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Abstract

Basis set superposition error (BSSE) in density-functional calculations occurs when the extended Kohn–Sham orbitals are expanded
in localised basis sets, but is absent when a plane-wave basis is used. Elimination of BSSE is essential for the accurate description of
intermolecular forces. Linear-scaling methods are formulated in terms of local orbitals, making plane-waves an inappropriate choice
of basis. In this work the BSSE in linear-scaling methods is studied in the context of hydrogen bonds. In particular it is shown that BSSE
is eliminated by optimizing the local orbitals in situ using a systematic basis set equivalent to a set of plane-waves.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Density-functional theory (DFT) has had a profound
impact on science and technology, well beyond the tradi-
tional realms of quantum-mechanical simulations into
fields as diverse as geology [1], biochemistry [2] and micro-
electronics [3]. The broad multidisciplinary appeal of DFT
stems from its ability to provide a sufficiently accurate
description of electron correlation for most purposes at a
computational cost which scales very favorably (with the
cube of the system size N) compared with correlated wave
function methods such as coupled cluster or configuration
interaction (which typically exhibit N5 to N7 scaling). Nev-
ertheless, even with the most powerful computers, the N3

scaling of DFT still presents a bottleneck which restricts
the size of simulations to a few hundred atoms and thus
limits their predictive power and ability to provide insight
into complex processes in real materials. In recent years
there has therefore been much interest in the development
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of linear-scaling or order-N methods [4,5] which have the
potential to revolutionise the scope and scale of DFT cal-
culations to include entire biological molecules and nano-
structures consisting of many thousands of atoms.
However in spite of the multiplicity of proposed computa-
tional schemes very few successful applications have been
reported. Most importantly, there is a severe lack of studies
of the accuracy attainable with linear-scaling methods and
consequently much uncertainty about their ability to
achieve the necessary level of detail to describe correctly
the systems they are intended to tackle. This Letter com-
pares the accuracy of three approaches to linear-scaling
methods for the sensitive and important case of relatively
weak hydrogen bonds, which are essential for the structural
stability and function of biomolecules such as proteins,
DNA and sugars and which are also relevant in nanosci-
ence where many potential applications are expected to
operate in an aqueous environment.

Basis set superposition error (BSSE) in the solution of
the Schrödinger equation was first addressed for the calcu-
lation of accurate intermolecular potentials [6]. The inter-
action potential (the negated binding energy) of two
molecules A and B is defined by
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DAB ¼ EAB � EA � EB; ð1Þ
where the total energies of the dimer EAB and of the two
isolated molecules EA and EB are obtained from separate
calculations and structural relaxation of the molecules
upon formation of the dimer is neglected. Error arises
when the parameters or procedures are not consistent be-
tween these three calculations. Boys and Bernardi [7] iden-
tified several causes of error including the use of different
integration grids for the calculation of matrix elements
and different basis sets for the expansion of the wave func-
tions. The methods considered in detail here employ iden-
tical uniform real-space grids for all calculations,
eliminating the former source of error. The latter is known
as BSSE and plays a central role in this study.
(c)

(e)

(d)

Fig. 1. Basis set superposition error occurs in the calculation of the
binding energy of the dimer shown in (a) when the molecular energies are
calculated as in (b) and (c) with only the basis functions (in grey) of the
atoms (white disks) associated with the individual molecule. The coun-
terpoise correction calculates the molecular energies as in (d) and (e) with
the same basis set as for the dimer (a).
2. Methods

Fig. 1 provides a schematic representation of the source
of BSSE and the commonly-used counterpoise correction
[7] first invoked by Jansen and Ros [6] to treat it. Basis
functions (shaded gray) are localised and associated with
particular atoms (white disks). The total energy of the
dimer is calculated naturally using the basis functions asso-
ciated with both molecules. For an isolated molecule, the
total energy may be obtained using only the basis functions
associated with that molecule. However this simple
approach restricts the variational freedom of the molecular
calculations with respect to that of the dimer, resulting in
an overestimate of the binding energy which can be signif-
icant [8]. The counterpoise correction uses the basis func-
tions associated with both molecules in calculating the
total energies of the isolated molecules, so that identical
basis sets are used for all three energies in Eq. (1). Mayer’s
chemical Hamiltonian approach [9] provides an alternative
a priori BSSE-free scheme.

