The calculation of the
matrix form of the operators in such a way requires
frequent resolution of the identity and the results of
the calculations are thus dependent on the quality of
the basis set.

The one-electron terms can be collected

T DK sE ymc2 qAV AqARV RAqWE Wp ext ext p

1 2 2q W E qE W 20Ž .Ž .p p2

Since only the one-electron potential has been trans-
formed, the DK Kohn–Sham matrix is formed by
replacing TqV withext

T DK sE ymc2 qV X 21Ž .p ext

For the usual application in quantum chemistry we
work with a finite basis function space. The transi-
tion from basis function space to momentum space is
effected by diagonalizing the basis function represen-

Ž .tation of the kinetic energy ms1 in atomic units

p2 s2 DTTD , 22Ž .
where p is diagonal in a discrete momentum basis.
This transformation is exact only to the extent that
the set of basis functions is complete. Since p is
diagonal the matrix representations of E , A and Rp

can readily be formed and thus T DK formed by
matrix multiplication: completeness of the basis is
again required.

This method, if naively implemented, has large
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storage requirements since, for efficiency, the ele-
ments of the matrices involved in the DK transfor-
mation are all held in memory. This problem is
exacerbated because, as proposed by Hess, the mo-
mentum functions are calculated in the primitive
basis function space. This improves the resolution of
the identity without requiring the use of a specially

Ž .chosen basis set as has been alternatively proposed ,
but at the cost of significantly increasing the effec-
tive size of the basis set for the large systems
considered.

4. The two-centre approximation

The subroutine that performs the DK transforma-
tion is outlined as follows. S and T denote the
overlap and kinetic matrix respectively in the primi-
tive space.
1. The matrix Sy1r2TS1r2 is diagonalised to give

the momentum eigenvectors k and eigenvaluesi

p2.i

2. The diagonal matrix E is constructed in momen-p

tum space and its contribution to the Kohn–Sham
² < : ² < :matrix Ý a k E k b evaluated.i i p ii

3. V is calculated in the primitive basis, and trans-ext

formed to the momentum basis. The matrix
AV A is then calculated in this basis, and itsext

contribution to the Kohn–Sham matrix is evalu-
ated as above.

4. To evaluate the term ARV RA, the matricesext

pV p have to be calculated. These are calculatedext

from standard one-electron integral Gaussian rou-
tines. Their contribution to the Kohn–Sham ma-
trix is then evaluated as in step 3.

5. The remainder term is computed from AV A,ext

ARV RA, E and p2, and its contribution to theext p

Kohn–Sham matrix is evaluated as above.
When systems containing many atoms are stud-

ied, the use of large primitive basis sets, necessary
for the resolution of the identity, becomes unpracti-
cal. Here a method that overcomes this problem is
presented. The basic idea is that the matrix elements
of the one-electron terms of the Hamiltonian are
computed within the set of basis functions of two
atoms at a time. The method is therefore referred as

Ž .the two centre TC approximation. This follows
w xfrom 9 , in which a similar approach was used in the

evaluation of Coulomb integrals using auxiliary
functions.

In the general approach, the matrices appearing in
the one-electron term, T DK , are computed for the
whole system. The dimensions of these matrices
therefore depend on the number of primitive basis
functions on all the atoms. Within the TC method,

Žthe matrices are computed only for two centres or
.atoms at a time. In this way the number of atoms is

no longer a limiting factor.
The TC method is, of course, applicable to the

calculation of the matrix elements of any operator. In
the case of the DK transformation we have imple-
mented it as follows. Consider the kinetic matrix, T.

Ž .For every pair of atoms a,b we extract the subma-
trices T , T , T and T , where for example, Taa ab b a bb ab

is a matrix comprising the elements

a < < bx T x , 23² : Ž .½ 5a b a b

where the superscript indicates the center on which
the primitive lies and a , b denote the primitives.
From this we construct the block 2=2 square matrix

. . . . .. . . . .. . . . .
. . . T . . . T . . .aa ab

T T. . . . . aa ab. . . . . ™ .. . . . . ž /T Tb a bb
. . . T . . . T . . .b a bb� 0. . . . .. . . . .. . . . .

24Ž .
This is repeated for the nuclear attraction matrix,

V, and the other quantities required for the DK
transformation. The standard DK transformation rou-
tine, as described above, is now applied to these
matrices. This produces a T DK that can be written
with the same structure

T DK T DK
aa ab

DK DKž /T Tb a bb

. . . . .. . . . .. . . . .
DK DK. . . T . . . T . . .aa ab

. . . . .. . . . .™ . 25Ž .. . . . .
DK DK. . . T . . . T . . .b a bb� 0. . . . .. . . . .. . . . .
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The blocks of this matrix are now added into the
full T DK matrix according to the centre labels. This
is repeated for every unique pair of atoms, thereby
building up the total matrix as a sum of pairwise
terms.

