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While density functional theory (DFT) allows accurate quantum mechanical simulations
from first principles in molecules and solids, commonly used exchange-correlation
density functionals provide a very incomplete description of dispersion interactions. One
way to include such interactions is to augment the DFT energy expression by damped
London energy expressions. Several variants of this have been developed for this task,
which we discuss and compare in this paper. We have implemented these schemes in the
ONETEP program, which is capable of DFT calculations with computational cost that
increases linearly with the number of atoms. We have optimized all the parameters
involved in our implementation of the dispersion correction, with the aim of simulating
biomolecular systems. Our tests show that in cases where dispersion interactions are
important this approach produces binding energies and molecular structures of a quality
comparable with high-level wavefunction-based approaches.
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1. Introduction

Calculations of properties and processes in materials from ‘first principles’
quantum mechanical approaches are widely used today in fields as diverse as
materials science, biochemistry and engineering (Marzari 2006). These
calculations have become established because of their ability to provide an
accurate description at the atomic scale, where quantum rather than classical
mechanics apply. One of the most widely used first principles methods is density
functional theory (DFT; Hohenberg & Kohn 1964) as formulated by Kohn &
Sham (1965).

While these calculations have found applications in diverse areas, it would be
desirable in many cases to also use them to study nanoscale objects, such as
semiconductor nanostructures that have potential applications in electronic
devices or entire biological macromolecules. For example, in the case of biological
macromolecules such calculations could be used to provide very accurate binding
energies as DFT includes, by construction, the electronic changes that take
place, such as charge transfer and polarization, which are omitted in the
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commonly used atomistic force field approaches. However, conventional first-
principles methods have a computational cost that scales with the third (or
greater) power of the number of atoms in the calculation. Owing to this,
unfavourable scaling computations with these methods on more than a few
hundred atoms are, in general, not feasible, even on modern supercomputers. To
overcome this limitation, several novel reformulations of DFT have been
developed, which aim to achieve linear-scaling computational cost (Goedecker
1999). The implementation of these reformulations into robust computational
approaches has proved very difficult as challenging mathematical, algorithmic
and theoretical problems needed to be overcome (Bowler et al. 2008).
Nevertheless, intense research efforts spanning more than a decade have allowed
satisfactory progress to be made in addressing the challenges involved with
linear-scaling DFT and have led to the development of new codes for such
calculations by several groups worldwide (Yang 1991; Ordejón et al. 2002;
Skylaris et al. 2005; Bowler et al. 2006; Anglada et al. 2008).

Linear-scaling DFT approaches greatly extend the length scales that we can
access with DFT calculations, from hundreds to many thousands of atoms, and
are constructed with the intention of producing as closely as possible the same
results as one would obtain with conventional approaches if it were possible to
use them on such length scales. Consequently, the well-documented inability of
common DFT functionals to describe dispersion interactions correctly remains.
Dispersion (or London 1930) forces between atoms arise owing to the
instantaneous dipoles, brought about by the fluctuations in the positions of the
electrons. These induce dipoles in a nearby atom or molecule which then, in turn,
interact with the dipole on the original atom or molecule. The energy of these
attractive interactions can be approximated by the London formula, which, for a
pair of atoms, has the following form:
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where Ij is the ionization potential of atom j; a0
j is its polarizability volume; and rij is

the distance between the atoms i and j. The potential between the two atoms that
interact by dispersion forces can be modelled by the Lennard-Jones formula,

E ðri jÞZ
C12;i j
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r6i j
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The attractive rK6 term comes from the London (1930) formula, while the rK12

term represents a repulsive potential. This is required because at a closer range the
electrons on each atom repel each other. The form of the repulsive term, however, is
mainly a computational convenience as, for example, an exponential form eKr=r0 is a
more accurate approximation, but also more costly (Lennard-Jones 1931).
Dispersion forces are very weak (e.g. binding energies for noble gas atom pairs
are less than 0.25 kcal molK1) but can collectively be responsible for determining
the geometry of many molecules and solids. Important cases include the stacking
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671Including dispersion in ONETEP
interactions between the p-electron systems, such as between graphene sheets in
graphite, and base pairs in DNA. In biomolecular simulations, they are often
described as ‘hydrophobic’ interactions and often play an important role in
determining the structure and energetics; therefore, they need to be described as
well as other non-covalent interactions (such as ion pairs or hydrogen bonding).

