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Linear-scaling methods for density functional theory promise to revolutionize the scope and scale of
first-principles quantum mechanical calculations. Crystalline silicon has been the system of choice
for exploratory tests of such methods in the literature, yet attempts at quantitative comparisons
under linear-scaling conditions with traditional methods or experimental results have not been
forthcoming. A detailed study using the ONETEP code is reported here, demonstrating for the first
time that plane wave accuracy can be achieved in linear-scaling calculations on periodic systems.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2796168�

I. INTRODUCTION

In conventional first-principles calculations with
Kohn-Sham1 density functional theory �DFT�,2 the computa-
tional effort increases in proportion to the cube of the num-
ber of atoms N, limiting their applicability to systems of no
more than a few hundred atoms. However, the scope and
scale of DFT calculations are now being radically extended
by the emergence of new “order-N” �O�N�� methods with
linear-scaling cost. While the nearsightedness principle of
quantum mechanics3,4 guarantees that linear scaling is pos-
sible, at least for semiconductors and insulators, achieving it
in practice has necessitated overcoming a considerable num-
ber of significant issues of detail.5,6 The last decade has seen
intensive research worldwide into the development of reli-
able and generally applicable linear-scaling approaches. As a
result, currently, a number of linear-scaling DFT codes7–12

have emerged that are robust and stable enough to be used
to study properties of materials, biomolecules, and
nanostructures.

Our ONETEP
10 linear-scaling DFT code has been

implemented13 from the beginning for calculations on paral-
lel computers. For systems with a gap, linear scaling is
achieved by exploiting the exponential decay of the single-
particle density matrix, which is represented as

��r,r�� = �
�,�

���r�K����
*�r�� . �1�

This is a quadratic form in a set of nonorthogonal general-
ized Wannier functions14 �NGWFs� ����r��, involving the
density kernel K which relates the NGWFs to the Kohn-
Sham orbitals and their occupancies. We optimize the energy
fully self-consistently with respect to both the density kernel
and the NGWFs. This in situ optimization of the NGWFs
makes our method free from basis set superposition error.15

Linear-scaling calculations with thousands of atoms10 can be
performed with this approach, as the NGWFs are kept local-
ized in spherical regions of radius rNGWF centered on atoms,
and the elements of the density kernel that correspond to
atoms further than a predefined spatial cutoff threshold rK
are truncated. For cases where a quick calculation with lim-
ited accuracy is sufficient, we can keep selected NGWFs
fixed �e.g., set to atomic orbitals� and optimize self-
consistently only K, resulting in a linear-scaling self-
consistent ab initio tight binding16 �SC-AITB� calculation.

In conventional plane wave calculations, the basis set is
comprised of plane waves with kinetic energy up to a set
cutoff Ecut. In ONETEP we use a basis set of periodic sinc14,17

�psinc� functions which are constructed from plane waves.
However, in this case, Ecut signifies that the plane waves are
selected from a cube of wave vectors in momentum space
with the same volume as the sphere of wave vectors defined
by Ecut.

18

In what follows, we present an investigation of the fac-
tors that determine the accuracy of a linear-scaling method in
calculations on periodic solids using crystalline silicon as a
case study.

II. METHODOLOGY

We have chosen silicon not only because it is particu-
larly challenging for linear-scaling approaches due to its high
atom density and small band gap �especially when the local
density approximation19,20 �LDA� for exchange and correla-
tion is used�, but also because it is the prototypical periodic
solid and as such it has been the subject of a plethora of
studies.21–23 We have performed our calculations using a
simulation cell large enough �1000 atoms� to allow us to test
the density matrix truncation techniques that are responsible
for the linear-scaling behavior. We compare our results to
calculations with the CASTEP

24 cubic-scaling pseudopotential
plane wave code which we use as an accuracy benchmark.
To “imitate” the ONETEP 1000-atom calculations with
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CASTEP, we have used a conventional 8-atom simulation cell
with a grid of 5�5�5 k points.

The two simulation cells are compared in Fig. 1. The
two codes used the same Si norm-conserving pseudopoten-
tial and a plane wave cutoff Ecut of 600 eV, which ensured
that all calculated quantities were converged with respect to
Ecut. All calculations were performed with the LDA
exchange-correlation functional.

The localization of the NGWFs in spherical regions is a
basis set variational25 procedure and, therefore, the energy is
lowered as the sphere radii rNGWF increase. This is confirmed
in Fig. 2, which shows a lowering of the energy as a function
of rNGWF. In addition, in ONETEP due to the equivalence of
psinc functions and plane waves, we can also define values
of Ecut for which the CASTEP energy will be an upper or
lower bound.18 These bounds are also shown in Fig. 2, where
we can confirm that they are indeed obeyed for sufficiently
large rNGWF.

