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We describe the algorithms we have developed for linear-scaling plane wave density functional calcula-

tions on parallel computers as implemented in the ONETEP program. We outline how ONETEP achieves 

plane wave accuracy with a computational cost which increases only linearly with the number of atoms by 

optimising directly the single-particle density matrix expressed in a psinc basis set. We describe in detail 

the novel algorithms we have developed for computing with the psinc basis set the quantities needed in 

the evaluation and optimisation of the total energy within our approach. For our parallel computations we 

use the general Message Passing Interface (MPI) library of subroutines to exchange data between proces-

sors. Accordingly, we have developed efficient schemes for distributing data and computational load to 

processors in a balanced manner. We describe these schemes in detail and in relation to our algorithms for 

computations with a psinc basis. Results of tests on different materials show that ONETEP is an efficient 

parallel code that should be able to take advantage of a wide range of parallel computer architectures. 

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

First principles electronic structure calculations are typically very computer intensive. As they are ap-

plied to progressively larger systems the need to use parallel computers has become increasingly neces-

sary. However, even density functional theory (DFT) [1] which combines a high degree of accuracy with 

computational efficiency suffers from a significant scaling problem. The computational effort of conven-

tional implementations increases with the cube of the number of atoms in the calculation. This fact ne-

gates to a great extent the benefits of parallel computing for increasing the scale of the simulations. The 

recent emergence of linear-scaling or ( )NO  methods [2] which promise to perform DFT computations 

with a computational cost which increases only linearly with the number of atoms, and with no signifi-

cant loss in accuracy, will allow the extension of DFT studies to larger systems. Linear-scaling methods 

are more complicated than the conventional methods but can take full advantage of parallel computing 
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resources. For this reason their development has often advanced hand-in-hand with the development of 

parallel computer algorithms for their implementation. As the essence of linear-scaling is that the calcu-

lation can be divided into parts associated with spatially localised regions [2], linear-scaling methods 

naturally lend themselves more easily to a parallel implementation than conventional cubic-scaling 

methods which deal with delocalised quantities. Thus, in linear-scaling methods it is natural to map the 

spatially localised parts onto processors and this is the approach that has been used to parallelise most 

such codes. For example, in the CONQUEST code [3] the parallelisation of data involves the distribution 

of the localised “support functions” to processors, while in the SIESTA code [4] it is the localised nu-

merical atomic orbitals that are distributed to processors and in Gaussian function codes the localised 

Gaussian functions are distributed [5]. The recognition of this similarity at a high level between appar-

ently very different linear-scaling approaches has also been the motivation for a recent work [6] that aims 

to create a parallelisation interface that could be used with an arbitrary localised function method. Yet, 

even though linear-scaling methods have much in common at a high level, they do differ greatly in their 

practical details and consequently every parallel implementation is unique as it seeks to take the best 

advantage of all the features of the method (basis set, sparse matrix format, etc.) in order to achieve op-

timum performance. 

 The ONETEP program [7] which we have developed for linear-scaling DFT calculations has been 

shown to be capable of performing highly accurate calculations on a variety of materials [8]. The method 

was developed from the beginning with parallel computers in mind. From a purely phenomenological 

point of view the ONETEP method combines concepts from plane-wave codes [9, 10], where all quanti-

ties are delocalised, and from localised function codes such as Gaussian basis function codes [11] and 

numerical atomic orbital codes [4]. Nevertheless, we have very little in common with these methods 

from the point of view of implementation. Consequently, we have developed entirely novel algorithms 

for parallel computations with the ONETEP approach. The purpose of this paper is to give an overview 

of these algorithms. 

 Our programming approach has been to write code using standard FORTRAN 95 combined with calls 

to the Message Passing Interface (MPI) [12] library set of subroutines. This approach is highly portable 

as it allows parallel calculations to be performed through message passing on both shared memory and 

distributed memory computer architectures. It is based on the Multiple Instruction Multiple Data 

(MIMD) paradigm and in our implementation, as in most MIMD programming examples [13], we run 

the same copy of the program on each processor but both the data and the operations are distributed 

amongst the processors. 

 We begin with Section 2 where we describe the procedures followed for total energy optimisation in 

ONETEP. In Section 3 we describe the algorithms we have developed for the calculation of the most 

computationally intensive quantities needed in order to compute and optimise the total energy. In Sec-

tion 4 that follows we develop our data parallelisation strategy which takes advantage of real space local-

isation. Section 5 describes how we combine the data parallelisation with communication to perform 

computations in parallel with an arbitrary number of processors. Finally we show in Section 6 examples 

of the performance of our parallel implementation on a variety of materials, and we finish with some 

conclusions in Section 7. 