The plane-wave pseudopotential method [10] has estab-
lished itself as the leading workhorse for DFT calculations.
The main advantage of a plane-wave basis in the context of
this work is that being homogeneous and unbiased by
atomic positions it is free of BSSE. The corresponding
drawback is that it is relatively inefficient at treating sys-
tems with significant vacuum regions such as isolated
molecules.

Linear-scaling methods appropriate for non-metallic
systems exploit the ‘nearsightedness’ of quantum many-
body systems [11] exhibited in the exponential localisation
of the Wannier functions [12] and single-particle density-
matrix [13]. In all of these methods, local orbitals play a
key part. For example, in the ONETEP method [14] the den-
sity-matrix is expressed in separable form [15] as

qð~r1;~r2Þ ¼
X

ab

/að~r1ÞKab/�bð~r2Þ ð2Þ

in terms of a density kernel Kab and a set of local orbitals
called non-orthogonal generalised Wannier functions
(NGWFs) {/a} [16] centred on the atomic positions. Lin-
ear scaling is obtained by truncating the kernel and localiz-
ing the NGWFs according to variational spatial cut-offs.
Most linear-scaling methods fall into two categories: the
first equivalent to optimizing the kernel only [17–19] for a
fixed (but potentially large) set of local orbitals and the sec-
ond involving both kernel and NGWF optimisation
[16,15,20]. In the first case, the local orbitals are optimised
beforehand for isolated atoms of each species and act as
the basis set. In the second case the optimisation occurs
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Fig. 3. Interaction potential of a water dimer obtained using a minimal
basis set of fireballs.
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in situ during the self-consistent calculation. Since atom-
centred local orbitals are involved in both cases, these
methods are expected to be susceptible to BSSE. However
in the ONETEP method the NGWFs are iteratively improved
during the calculation by optimizing an expansion in terms
of the psinc basis (defined in [21]) which is equivalent to a
set of plane-waves. This work shows that this optimisation
eliminates BSSE.

3. Results and discussion

The system selected for this study is the water dimer
illustrated in Fig. 2, for which there are comprehensive
reviews of previous experimental [22] and first-principles
computational [23] work. The water dimer is bound by a
medium strength hydrogen bond which has been important
for the development of the theory of intermolecular forces
and is seen as a paradigm of the bonding upon which many
biochemical processes so sensitively depend. As a relatively
weak bond, it is a challenge for DFT [24,25] and calcula-
tions of its binding energy are very sensitive to BSSE
[26]. For the purposes of this study comparison is made
with results from the BSSE-free plane-wave CASTEP code
[27] by varying the hydrogen bond OAH length d while
the orientation and internal geometry of the water mole-
cules remained fixed: structural rearrangements [28] are
not considered. As a result, the geometries do not corre-
spond to experimental or computationally optimised struc-
tures. The ONETEP and CASTEP calculations used the same
norm-conserving pseudopotentials [29] and gradient-cor-
rected exchange-correlation functional [30]. Equivalent
energy cut-offs were used for the psinc and plane-wave
basis sets.

Fig. 3 compares the interaction potential curve from
CASTEP with results obtained from ONETEP without in situ
optimisation of the NGWFs, for which spherically con-
fined pseudoatomic orbitals (fireballs) [31] are used, as in
the SIESTA [17] and DMol3 [32] codes. This particular choice
mimics the use of a minimal LCAO set and involves only
kernel optimisation. The uncorrected result overestimates
the binding energy by almost 100%, and while the counter-
poise correction reduces the error by half, significant dis-
agreement with the CASTEP result remains. This
demonstrates the presence of significant BSSE and the need
for high-quality basis sets to describe hydrogen bonds. As
Fig. 2. Water dimer geometry showing the hydrogen bond OAH distance
d.
BSSE results from the reduction in variational freedom
for the isolated molecules compared to the dimer, when
the dimer basis is used for all three calculations the molec-
ular energies are lowered significantly: by about 65 meV
each at d = 1.8 Å. While this only amounts to a 0.4%
change in the total energy, this correction is significant in
calculating the binding energy where significant cancella-
tion occurs in Eq. (1). BSSE is therefore present as expected
in linear-scaling methods with fixed local orbitals. While
the error may be reduced by employing larger sets of local
orbitals than the minimal set used here, the counterpoise
correction is always necessary [33].