A defining property of a crystalline solid is its lattice
constant, which we can calculate by varying the shape of the
simulation cell until its energy is minimized. However, as
this variation changes the lattice vectors, it will also change
the reciprocal lattice and hence the plane wave basis set.
Therefore, one can either keep fixed the number of plane

waves and vary Ecut or fix Ecut and vary the number of plane
waves. We have chosen the latter as it is physically more
meaningful and, in addition, it enables the centers of our
psinc basis functions to remain stationary. This restricts the
variation of the lattice parameter to discrete steps equal to the
psinc spacing �0.31 Å for our Ecut of 600 eV�. It removes,
however, the need to scale rNGWF with the lattice parameter
to ensure a constant number of psinc functions per NGWF
localization sphere, which is required to obtain smooth
curves when the number of plane waves is kept fixed.18 Fi-
nally, we need to consider how many NGWFs to use per Si
atom. In previous work,25 we have shown that having as
many NGWFs as the number of valence atomic orbitals on
each atom, “single zeta” �SZ�, was sufficient for achieving
plane wave accuracy in organic molecules and biomolecules
with first and second row elements.18 For crystalline silicon,
however, the level of accuracy achieved with four NGWFs
per Si atom is considerably lower.25 To ensure high accuracy
we have, therefore, used here nine NGWFs per Si atom
which correspond to a “single zeta plus polarization” �SZP�
choice. Even though the NGWFs have arbitrary angular de-
pendence, it appears that the flexibility afforded by the extra
functions is needed to describe correctly the top of the sili-
con valence band. Similar trends are well known in atomic
orbital approaches where the description of the band gap of
silicon becomes qualitatively wrong �direct instead of indi-
rect� when not including either a shell of d functions per
atom26 or a shell of s functions at each tetrahedral interstitial
site.27

III. RESULTS AND DISCUSSION

In order to study how the localization we impose on the
NGWFs affects the calculated properties, we have performed
a series of calculations with NGWFs of increasing radii
rNGWF while keeping rK set to infinity �no density kernel
truncation�. Plots of the energy as a function of the lattice
parameter are shown in Fig. 3 which depicts the points ob-
tained from the calculations and the curves obtained by fit-
ting to the Birch-Murnaghan28 equation of state. To facilitate
comparisons, the curves have been shifted so that their mini-

FIG. 1. �Color online� The 8-atom simulation cell used by CASTEP and the
1000-atom cell used by ONETEP.

FIG. 2. Energy per 8-atom cell as a function of rNGWF with Ecut=600 eV.
The energies obtained with CASTEP for Ecut set to 393 eV �upper bound�,
600 eV �equivalent cutoff�, and 1180 eV �lower bound� are also shown.

FIG. 3. Energy per 8-atom cell for different values of rNGWF �in Å� and
rK=�. The curve obtained with CASTEP is also shown.
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mum is at the zero of energy. Physical properties depend
on energy differences and are thus not affected by this
adjustment.

We observe that for rNGWF�3.44 Å, the ONETEP curves
practically coincide with CASTEP. This remarkable agreement
between the two plane wave approaches is also confirmed by
the lattice constants and bulk moduli that we obtain from the
curves, which are presented in Table I.

These calculations are not strictly linear scaling because
while the Hamiltonian and overlap matrices are sparse and
built with O�N� cost, K is a full square matrix. Fully linear-
scaling calculations are included in Fig. 4 which plots the
energy as a function of the lattice parameters for different
values of rK with rNGWF set to 3.70 Å. The resulting lattice
constants and bulk moduli are again shown in Table I.

The excellent agreement between the two plane wave
approaches is evident from the table. For example, in the
case of no kernel truncation, the error we obtain for the
rNGWF=3.70 Å case is 0.04% for the lattice constant and
0.2% for the bulk modulus. The SIESTA developers have
reported8 agreement with a plane wave calculation of 0.02%
for the lattice constant and 0.5% for the bulk modulus when
using a TZTPF �34 atomic orbitals per Si atom� pseudo-
atomic orbital basis set. These authors do not, however, re-
port the atomic orbital localization radii they employed for
these results and, furthermore, they imply that their calcula-
tion was performed by diagonalization in a small simulation
cell so that their Wannier function-based linear-scaling en-
ergy optimization technique was not tested. In contrast, no
diagonalization was employed to optimize the energy in
ONETEP, which did so directly in the parameter space of 1000
atoms using density matrix search techniques.29,30 Haynes
and Payne30 using the penalty functional linear-scaling ap-
proach reported agreements of 0.7% for the lattice parameter
and 2.6% for the bulk modulus with a spherical wave basis
set. To our knowledge, no values for the lattice constant and
bulk modulus of crystalline silicon calculated in a fully self-
consistent fashion with the CONQUEST code using the blip
basis set have been reported.