The difficulty of describing dispersion with DFT is not an intrinsic failure of
the theory as the exact exchange-correlation energy functional would be able to
describe all such interactions correctly. However, its form is unknown and
approximations are required (Kristyán & Pulay 1994). Commonly, these
approximations are based on the local electron density and its gradient, and
therefore give a poor description of interactions occurring outside the area of
electronic overlap, which is the case with dispersion interactions (Pérez-Jordá &
Becke 1995; Meijer & Sprik 1996; Zimmerli et al. 2004). DFT does provide an
adequate description of the repulsive interactions at a closer range, where the
electron densities overlap. The local density approximation will often appear to
show binding (in, for example, a noble gas dimer; Pérez-Jordá & Becke 1995;
Elstner et al. 2001; Wu & Yang 2002) but this binding is spurious as it results
from the exchange part of the functional, whereas dispersion is a dynamical
correlation effect (Kristyán & Pulay 1994; Rydberg et al. 2003). Gradient
corrected functionals will usually show no binding at all, although basis set
superposition error may often give rise to the appearance of weak binding
(Jurečka et al. 2007).

Density functionals capable of explicitly including dispersion interactions are
being developed by several groups (Langreth et al. 2004; Sato et al. 2005a,b;
Zhang & Salahub 2007). While these functionals are promising, they have a
considerably higher computational cost than conventional DFT functionals as they
include non-local terms and their description of binding due to dispersion is not yet
consistently comparable with high-level wavefunction-based methods, such as
coupled-cluster approaches. More pragmatic efforts to improve the treatment of
dispersion in DFT have instead focused on empirical corrections, such as the
inclusion of a damped London term in the total energy expression. Following
the pioneering application of such approaches by Böhm & Ahlrichs (1982) in
Hartree–Fock calculations, which lack dispersion by definition, such schemes are
implemented by summing the attractions between all distinct pairs of atoms,

E dispðri jÞZK
X
i j;iOj

fdampðri jÞ
C6;i j

r6i j
; ð1:4Þ

where fdamp(rij) is a damping function that decays to 0 for small rij and is 1 at large
distances. This damping function is required because electronic structure
calculations provide an adequate description of short-range attractions, and
therefore the empirical correction becomes superfluous at small distances. If a
damping function is not applied to the dispersion term then the total energy will be
distorted, because of the resulting significant artificial strengthening of every
covalent bond.

In this work, we describe the implementation of approaches for empirical
dispersion corrections in the ONETEP linear-scaling DFT code, including
the optimization of their parameters for use in biomolecular simulations. In §2a,
a summary of the ONETEP method is given, and its connections with
Proc. R. Soc. A (2009)
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the conventional plane wave pseudopotential DFT approach are highlighted.
Section 2b describes the dispersion correction schemes we have explored, and the
procedure we have used for the optimization of the parameters follows in §2c. In
§3, we present tests and comparisons of the methods on a variety of systems
demonstrating that they produce dramatic improvements in binding energies and
molecular structures in cases where dispersion interactions are important.
Section 4 concludes the paper.
2. Theory

(a ) The ONETEP program

ONETEP (Skylaris et al. 2005) is a linear-scaling approach for DFT calculations,
which is based on the reformulation of DFT in terms of the one-particle density
matrix. In terms of Kohn–Sham orbitals, the density matrix is represented as

rðr; r 0ÞZ
XN
nZ0

fnjnðrÞj�
nðr 0Þ; ð2:1Þ

where jn(r) is a Kohn–Sham orbital and fn is its occupancy. An equivalent
representation is

rðr; r 0ÞZ
X
ab

faðrÞKabf�
bðr 0Þ; ð2:2Þ

where {fa(r)} are localized functions (Hernández et al. 1996) and Kab, which is
called the density kernel, is the representation of fn in the duals of these
functions. Most commonly in linear-scaling approaches the density kernel is
optimized while keeping {fa(r)} fixed in some suitable form (e.g. pseudoatomic
orbitals). Linear scaling is achieved by truncating the density kernel, thus
exploiting the exponential decay of the density matrix (in non-metallic systems;
Kohn 1996). A particular characteristic of ONETEP is that the localized
functions {fa(r)} are also optimized during the calculation, subject to a
localization constraint, and are thus known as non-orthogonal generalized
Wannier functions (NGWFs; Skylaris et al. 2002). The NGWFs are expanded in
a basis set of periodic sinc (psinc) functions (Mostofi et al. 2003), which are
equivalent to a plane wave basis as they are related by a unitary transformation.
The fact that the NGWFs are optimized in situ allows us to achieve plane wave
accuracy with only a minimal number of NGWFs (and hence the smallest
possible sparse matrices); furthermore, as our basis set is independent of atomic
positions and provides a uniform description of space, ONETEP calculations are
not affected by basis set superposition error (Haynes et al. 2006). The code is
parallelized and allows calculations to be performed on large systems containing
thousands of atoms (Skylaris et al. 2006, 2008).