Let us consider a system containing N centres,
Žthe dimension of the primitive matrices stored as
.lower triangles, since they are symmetric being

1 Ž .M M q1 , where M is the total numberTOT TOT TOT2

of unique primitives in the whole system. With the
matrix factorization the dimension of the matrices

1 Ž .reduces to M M q1 , where M is the totalA B A B A B2

number of unique primitives on centres A and B.
For each pair of centres the factorization is obtained
by a two-loop scheme, inside which the lower trian-
gle of the one-electron matrices of dimension MA B

are computed.
As already said, the TC approximation implies

considerable memory savings, especially when large
systems are treated. Let us suppose that the number
of primitive functions, M, is the same for each atom.
In the general approach the dimension of the one-
electron matrices is of order of magnitude

2O NPM , while with the TC approximation itŽ .Ž .
2reduces to O 2PM . Note also that the dimen-Ž .Ž .

sion of the primitive set on each atom can be ex-
tended arbitrarily in the TC case to improve the
resolution of identities.

5. Applications

Before checking the efficiency of the TC approxi-
mation, we first examined if it significantly changed
the values of the computed energies. We thus com-
pared the absolute energies for a series of test
molecules obtained with the standard DK transfor-
mation using the full primitive set and the TC ap-
proximation. The calculations were done using the

w xLDA functional 20,21 . For the radial quadrature we
w xfollowed the scheme by Mura et al. 22 , and for the

w xangular one the scheme by Lebedev 23 . Various
standard basis sets were used. In Table 1 we report
the number and type of polarized functions and their
exponents, present in each basis set. Standard auxil-

w xiary basis sets 5 were placed on the centres of all
the molecules.

Table 1
Exponents of the polarization functions used in the calculations

Atom Basis set p d f

H p-VDZ 0.727
p-VTZ 1.057
p-VTZ 1.057
p-VTZ 1.057

C 5s4p2d 1.200
0.400

8s6p3d 1.800
0.600
0.200

O 5s4p2d 1.350
0.450

8s6p3d 2.700
0.900
0.300

)N 3-21G 0.800
Si p-VDZ 0.275
P p-VDZ 0.373

p-VTZ 0.216 0.452
0.652

9s6p1d 1.990
S p-VDZ 0.479
Cl p-VDZ 0.600

In Table 2 we report for each molecule the energy
obtained with the standard DK method and the dif-
ference between this value and that obtained with the
TC approximation. We observe that the energy dif-
ference is lower than 10y6 E for diatomic moleculesh
Žthis arises because in the TC approximation Kohn–
Sham matrix elements for basis functions on a given

.centre only use the primitives on that centre . When
molecules with three or more centres are treated, the
energy difference varies in between 10y6 and
10y4 E . The energy-difference increase, in goingh

from smaller to larger systems, is due to the fact that
the TC approximation does not include the effects of
the primitives on the other centres. We also observe
that the energy difference decreases if we increase
the quality of the basis set.

We also performed calculations on linear hydro-
Ž .carbons of type C H ns6, 10, 14, 18, 22, 26 ,n nq2

using a DZP basis set. In Fig. 1 we report the energy
difference between the two methods as a function of
the number of carbon atoms, n. Even for the two

Ž .largest molecules ns22, 26 , the energy difference
is still of the order of 10y4 E . The decrease inh

going from C H to C H is attributed to a22 24 26 28



( )L. Gagliardi et al.rChemical Physics Letters 283 1998 187–193192

Table 2
Ž .All electron relativistic energies E of molecules calculated with

Ž .the DK method using the full primitive set, and differences DE

between these energies and those computed with a two centre
Ž .primitive set TC in the completeness identities. The value of DE

is not reported when it is lower than the convergence threshold
Ž y6 .10 E . When only one basis set is indicated, it refers to all theh

atoms of the systems. In the two PH cases, the two basis sets3

reported refer to P and H respectively. Note that the TC energies
are always higher than those obtained without using the approxi-
mation

y3Molecule Basis set E r E D r 10 Eh E h

)N 3-21G y107.352972 –2

BN DZ y77.919363 –
CO DZ y111.657119 –
CCl DZ y497.582636 –
CCl O DZ y952.621629 0.1442

Cl S p-VDZ y1318.802537 0.0582

SiClH DZ y750.668367 0.0483

p-VDZ y750.572051 0.044
PH DZ y342.306352 0.0243

DZP y342.344175 0.059
p-VDZ y342.289492 0.025
p-VTZ y342.395794 0.016
9s6p, 3s2p y342.286053 0.068
9s6p1d, 6s3p y342.301175 0.266

CO DZ y185.936882 0.0102

DZP y186.030825 0.013
5s4p y186.016546 0.004
5s4p2d y186.110967 0.002
8s6p y186.011746 0.009
8s6p3d y186.104914 0.005

structural rearrangement, arising from a change in
the assumed geometry, which was obtained using the

w xforcefield by Rappe et al. 24 .

Ž y4 .Fig. 1. Difference D r 10 E between the DK relativisticE h

energies computed using the full primitive set and the TC approxi-
mation, as a function of the number of carbon atoms, n, in the

Ž .compounds C H ns6,10,14,18,22,26 . Note that the TCn nq2

energies are higher than the full energies.

6. Conclusions

The matrices that occur in the DK transformation
have been decomposed into two-centre pairs, giving
the TC method. This approach has been shown to
allow calculations on larger systems, by reducing the
memory requirements, without significant loss of
accuracy. The approach can be used to partition
other matrix quantities with equivalent benefits.

This Letter used the new program MAGIC de-
signed for computational chemistry calculations on
molecules containing heavy atoms. In forthcoming
publications we shall give more details of MAGIC,
and applications which are relevant to heavy atom
chemistry.
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