2 Optimisation of total energy in the ONETEP code 

To understand the total energy optimisation in the ONETEP code it is helpful to compare it and contrast 

it with conventional plane wave approaches and with other linear-scaling approaches. As in many linear-

scaling DFT approaches that are based on the density matrix [14–19] and aim for high accuracy, the 

density matrix in ONETEP [7] is represented as a quadratic form 

 ( ) ( ) ( )K
αβ

α β

αβ

ρ φ φ*, =¢ ¢Âr r r r  , (1) 
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where the { }
α
φ  are a set of spatially localised, nonorthogonal generalised Wannier functions (NGWFs) 

[20] and the matrix K is called the density kernel [21]. With this form the exponential decay of the den-

sity matrix which is encountered in insulating materials [22–26] is imposed in a practical manner as the 

NGWFs are strictly localised in spherical regions and the K matrix is made sparse by enforcing the con-

dition 0K
αβ

=  when 
cut

| | rα β- >R R , where 
α

R  and βR  are the centres of the localisation regions of 

NGWFs ( )
α
φ r  and ( )βφ r , respectively. The parameter 

cut
r  is a predetermined cut-off threshold whose 

value depends on the material under study. In the code its value can be set with the input parameter ker-

nel_cutoff in units of 
0

a . 

 The electronic charge density ( )n r  is equal to the diagonal elements of the density matrix  

( ( ) ( , )n ρ=r r r ) and the total energy can be considered as a functional of the density kernel and the 

NGWFs 

 [ ] [ , { }] .E n E
α
φ= K  (2) 

In contrast, conventional cubic-scaling plane wave calculations express the energy as a functional 

[{ }]
i

E ψ  of the molecular orbitals { }
i

ψ  which are orthogonal and delocalised and minimise it iteratively 

by e.g. a conjugate gradients (CG) procedure [9]. In the “all bands” variant this minimisation is per-

formed in a self-consistent manner so that the effective potential is also constantly updated. After each 

CG step a correction is applied which restores the orthonormality of the molecular orbitals. As no local-

isation constraints are applied each orbital is free to extend over the entire volume of the simulation cell. 

In the ONETEP approach on the other hand the NGWFs are forced to respect strict localisation constraints 

but no orthogonality constraints. The orthogonality of the molecular orbitals as well as the requirement for 

occupancies to be either zero or unity is now transformed into the constraint of idempotency 2
ρ ρ=  

which is imposed on the density matrix. Subject to this constraint and also the  normalisation condition 

( e
( , ) d Nρ =Ú r r r , where 

e
N  is the total number of electrons), the energy of Eq. (2) is minimised both 

with respect to the density kernel and the NGWFs. As we have previously described [20], we achieve 

this by using a procedure which involves two nested loops which can be interpreted as two constrained-

search steps: 

 min
{ }
min [{ }] (outer loop) ,E L

α

α
φ

φ=  (3) 

with 

 [{ }] min [ { }] (inner loop) ,L E
α α
φ φ= ,

K

K  (4) 

where the minimisation with respect to K  in Eq. (4) ensures that L  of Eq. (3) is a functional of the 

NGWFs only. 

 Linear-scaling approaches proposed by other groups [27] consist of three nested loops. In that case the 

inner loop of Eq. (4) is further divided into two nested loops. Thus in the inner-most loop the band struc- 

ture energy 
BS

E K H
αβ

βα

αβ

=Â  is optimised in a non-self-consistent manner (i.e. by ignoring the depend-

ence of H on K), using either the Li–Nunes–Vanderbilt (LNV) approach [28] and/or the Palser–

Manolopoulos approach [29], in the middle loop self-consistency is imposed by density mixing and in 

the outer loop the total energy is minimised with respect to the NGWFs. The three-loop procedure is 

more complicated and non-variational. In contrast, the two-loop procedure we follow is by construction 

fully variational and shares the same stability and advantages as the ensemble DFT method of Marzari-

Vanderbilt–Payne [30] to which it is closely related. For our self-consistent minimisation of the energy 

with respect to K , which is described in Eq. (4), we use our own modified version of the LNV (or its 

variant by Millam and Scuseria [31]) method combined with the penalty functional method of Haynes 

and Payne [32]. 
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3 Algorithms for calculations with a psinc basis set 

As ONETEP is, to our knowledge, the only electronic structure code using a psinc basis set [20, 33, 34] 

we have developed from scratch efficient algorithms for the computation of the total energy and all the 

quantities required for its optimisation. The psinc functions are highly localised and each one of them is 

centred on a point of a regular grid in real space, yet they are orthogonal. The orthogonality of the basis 

set combined with the fact that it is constructed from plane waves allows us to employ a very efficient 

length-scale preconditioning scheme [34] which makes the number of self-consistent steps needed to 

converge the energy to a given threshold per atom small and independent of the number of atoms. Fig-

ure 1 demonstrates this fact with several examples of calculations with ONETEP on different kinds of 

materials. The number of iterations depends slightly on the material but it always remains small and 

independent of the number of atoms. This non-trivial characteristic is absolutely necessary in order to 

maintain ( )NO  cost throughout the calculation on the total energy since the cost per NGWF iteration of 

Eq. (3) is already ( )NO . 