(b ) Dispersion correction

The various dispersion correction schemes available differ in the form of the
damping function fdamp(rij) that they employ. Two major forms for this function
have been widely used. The first form is the one introduced by Mooij et al. (1999)
and later generalized by Elstner et al. (2001),
Proc. R. Soc. A (2009)
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Figure 1. The three damping functions using our optimized parameters for carbon with the PBE
exchange-correlation functional. Solid curve, DF1; dashed curve, DF2; dotted curve, DF3.
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fdampðri jÞZ ð1KexpðKcdampðri j=R0;i jÞN ÞÞM ; ð2:3Þ
and the second is a Fermi-like function introduced by Wu & Yang (2002),

fdampðri jÞZ
1

1CexpðKcdampðrij=R0;i jK1ÞÞ ; ð2:4Þ

where cdamp is a damping constant and R0,ij is determined by the range of the
overlap of atoms i and j (Elstner et al. 2001). Elstner et al. suggested values of 4
and 7 for M and N, respectively, in equation (2.3), which will be referred to here
as damping function 1 (DF1). Mooij et al. used MZ2 and NZ3 with the damping
function in equation (2.3), and this combination will henceforth be referred to as
damping function 2 (DF2). Wu and Yang’s damping function in equation (2.4)
will be labelled in what follows as damping function 3 (DF3). It is possible to
obtain heteroatomic R0,ij from the homoatomic values using the following
expression (Elstner et al. 2001):

R0;i j Z
R3

0;i CR3
0; j

R2
0;i CR2

0; j

: ð2:5Þ

The homoatomic R0,i can be estimated from atomic van der Waals radii (Mooij
et al. 1999; Wu & Yang 2002).

Figure 1 shows the three damping functions; while they have similar shapes,
the range of r for which each damping function has values in the interval
[0.01,0.99] varies. DF2 has a notably more gentle decay to zero, while DF3
decays particularly abruptly.

The C6,ij coefficients can be calculated from the homoatomic C6,i coefficients,
which can, in turn, be obtained from experimental work or calculated from the
atomic polarizabilities ai using the expression

C6;i Z
3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Neff;ia

3
i

q
; ð2:6Þ
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where Neff,i is the effective number of electrons (Elstner et al. 2001). Homoatomic
C6,i coefficients can be combined to give heteroatomic C6,ij coefficients using one
of the two equivalent forms (Elstner et al. 2001; Wu & Yang 2002) of the
Slater–Kirkwood combination rule (Slater & Kirkwood 1931),

C6;i j Z
2C6;iC6;jaiaj

a2
i C6; j Ca2

j C6; i

ð2:7Þ

and
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� �1=3 : ð2:8Þ

(c ) Optimization of parameters

Our aim is to use the empirical dispersion correction schemes to improve the
description of biomolecular systems in large-scale DFT calculations. We have
therefore implemented and tested in ONETEP the schemes described in §2b. Our
approach also involves the optimization of the parameters involved for each
exchange-correlation functional in ONETEP. In order to optimize the
parameters, we required a benchmark set of complexes with dispersion
interactions where the binding energies are known for high accuracy. Subsets
of the JSCH-2005 and S22 sets (Jurečka et al. 2006) were chosen for this task.
The S22 set is a set of 22 complexes designed to be used as a training set for the
inclusion of dispersion corrections and consists of seven hydrogen-bonded
complexes, eight complexes with predominant dispersion contribution and
seven complexes with significant contributions from both dispersion and
hydrogen bonding to the binding. The reference binding energies have been
calculated by a combination of MP2 and CCSD(T) methods and extrapolated to
the complete basis set limit of CCSD(T). The geometries of the S22 set were
obtained by geometry optimizations using MP2 (using a cc-pVTZ basis set and
applying a counterpoise correction) for the larger complexes and CCSD(T)
(using cc-pVTZ or cc-pVQZ basis sets) for the smaller complexes (Jurečka et al.
2006). The JSCH-2005 set provides similarly high-quality binding energies and
reference geometries for sets of base pairs and amino acid pairs. The geometries
of the complexes in the subset of the JSCH-2005 set that is used in this work were
obtained by hydrogen-only geometry optimizations of geometries obtained
experimentally. A subset of the stacked base pairs and amino acid pairs from
the JSCH-2005 set and the non-hydrogen-bonded complexes from the S22 set
were used for our benchmarks. In addition to these, six sulphur-containing
complexes from Morgado et al. (2007), with binding energies calculated
predominantly by MP2, were included so that the parameters for sulphur
could also be optimized. The geometries of these complexes were obtained by
BLYP-D (with a TZV basis set) optimization (Morgado et al. 2007). In total,
60 complexes were chosen for the optimization of 11 parameters. The inclusion of
further base pairs from the JSCH-2005 set was deemed undesirable as this could
unbalance our chosen training set by giving a bias to base pairs. Also, the
hydrogen-bonded complexes in the above sets were omitted, as the empirical
dispersion corrections are not designed to describe hydrogen bonding; therefore,
Proc. R. Soc. A (2009)
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optimizing the parameters in a way that causes them to do so (by imitating the
CCSD(T) description of the hydrogen bonds) could compromise their description
of dispersion interactions.