Since BSSE arises from a relatively poor description of
the isolated molecules compared to the dimer, one possible
solution which would still retain fixed local orbitals for
large-scale calculations would be to use pre-optimised
NGWFs corresponding to molecular orbitals (MOs). For
the case of the water dimer, this scheme involves first opti-
mizing NGWFs with ONETEP for the isolated water mole-
cules. These NGWFs are then used as the fixed local
orbitals for the dimer calculation, in which only the kernel
is optimised. In the general case, this approach is essentially
equivalent to a third linear-scaling method, Yang’s density-
matrix divide-and-conquer scheme [34], in which a large
system is split into smaller components for which density-
matrices are calculated before being combined to generate
an estimate of the total density-matrix of the whole system.
Fig. 4 compares the CASTEP result with this choice of pre-
optimised NGWFs, which lowers the total energy of the
isolated water molecules by almost 0.3 eV. BSSE is indeed
eliminated since there is nothing to be gained by adding the
MOs of a second molecule to the local orbital set already
optimised for the first. Instead of the overestimation of
the binding energy in Fig. 3 there is now significant under-
estimation since the MOs give a poor description of the
dimer when there is significant interaction between the mol-
ecules at short distances, and this is reflected in the long
equilibrium bond distance predicted. These results demon-
strate that while this divide-and-conquer approach does
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Fig. 4. Interaction potential of a water dimer obtained using a minimal
basis set of local orbitals pre-optimised for isolated water molecules
(MOs).

Table 1
Comparison of bond lengths and binding energies for the water dimer

Bond length (Å) Binding energy (meV)

ONETEP (1300 eV) 1.790 182
CASTEP (1300 eV) 1.785 178
NWChem (aug-cc-pVTZ) 1.779 181

1 kcal mol�1 = 43.4 meV
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avoid BSSE, it does not provide a sufficiently accurate solu-
tion for hydrogen-bonded systems, and full optimisation of
the local orbitals is required for the system as a whole.

Allowing full optimisation of the NGWFs as well as the
kernel for both molecules and dimer results in Fig. 5. The
dimer energy is now lowered substantially (by over 0.1 eV
for d = 1.8 Å) compared to the use of fixed local orbitals.
BSSE is again notably absent and furthermore there is
extremely close agreement between the CASTEP and ONETEP

interaction potential curves. Table 1 gives results within
the local density approximation for the equilibrium bond
length and binding energy for fully converged calculations
from ONETEP, CASTEP and NWChem [35], an all-electron
code with an ‘aug-cc-pVTZ’ Gaussian-type orbital basis.
The equilibrium bond lengths for this orientation agree
to 0.3% and the bond energies to 2%. This demonstrates
that in situ optimisation of the NGWFs in terms of the sys-
tematic psinc basis is indeed sufficient to eliminate BSSE
entirely and to describe the hydrogen bond with plane-
wave accuracy.
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Fig. 5. Interaction potential of a water dimer obtained using a minimal
basis set of fully optimised orbitals (NGWFs).
4. Conclusions

For subtle interactions like hydrogen bonds important
for many potential applications of linear-scaling methods,
it has been demonstrated that fixed local orbital schemes
suffer from BSSE and divide-and-conquer approaches are
insufficiently accurate. In contrast the ONETEP method is
BSSE-free and attains the accuracy of traditional plane-
wave and near-complete Gaussian basis calculations as a
result of the in situ optimisation of local orbitals.
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