 Our NGWFs are expanded in the psinc basis and localisation is imposed by restricting their expansion 

coefficients to be nonzero only within predefined spherical localisation regions as shown on the right 

hand side of Fig. 2. In the code these coefficients can be stored directly in the simulation cell, or in the 

FFT box [35] or in terms of “parallelepipeds” or “PPDs” as shown in Fig. 2. The FFT box representation 

allows us to use the machinery of conventional plane wave calculations to perform momentum space  
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Fig. 1 Self-consistent convergence in calculations with ONETEP for a variety of materials. The main 

plot shows the change in the total energy (in Hartrees per atom) as a function of the iteration number for 

NGWF optimisation as in Eq. (3). The inset shows the root mean square value of the NWGF gradient at 

each such iteration. 
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Fig. 2 From left to right: An NGWF stored in the compact, memory-efficient PPD representation can be 

deposited to or extracted from an FFT box. The FFT box makes possible operations in momentum space 

with computing cost which is independent of system size. The FFT box can in turn be deposited to or ex-

tracted from the simulation cell in real space. The localisation sphere of the NGWF and the subdivision in 

PPDs of the psinc grid in the FFT box and the simulation cell are also shown. 

 

operations on NGWFs in a miniature simulation cell with a computing cost which is small and independ-

ent of the size of the entire simulation cell [36]. We are able to efficiently “extract” an NGWF from the 

simulation cell to an FFT box or conversely “deposit” it from an FFT box to the simulation cell, a proce-

dure which we have formally defined previously in terms of simulation cell to FFT box projection opera-

tors [20, 36]. The simulation cell is subdivided into an integer number of PPDs along each lattice vector 

direction in such a way that each PPD is commensurate with the simulation cell and contains a small 

portion of the psinc grid, in a similar fashion to the domain decomposition approach that is commonly 

used in parallel implementations of real space methods [15, 19, 37–43]. The FFT box also contains a 

portion of the psinc grid in a fashion commensurate with the simulation cell. Apart from this condition, 

the FFT box can be placed anywhere in the simulation cell and is not required to be subdivided to an 

integer number of PPDs. The PPDs serve as a very compact, memory-efficient way of storing the 

NGWFs and are also the form in which the NGWFs are communicated between processors as we discuss 

later in Section 5. We have developed algorithms for efficiently extracting from an FFT box the PPDs 

that contain psinc grid points within the localisation region of an NGWF and for the converse process of 

depositing these PPDs to an FFT box. 

 Given only a single parameter, the psinc kinetic energy cut-off which is defined [8] in a fashion simi-

lar to the kinetic energy cut-off of plane wave basis sets, ONETEP determines the psinc grid, the subdi-

vision of the simulation cell into PPDs and the size of the FFT box in such a way as to maximise compu-

tational speed, subject to geometrical constraints [35]. The psinc kinetic energy cut-off is specified with 

the input parameter cutoff_energy which can be given either in units of eV or Hartree. 

 In general, the action of a quantum mechanical operator on an NGWF results in its delocalisation over 

the entire volume of the FFT box [35]. This however poses no practical difficulty in achieving ( )NO  

cost per self-consistent NGWF iteration as we will see in the remainder of this section where we describe 

how we compute efficiently the most computationally expensive quantities required for the total energy 

and its optimisation with the conjugate gradients approach. A rigorous mathematical justification for the 

following computations has been published elsewhere [20, 36] but the operations as described here and 

the order in which they are performed are optimised for speed rather than for clarity. In the figures that 

follow we will no longer be depicting the psinc grid but only the “coarser” PPD representation. Each  

of the algorithms we describe in the following Subsections is divided into “level 1” and “level 2” opera- 
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Fig. 3 Calculation of ˆ| | .Oα βφ φ· Ò  ˆO  is applied to ( )βφ r  only once and causes it to delocalise over the en-

tire volume of its FFT box. The integral is calculated as a dot product over the PPDs that belong to the lo-

calisation region of ( )
α
φ r . 