Binding energies for the chosen set of complexes were obtained with all of the
currently available GGA functionals in ONETEP: PBE (Perdew et al. 1996);
PW91 (Perdew 1991); revPBE (Zhang & Yang 1998); and RPBE (Hammer et al.
1999), as differences of the single-point energies of the bound complex and the
two monomers. The geometries were used as provided by the literature and were
not modified in these calculations. Subtracting from the reference ‘exact’ binding
energies gave the error in the binding energy (and ideal dispersion energy
correction) for each complex. The goal of the optimization was to adjust the
parameters in the dispersion formula (1.4) to minimize the difference between the
value of the dispersion energy and the error in the binding energy for each
complex. The parameters optimized were the C6,i coefficients, the R0,i and the
cdamp coefficients. Our optimization strategy involved the minimization of the
following object function:

Err Z
Xcomplexes

A

DE disp;AK E bind
lit;AKE bind

uncorr;A

� �� �2
; ð2:9Þ

where the index A runs over the complexes; DEdisp,A is the current dispersion
energy contribution; E bind

uncorr;A is the pure ONETEP DFT binding energy (without

dispersion); and E bind
lit;A is the literature CCSD(T) or MP2 binding energy. For the

optimization, the Neff and initial C6,i parameters were taken from Wu & Yang
(2002) for carbon, hydrogen, nitrogen and oxygen, and from Halgren (1992) for
sulphur. The initial cdamp parameters used were: 3.0 for DF1, as used by Elstner
et al. (2001); 3.54 for DF2, the value Wu & Yang (2002) proposed , rather than
Mooij’s value of 7.19 (Mooij et al. 1999); and 23.0 for DF3 following Wu & Yang
(2002). We used R0,i values from Elstner et al. (2001). The optimization was
considered converged when either of the following two criteria was satisfied.

—The largest change in any parameter from its initial value exceeds 20 per cent.
Since the initial parameters are derived from physical quantities, the optimized
parameters should not vary considerably in order to preserve transferability and
avoid over-optimization to the fitting set.

—An iteration satisfied the following inequality:

maximum percentage change in a parameter in the current step

percentage change in Err in the current step
!0:5; ð2:10Þ

which ensures that the parameters were varied only when this led to a significant
reduction in the object function.

The cdamp parameter was not restricted by the former criterion as it is
completely empirical; for example, Mooij’s proposed cdamp for DF2 is double Wu
and Yang’s proposed value. The parameters for sulphur were further optimized by
starting from the parameters obtained with the entire set (of 60 complexes) and
optimizing only the sulphur C6 coefficient and R0 with the set of sulphur-
containing complexes. In this case, the maximum parameter change was limited to
Proc. R. Soc. A (2009)



Q. Hill and C.-K. Skylaris676
15 per cent, with the latter convergence criterion the same as above. To eliminate
possible effects of the basis set, the single-point energy calculations with ONETEP
were performed with a large kinetic energy cut-off of 1200 eV, giving a near-
complete psinc basis set. Also, large NGWF radii of 8.0a0 were used for all
elements (except hydrogen that had NGWF radii of 7.0a0).