In Table I we also show a SC-AITB calculation we run
with a SZP set of pseudoatomic orbitals preoptimized for an
isolated Si atom within a spherical well with radius of 3.7 Å
in the “fireballs” approach of Sankey and Niklewski.31 The

results obtained are poor by ab initio standards with errors of
1.8% for the lattice constant and 12.4% for the bulk modu-
lus; they are, however, comparable to those reported for
linear-scaling approaches of a tight-binding nature with vari-
ous levels of sophistication.21,29,32–35 Results of similar qual-
ity are obtained by performing SC-AITB calculations with
the STO-3G* Gaussian basis set,36 which is also of SZP type.

A very important observation can be made from Fig. 4
and Table I concerning the calculations where density kernel
truncation has been applied. It is evident that in ONETEP both
truncations �rNGWF and rK� that are used to achieve linear
scaling did not prevent us from achieving plane wave accu-
racy. For example, setting rK equal to 10.58 Å results in
errors of only 0.02% for the lattice constant and 1.6% for the
bulk modulus with respect to the “exact” CASTEP values. In
Table I we also show results for “scaled K,” which refers to
scaling rK with the lattice parameter. We have used this ap-
proach in the past,18 but here we show that it makes virtually
no difference to the results, confirming that ONETEP can be
viewed as a “black box” technique that can be used by non-
experts to predict properties of real materials using only a
minimal set of calculation parameters �Ecut, rNGWF, and rK�
whose specification can be automated.

FIG. 4. Energy per 8-atom unit cell as a function of the lattice parameter for
different values of rK �in Å� and rNGWF=3.70 Å. The curve obtained by
CASTEP is also shown.

TABLE I. The lattice constant a and bulk modulus B of crystalline silicon for different values of NGWF and
kernel radii �both given in Å�. Also shown are the number of self-consistent cycles performed in each case as
well as the convergence tolerance for the energy per atom.

Method rNGWF rK a �Å� B �GPa� Nit tol �eV/atom�

CASTEP N/A N/A 5.384 96.3 18 5�10−7

ONETEP 3.70 � 5.382 96.5 19 3�10−8

ONETEP 3.44 � 5.380 96.2 18 3�10−8

ONETEP 3.18 � 5.365 96.8 13 3�10−7

ONETEP �fireballs� 3.70 � 5.482 84.4 6 5�10−6

ONETEP �STO-3G*� 3.70 � 5.290 134.2 6 2�10−5

ONETEP �scaled K� 3.70 10.58 5.385 97.6 11 1�10−5

ONETEP 3.70 10.58 5.385 97.8 11 1�10−5

ONETEP 3.70 7.94 5.378 99.5 11 3�10−5

ONETEP 3.70 5.29 5.412 122.7 11 3�10−5
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To examine the description of individual states by our
linear-scaling formalism, we have calculated densities of
states �DOS�, with a very narrow Gaussian smearing width
�0.05 eV� for a detailed comparison of band structures. In
Fig. 5 we show plots for the cases with infinite rK and vary-
ing rNGWF. The agreement with CASTEP is already remarkable
from rNGWF=3.18 Å, if we limit our attention only to the
occupied states �the band gap occurs at around 0.2 eV�. For
the conduction states that lie about 0.5 eV higher than the
band gap, the agreement between ONETEP and CASTEP is lost
and does not improve with increasing rNGWF. This demon-
strates that the NGWFs are only capable of describing the
valence space, as expected, since our optimization for the
total energy focuses only on the valence states. Therefore,
the NGWFs should not be used for predicting properties that
depend on the accurate description of the conduction bands,
except perhaps only the lowest-lying ones. In Fig. 6 we plot
the DOS obtained with rNGWF fixed to 3.70 Å and various
values of rK. Only the rather aggressive rK value of 5.29 Å
causes significant distortion in the DOS. With a value of

10.58 Å the DOS already coincides with what is obtained
with no density kernel truncation.

In Table I we also give the number of self-consistent
cycles performed for each type of calculation and the levels
of convergence achieved for the total energy per atom. For
the ONETEP calculations, this refers to the NGWF optimiza-
tion cycles when NGWF optimization is applied and to the
density kernel cycles when the NGWFs are held fixed �the
fireballs and “STO-3G*” cases�. We observe that when no
density kernel truncation is applied, the speed and conver-
gence level achieved are equal to or better than the conven-
tional plane wave approach. With density kernel truncation
the convergence in the energy becomes less tight, as dictated
by the applied level of truncation.37 The small number of
iterations in all cases is a consequence of our preconditioning
scheme.17

IV. CONCLUSIONS

In conclusion, crystalline solids present a tough chal-
lenge for linear-scaling approaches due to their high atom
density, and crystalline silicon which is the prototypical pe-
riodic system is one of the most difficult in this respect. We
have reported the first detailed quantitative study of struc-
tural and electronic properties of silicon based on calcula-
tions performed on a sufficiently large simulation cell �1000
atoms� to allow the use of all the density matrix truncation
techniques that are employed to obtain linear-scaling behav-
ior. The results show that ONETEP is able to achieve plane
wave accuracy with the density matrix localization settings
that it employs in routine linear-scaling calculations.
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