 

tions. Level 1 operations involve mixing NGWFs from several overlapping localisation spheres while 

level 2 operations are carried out on a single NGWF localisation sphere. 

3.1 Operator matrix elements 

The calculation of the matrix elements ˆ| |Oα βφ φ· Ò of the operator ˆO  in the NGWF representation is 

schematically described in Fig. 3. The operator ˆO  can be any of the individual components (kinetic en-

ergy, local potential, etc.) of the Hamiltonian. The ˆ ( )O βφ r  quantity which is delocalised over the entire 

volume of its FFT box is generated (level 2 task) once and for all and is kept in memory. Due to the 

orthogonality and cardinality of the psinc basis the ˆ| |Oα βφ φ· Ò integral is simply equal to a dot product 

between the psinc grid points in common betweeen ( )
α
φ r  and ˆ ( )O βφ r  [20]. Since ˆ ( )O βφ r  is spread over 

all the psinc points of the FFT box, this in turn means that we need to take the dot product between just 

the points which fall within the localisation sphere of ( ).
α
φ r  For efficiency, this operation is performed 

over the entire PPDs that belong to the localisation region of ( ).
α
φ r  This is described in Fig. 3 as the 

level 1 operation because it is repeated for every single NGWF that overlaps ( )βφ r . For the sake of clar-

ity the function ( )
α
φ r  is also depicted inside an FFT box. However, it is never placed there in practice 

since it is only required in its readily available PPD representation. 

3.2 Charge density 

The generation of the charge density as the diagonal element of the density matrix of Eq. (1) is schemati-

cally described in Fig. 4. If we rewrite the charge density in the following form 

 ( ) ( ) where ( ) ( ) ( )n n n K
αβ

α β

α β

α α φ φ= ; ; =Â Âr r r r r  , (5) 

we just need to generate each ( )n α;r  component. This process involves two FFT boxes. In the first FFT 

box we place ( )
α
φ r  while in the second FFT box we accumulate the sum ( )K

αβ

β

β

φÂ r  which runs over 

all NGWFs which overlap with ( )
α
φ r  including itself, hence these are level 1 operations. Then level 2 

operations follow where the contents of each FFT box are Fourier-interpolated to a psinc grid with twice  
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Fig. 4 Calculation of a ( )n α;r  component of the charge density. The interpolation ensures that no alias-

ing takes place during the multiplication of the contents of the FFT boxes. The charge density is eventu-

ally accumulated in the simulation cell as the sum of all ( )n α;r  components. 

 

 
as many points along each lattice vector direction. This interpolation ensures that the subsequent real 

space multiplication of the contents of the two FFT boxes will not introduce any aliasing errors, as a 

consequence of the fact that the psinc representation is entirely equivalent to a plane wave representation. 

After the interpolation the ( )n α;r  component is obtained as the product of the contents of the two FFT 

boxes and is deposited into the simulation cell. The process is repeated for the remaining ( )n α;r  compo-

nents until the entire electronic charge density has been constructed in the simulation cell. 

3.3 NGWF gradient 

The calculation of the gradient of the energy with respect to the NGWF expansion coefficients in the 

psinc basis is schematically described in Fig. 5. Depending on tensor corrections [44] and various types 

of preconditioning, several variants for the NGWF gradient are possible, some of which have been de-

scribed in the literature [17, 20, 45]. All variants have the following general form 

 
δ ˆ[ ] ( ) ( ) ,
δ

E
H A B

β γ

β α γ α

β γα

φ φ
φ

= +Â Â
r

r r  (6) 

where the actual form of the matrices A and B determines the gradient variant. The level 1 part of the 

calculation of δ /δE
α
φ  involves two FFT boxes, one for each of the terms of Eq. (6). Each of these terms 

is accumulated into its FFT box over the NGWFs that overlap with ( )
α
φ r . Then the level 2 operations 

follow where the contents of the two FFT boxes are added together and the PPDs belonging to the local-

isation sphere of ( )
α
φ r  are extracted from the resulting sum. Next we apply a stage of “shaving” of the 

extracted PPDs where the NGWF gradient values corresponding to psinc functions outside the localisa-

tion sphere of ( )
α
φ r  are zeroed. This ensures that the localisation of ( )