(d ) Atomic forces and geometry optimization

ONETEP is able to compute atomic forces (as analytic derivatives of the total
energy) and use these to perform geometry optimizations. We have included in the
forces the contribution from the dispersion interactions so that their effect on
determining molecular structure can be taken into account during geometry
optimizations. As dispersion interactions dominate only in very weakly bound
complexes, a very accurate calculation of all the forces is required. This is possible
as the NGWFs are essentially expressed in a plane wave basis, and therefore the
‘egg box’ effect (Tafipolsky & Schmid 2006) of energy variation with respect to
the real-space grid, which is typically observed in real-space techniques, is
negligible in ONETEP.
3. Results and discussion

The 60 complexes we used for the fitting of the parameters are presented in table 1,
in which the dispersion-including binding energies as obtained with ONETEP are
given using the optimized parameters for the three damping functions (DF1, DF2
and DF3) and the PBE (Hammer et al. 1999) functional. Table 1 also contains the
ONETEP binding energies that are obtained when no dispersion contribution is
included. The binding energies are compared with the accurate ab initio
benchmark binding energies for these complexes, which are subsets of the
JSCH-2005, S22 and Morgado et al. sets of complexes (Jurečka et al. 2006;
Morgado et al. 2007). We can observe from table 1 that the inclusion of the
dispersion contribution dramatically improves the binding energies, in most cases
leading to an agreement with the literature results that is better than 1 kcal molK1.
The optimization of the parameters has been necessary to obtain this good
agreement as, for example, for DF1 with the PBE functional the value of Err
(defined in equation (2.9)) was reduced by 78 per cent in the initial parameter
optimization, and in the subsequent sulphur parameter optimization of the value
of Err (for the subset of sulphur complexes) was further reduced by 32 per cent.
After optimization, DF1 (with PBE) produced binding energies with the lowest
root mean square (r.m.s.) difference from the literature values of 0.813 kcal molK1.
DF3 had a r.m.s. difference only slightly higher, 0.820 kcal molK1; however, DF2
was notably worse with a r.m.s. of 0.926 kcal molK1, and a very similar trend was
observed for the standard deviations. So, for the PBE functional, DF1 is expected
to be the most accurate and consistent.

We argued that a key concern of our approach was to retain the transferability of
the parameters. To check if this goal has been achieved, we performed validation
calculations on a set of complexes that were not included in the fitting set.
These complexes are presented in table 2. They are grouped into four categories:
interstrand base pairs; stacked base pairs; hydrogen-bonded base pairs; and other
hydrogen-bonded complexes (from the remainder of the S22 set). These systems
Proc. R. Soc. A (2009)



Table 1. Binding energies (in kcal molK1) for the complexes used in the fitting of the parameters.
(The ONETEP results are given with and without dispersion interactions with the optimized
parameters for the PBE functional and are compared with the ‘exact’ values from the literature.)

complex uncorrected DF1 DF2 DF3

literature
(Jurečka et al.
(2006) and
Morgado et al.
(2007))