α
φ r  within its sphere will be pre-

served when the gradient is used in a conjugate gradient optimisation step. Finally the “shaved” gradient 

of the total energy with respect to ( )
α
φ r  in its PPD representation is stored and the procedure is repeated 

until the gradient with respect to all remaining NGWFs is also obtained. 
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Fig. 5 Calculation of the gradient of the energy with respect to the expansion coefficients of ( )
α
φ r  in the 

psinc basis. The resulting gradient is stored in the PPD representation after it is “shaved” to ensure that it 

will preserve the localisation of ( ).
α
φ r  

4 Data parallelisation strategy 

We will now turn our attention to issues specific to the parallel implementation of ONETEP by first 

examining the distribution of data to processors. It is critical that the distribution of data is done in such a 

way that load balancing is achieved in parallel computations. On the one hand the similarities of the 

ONETEP code with conventional real space methods would suggest the distribution of data according to 

the well-tested domain decomposition approach, making use of the subdivision of the simulation cell 

volume into PPDs. On the other hand, as we saw in Section 3, many of our computational algorithms use 

the FFT box to compute various quantities in momentum space with plane wave techniques. The FFT 
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Fig. 6 Schematic example of the ONETEP parallelisation strategy for atomic and simulation cell data. 

On the left hand side a serial calculation is shown performed on one processor (0) which holds the data for 

all the atoms and for the entire simulation cell volume. On right hand side the same calculation is per-

formed in parallel on four processors (numbered from 0 to 3). Each processor now holds only a cluster of 

closely-spaced atoms and a slab of the simulation cell volume. 
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box is not compatible with the PPD subdivision of the simulation cell, and in any case there would be no 

benefit in distributing its data as it is constructed so that its volume is a small constant multiple of the 

volume per atom which is independent of the volume of the simulation cell and the total number of at-

oms. 

 In order to accommodate these requirements we adopt a two-pronged data parallelisation strategy 

which is outlined in Fig. 6. We distinguish two types of data: “atomic data” and “simulation cell data” 

and distribute them to processors in different ways. To the category of atomic data belong quantities that 

are clearly associated with a particular atom such as the NGWFs in their PPD representation, the pseu-

dopotentials, the atomic coordinates, etc. Each atomic quantity is allocated in its entirety to a processor. 

This approach simplifies and facilitates amongst other things depositing NGWFs to FFT boxes which are 

also allocated in their entirety to single processors. To the category of simulation cell data belong quanti-

ties which by construction extend over the entire simulation cell, such as the charge density and the Har-

tree, ionic and exchange-correlation potentials. As can be seen from Fig. 6 the distribution of simulation 

cell data simply consists of dividing the simulation cell into slabs of equal volume along one lattice vec-

tor direction and distributing the psinc grid of each slab to a particular processor. The distribution of 

atomic data is somewhat more involved. Atoms are allocated to processors so that the number of 

NGWFs on each processor is approximately equal. Of course there are many possible ways to achieve 

this which do not necessarily always lead to the balancing of the computational load or communication. 

In order to ensure that these important balancing requirements are always satisfied, the atoms are distrib-

uted to processors in the order in which they are visited by a “space-filling” fractal curve [5]. This ap-

proach is effective irrespective of the order in which the atoms are given in the input file or the structure 

of the material under study and results in the near-optimal allocation to each processor of groups of at-

oms which are in close proximity in space as is schematically shown in Fig. 6. 

5 Communication model & parallel calculations 

Using the data parallelisation strategy of the previous section in combination with calls to MPI subrou-

tines we are able to perform in parallel the computations that we described in Section 3. The separation 

of the tasks of Section 3 into level 1 and level 2 operations has special practical importance for the paral-

lel implementation. During the level 1 stages a processor X performs operations on groups of atomic data 

that in general can belong to other processors, hence these atomic data will need to be communicated to 

the processor X. All the NGWFs that overlap with the current NGWF of X need to be considered and the 

precomputed sparsity pattern of the NGWF overlap matrix is used to predict which NGWFs need to be 

fetched from other processors to X. Our communication model, which takes advantage of this sparsity, 

can be seen in Fig. 7. The purpose of this model is to consider all pairs of processors and exchange data 

between them when needed. As shown in Fig. 7 the model runs through the blocks of the processor-

processor overlap matrix. For each such block, the already known sparsity pattern of the NGWF overlap 

matrix is used to predict and only calculate quantities that are non-zero. The communication model con-

sists of 
P

2 1N -  “super-steps” where 
P

N  is the number of processors. The first super-step involves the 

diagonal blocks only, which are also the most dense. As all information is on the same processor, only 

computation takes place without any communication. Each one of the remaining super-steps deals with 

each of the off-diagonal bands of blocks. This approach allows us to use only point-to-point communica-

tion and hence maintain communication requirements which can scale to an arbitrary number of proces-

sors. Crucial to this is our parallelisation strategy for atomic data which ensures that the non-zero values 

of the (by construction) sparse NGWF overlap matrix are clustered around its diagonal. The right hand 

side of Fig. 7 confirms this with an example of the sparsity pattern of the NGWF overlap matrix from a 

3000-atom protein molecule. On the left side of the figure the super-steps are presented in detail. For 

each block the row-processor sends data and the column-processor receives and computes. In general, 

during a super-step a processor is involved in sending data, receiving data and computing. To improve 

performance we use “non-blocking” communication during the send operations. This allows us to inter-

leave communication and computation and avoid the delays involved with the sender processors waiting  
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Fig. 7 Example of the ONETEP communication model on four processors (numbered 0–3). On the left 

the seven super-steps that are performed are shown. These allow point-to-point communication between 

all pairs of processors. The processor pairs that are active in each super-step are shown as shaded blocks 

in a matrix of processor-processor blocks and the direction of communication is indicated by arrows next 

to them. On the right, the actual sparsity pattern of the NGWF overlap matrix of a 3000-atom protein is 

shown. Only about 1% of the total number of elements are non-zero (shown in black). Most of them are 

clustered along the diagonal of the matrix which in turn implies that the bulk of the communication and 

computation will be performed during super-steps which involve diagonal or near-diagonal processor-

processor blocks. 

 

for the send operations to complete. Of course, no data is sent when the NGWF in the current send row 

does not overlap with the NGWF in the current receive column. The NGWFs are always communicated 

in their compact PPD representation, and as soon as they are received, they are expanded to the form 

required for the type of calculation to be performed. 

 At first one may think that once a row-NGWF has been received, a processor would be able to use it 

in all computations with the local column-NGWFs with which it overlaps. In most cases this is not pos-

sible as it would lead to excessively large memory requirements due to the fact that each of the local 

column-NGWFs needs to be kept its own FFT box. The size of the FFT box in a calculation is deter-

mined by the maximum NGWF radius and the psinc kinetic energy cut-off. As an example, in routine 

calculations an FFT box could contain 75 ¥  75 ¥  75 psinc points (double precision numbers) and would 

occupy about 3.2 MB of memory. To avoid this potential memory bottleneck we keep only a batch 
batch

N  

of FFT boxes on each processor at any one time so that functions in FFT boxes are generated only when 

needed, in a fashion reminiscent of direct SCF algorithms [46]. Thus, on top of the supersteps of Fig. 7 

there is also a series of “batch-steps” which take place until all the local NGWFs ( )

NGWF

X
N  of each proces-

sor X have been processed through its batch of FFT boxes. 

 Let us now look closer into one of the processor-processor blocks of Fig. 7 and examine the events 

that take place during the super-step loop which is nested inside the batch-step loop. In particular Fig. 8 

describes the generation of the ˆ| |Oα βφ φ· Ò matrix elements on processor X. The procedure involves three 

nested loops: The outermost loop takes place over batches of NGWFs until all ( )

NGWF

X
N  NGWFs of X and  
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Fig. 8 Parallel computation of ˆ| |Oα βφ φ· Ò  integrals. Non-zero elements in the columns of the ˆ| |Oα βφ φ· Ò  
matrix that correspond to NGWFs belonging to processor X are computed using the communication 

model of Fig. 7. In the inner-most loop the integrals are generated as in Fig. 3 for the serial calculation the 

only difference now being the fact that processor X holds a batch of FFT boxes (three in this example) 

with ˆ ( )O βφ r  functions at any one time. 

 

all other processors are exhausted. The middle loop is the super-step loop over processor-processor 

blocks of Fig. 7 during which the direction of point-to-point communication for each processor is de-

cided. In our example processor X is only allowed to send data to processor Y and receive data from 

processor Z. The innermost loop involves the actual operations of communication and computation. Each 

local NGWF of X is sent to Y if needed and an NGWF from the rows of the current Z–X processor-

procesor block is received from Z if it is predicted to produce a non-zero ˆ| |Oα βφ φ· Ò integral with any  

of the ˆ ( )O βφ r  functions in the current batch of X (which have been already generated during the  

batch step). In the example of Fig. 8 the size of the batch is 3. In practice, ONETEP contains the  

“expert-level” input parameters locpot_int_batchsize, kinetic_int_batchsize, density_batchsize and 

ngwf_grad_batchsize with which the user can set the batch sizes for the calculation of the local potential 

integrals, kinetic energy integrals, charge density and NGWF gradient respectively. The default value for 

these variables, which was used to produce all results reported in this paper, is 10. 

 Apart from the issue of communication between atomic data that we have examined so far in this 

section, the need for communication of simulation cell data between processors also arises. For example, 

the calculation of the Hartree potential is performed by solving the Poisson equation over the entire 

simulation cell subject to periodic boundary conditions. The charge density, which is generated as de-

scribed in Subsection 3.2, is Fourier transformed to momentum space using an algorithm for fast Fourier 

transforms on parallel computers which is compatible with our parallelisation strategy for simulation cell 

data (Fig. 6) and can scale to an arbitrary number of processors. The Hartree potential is then obtained in 

momentum space by multiplication of the charge density by the momentum representation of 1 r/  as is 

common in plane wave codes [9]. It is then transferred to real space by an inverse fast Fourier transform. 

A closely related procedure is followed for the calculation of derivatives of the charge density which are  
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required for the generation of the exchange-correlation potentials and energy [47] of the various General-

ised Gradient Approximation (GGA) functionals implemented in ONETEP. 

 Finally, there is communication between atomic data and simulation cell data. The need for communi-

cation between the two data types arises when the contents of an FFT box, which is treated as atomic 

data and is located on one processor, need to be deposited to the simulation cell whose volume is divided 

into slabs distributed to different processors as shown in Fig. 6. This is exactly the state of affairs in the 

level 2 part of the calculation of the charge density of Fig. 4. The number of such FFT box to simulation 

cell transfers that a processor X needs to perform during the calculation of the charge density is equal to 

its local number of NGWFs, ( )

NGWF

X
N . For each such transfer a sequence of processor-processor communi-

cation steps analogous to those of Fig. 7 takes place. Of course now there is no batch loop or NGWF 

loop, so only the middle loop of Fig. 8 remains. A graphic illustration of this process is given in Fig. 9 

which shows an example of an FFT box belonging to processor 2 and the communication super-steps 

during which its contents are deposited to the simulation cell slabs of different processors. Concurrently 

with this, all other processors are also depositing the contents of their FFT boxes to the simulation cell, 

but this is not depicted in Fig. 9 for the sake of clarity. Again here communication happens only when it 

is needed: in the example processor 2 does not send any data to processor 3 since its FFT box does not 

contain any part of the simulation cell slab of processor 3. Also, there is obviously no communication 

when processor 2 deposits to its own slab (diagonal blocks in the scheme of Fig. 7). The opposite proce-

dure is followed when extracting quantities from the simulation cell to the FFT box. Such an example is 

the extraction of the Hartree potential in order to construct the Hamiltonian operator and evaluate its 

action on a function in an FFT box as is necessary in the calculation of the Hamiltonian matrix elements 

(Fig. 3) and the NGWF gradient (Fig. 5). 

6 Results and discussion 

The parallel implementation of ONETEP is completely general and should be able to scale to an arbitrary 

number of processors on a variety of parallel platforms. In practice we need to have more than one atom 

per processor for the communication not to dominate the total computational time. However we have 

observed that only 10 atoms per processor is already enough for good parallel scaling in most cases. In 

Fig. 10 we report the speed-up that we achieve in the total time taken for one self-consistent NGWF 

iteration (Eq. (3)) as a function of increasing numbers of processors. We show calculations run on 4, 8, 

16, 32, 48 and 64 processors. We focus here on two examples, an 800-atom chiral boron nitride nanotube 

and a 1403-atom polyglycine peptide in a globular conformation. We observe that both curves show an 

almost linear speed-up up to 64 processors. The speed-ups we achieve remain substantial even when we 

get to 64 processors with 79% of the ideal value for the case of the nanotube and 72% in the case of the  

Fig. 9 Depositing an FFT box to the simulation 

cell during a parallel calculation. In this example on 

four processors (labelled 0–3) the contents of the 

FFT box of processor 2 are distributed to slabs of 

the simulation cell belonging to processors 0, 1, and 

2. The supersteps of Fig. 7 during which this data 

transfer takes place are noted. For clarity the FFT 

boxes of the remaining processors which are also 

concurrently depositing data to the simulation cell 

are not shown. 
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Fig. 10 Speed-up in the total wall-clock time taken for one NGWF iteration. These calculations were 

run on a Sun Fire F15K parallel computer. 

 

polyglycine. The very regular structure of the nanotube leads to an ideal partitioning of the atomic data 

by our parallelisation strategy to achieve a near-optimal balance of the computation and communication 

load, hence the parallel speedup in this case is greatest. The irregular three-dimensional structure of the 

polyglycine is a challenging test for our parallel algorithms. While these irregularities are obvious in 

Fig. 10 it is particularly pleasing to note that the speed-ups remain high throughout its range from which 

we can conclude that the distribution of atoms to processors and hence the balancing of tasks is still done 

in a satisfactory way. 

 Let us now look at some further tests which examine the parallel scaling of each of the most computa-

tionally intensive components in a total energy calculation with ONETEP. We show in Fig. 11 results for 

a 1000-atom block of perfect crystalline silicon and a 988-atom protein generated on a single SUN V40z 

server with four AMD OPTERON processors with the same calculation parameters as we have used for 

these systems for our plane wave accuracy tests [8]. The speed-up as a function of the number of proces-

sors is given for the wall-clock time taken for the calculation of the local potential integrals according to 

Subsection 3.1, the electronic charge density according to Subsection 3.2, the NGWF gradient according 

to Subsection 3.3 and the total wall-clock time for one NGWF iteration. We can observe that the speed-

ups we achieve increase essentially linearly with the number of processors and are very satisfactory for 

all the calculated quantities as on all four processors they lie in the region of 75–93% of the ideal speed-

up. Again here we have one material with a perfectly ordered structure such as the silicon and one mate-

rial with a completely random structure such as the protein and we observe that we get good speed-ups in 

both cases, as a further confirmation of the generality of our parallel algorithms. 

 A point which we have not discussed so far concerns the handling of matrices. We have developed our 

own special package for storing only the non-zero values of the sparse matrices encountered in ONETEP 

and performing algebraic operations with them. This package takes advantage of the atom-blocked struc-

ture of these matrices to achieve efficiency both in storage and in operations such as sparse matrix multi-

plication, which are performed in parallel. While operations with our sparse-stored matrices are parallel-

ised, their storage is currently not parallelised and thus every processor holds in its memory an entire 

copy of each matrix. This is not an obstacle to parallel performance as we have seen from the results of 

this section but it does eventually limit the size of the molecules we can study. This limit is machine-

dependent as it is determined by the memory available per processor. Nevertheless calculations with a 

few thousand atoms are well within the reach of the current version of ONETEP. As an example, the size 

of the matrix of Fig. 7 is 7600 ¥  7600 yet the memory it occupies stored in sparse format is only 4.4 MB.  
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Fig. 11 Parallel speed-ups per one NGWF iteration on a SUN V40z server with four AMD OPTERON 

processors for a 1000-atom block of crystalline silicon (left) and a 988-atom protein (right). The speed-up 

as a function of the number of processors is given for the generation of the local potential integrals ac-

cording to Subsection 3.1, the electronic charge density according to Subsection 3.2, the NGWF gradient 

according to Subsection 3.3 and the total wall-clock time taken for one NGWF iteration. 

 

This rather modest amount of memory is possible because we always use only a minimal number of 

NGWFs per atom (i.e. one NGWF per hydrogen atom and four NGWFs per each second row atom such 

as carbon, oxygen, etc.). In contrast, even routine calculations with localised atomic orbitals basis set 

codes would need to use at least a “Double Zeta plus Polarisation (DZP)” basis in which case the size of 

this matrix would be 27500 ¥  27500 and it would take up 58 MB of memory. This results in a significant 

operational benefit in the ONETEP approach as the storage and linear algebra operation cost of matrices 

is kept as small as possible and the weight of the calculation is shifted to the NGWFs which are more 

straightforward to parallelise compared to the sparse matrices. The matrix memory benefit is of course 

partially offset by the larger memory requirements for storing the NGWFs as a psinc expansion (typi-

cally about 0.1 MB per NGWF) compared to the near-zero memory requirements for storing atomic 

orbitals in an atomic orbital code. 

 In the near future we intend to extend our sparse matrix storage and algebra package to a data-parallel 

model, effectively adding to the data parallelisation strategy of Fig. 6 a third branch corresponding to 

“matrix data” which will be combined with the implementation of spin polarisation. At this stage all the 

types of data in the code will be parallelised and this should enable ONETEP to perform accurate first 

principles calculations on tens of thousands of atoms. 

7 Conclusions 

We have presented our implementation for parallel computers of a linear-scaling plane wave density 

functional theory method. Our method which is implemented in the ONETEP program takes advantage 

of the decay properties of the single-particle density matrix to perform calculations where the computat-

ing cost increases only linearly with the number of atoms. The computational machinery behind this 

approach is novel as it makes use of the psinc basis set. We have presented the algorithms we have de-

veloped for the computation of the total energy and its optimisation with this basis set. In addition to 

these algorithms we have also developed a strategy for distributing to processors in a balanced manner 

the data and the computational load. By combining these algorithms with calls to the subroutines of the 

Message Passing Interface (MPI) library we are able to perform calculations which are portable to a wide 
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range of parallel computer architectures. Tests on a variety of materials demonstrate the high parallel 

efficiency of ONETEP. 
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