2CH3SH(C1)a3 K1.61 K2.49 K3.36 K2.40 K2.68
2CH3SH(C1)a5 K1.76 K2.79 K3.66 K2.68 K2.50
2CH3SH(Ci)a4 K1.77 K2.68 K3.15 K2.59 K2.00
AA0-3.24 A–As 2.41 K6.08 K6.02 K6.22 K6.25
AA0-3.24 T–Ts 2.81 K4.32 K4.96 K4.19 K3.86
AA20-3.05 AAs2005 3.03 K5.85 K5.86 K5.99 K6.06
AA20-3.05 TTs2005 K0.68 K2.25 K2.47 K2.21 K4.18
A/C S 1.77 K6.48 K6.28 K6.44 K6.70
adenine–thymine stack K1.12 K11.40 K12.23 K11.43 K12.23
AG08-3.19 A–Gs K0.09 K7.47 K7.32 K7.45 K7.58
AG08-3.19 T–Cs K0.64 K6.31 K6.45 K6.19 K6.07
A/G S 2.35 K6.30 K6.59 K6.34 K6.50
AT10-3.26 A–Ts 0.88 K6.91 K7.00 K6.84 K6.64
A/T S 1.02 K8.42 K8.37 K8.34 K8.10
benzene–ammonia (Cs) K0.70 K2.38 K2.69 K2.36 K2.35
benzene dimer (C2h) 2.02 K3.34 K3.08 K3.41 K2.73
benzene dimer (C2v) K0.05 K2.66 K3.20 K2.59 K2.74
benzene DMS (C2v)a8 K0.15 K3.37 K3.28 K3.39 K3.00
benzene DMS (C2v)a9 K0.66 K1.12 K1.28 K1.10 K1.21
benzene H2S(C2v)a7 K0.74 K2.43 K2.99 K2.30 K2.74
benzene HCN (Cs) K3.02 K4.77 K5.55 K4.69 K4.46
benzene–methane (C3) 0.08 K1.67 K1.87 K1.67 K1.50
benzene–water (Cs) K1.82 K3.35 K3.83 K3.27 K3.28
CG0-3.19 G–Cs K1.79 K6.83 K7.09 K6.68 K7.88
C/G S K2.97 K10.58 K10.53 K10.60 K12.40
ethene dimer (D2d) K0.39 K1.96 K2.30 K1.89 K1.51
ethene–ethine (C2v) K1.32 K2.04 K2.20 K2.01 K1.53
F30-F49 K0.16 K3.20 K3.34 K3.21 K3.30
F30-K46 K1.07 K3.66 K3.82 K3.62 K3.10
F30-L33 K0.40 K5.47 K6.44 K5.25 K5.00
F30-Y13 K1.05 K4.87 K5.05 K4.79 K3.90
F30-Y4 0.85 K6.05 K6.02 K6.03 K7.00
F49 C39 0.28 K2.12 K2.94 K2.03 K2.10
F49 C6 0.70 K5.01 K5.33 K4.90 K5.00
F49-K46 K1.34 K4.95 K5.83 K4.85 K4.80
F49-PB V5-C6 K2.26 K7.93 K8.61 K7.81 K8.20
F49-PB Y4-V5 K0.36 K3.29 K3.38 K3.23 K2.80
F49-V5 K0.85 K6.64 K7.91 K6.47 K6.70
F49-Y37 K0.15 K2.41 K2.47 K2.37 K2.50
F49-Y4 1.41 K3.65 K4.34 K3.56 K3.10

(Continued.)
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Table 1. (Continued.)

complex uncorrected DF1 DF2 DF3

literature
(Jurečka et al.
(2006) and
Morgado et al.
(2007))

GA10-3.15 A–Gs 0.45 K9.43 K9.46 K9.52 K9.14
GA10-3.15 T–Cs 0.88 K5.29 K5.26 K5.24 K4.69
GC0-3.25 G–Cs K2.04 K10.84 K10.81 K10.92 K10.80
G/C S K2.78 K10.24 K10.43 K10.29 K8.10
G/C S1 0.25 K7.03 K7.05 K7.02 K7.70
G/C S2 K3.46 K7.86 K7.77 K7.81 K11.60
GG0-3.36 CCs036 K3.94 K4.71 K4.70 K4.70 K3.54
GG0-3.36 GGs036 3.41 K2.01 K1.90 K2.01 K1.62
GT10-3.15 A–Cs 2.13 K5.54 K5.40 K5.64 K5.44
GT10-3.15 T–Gs 3.44 K5.27 K5.58 K5.16 K4.96
indole–benzene stack (C1) 2.46 K5.34 K5.03 K5.50 K5.22
indole–benzene t-shaped

(C1)
K2.14 K5.65 K6.70 K5.59 K5.73

methane dimer (D3d) K0.08 K0.96 K0.91 K0.94 K0.53
phenol dimer (C1) K4.33 K7.10 K8.10 K6.97 K7.05
pyrazine dimer (Cs) 0.82 K4.56 K4.48 K4.71 K4.42
TA08-3.16 A–Ts 5.56 K4.44 K5.37 K4.55 K6.07
TG03.19 A–Cs 1.61 K4.40 K4.64 K4.34 K4.96
TG03.19 T–Gs 0.01 K5.22 K5.50 K5.06 K5.67
T/G S 1.82 K6.73 K6.66 K6.64 K6.20
uracil dimer stack (C2) K2.66 K9.33 K10.24 K9.12 K10.12
root mean square error 5.915 0.813 0.926 0.820 0
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were chosen as they represent a wide range of typical biomolecular environments
and also because accurate binding energies are available for these structures in the
literature (Jurečka et al. 2006). For the interstrand base pairs and the stacked base
pairs the dispersion interaction is the dominant interaction; our results show the
same dramatic improvement in the binding energies as in the complexes of table 1.
Furthermore, the level of improvement in the binding energies of the stacked and
the interstrand base pairs is similar even though only stacked base pairs were
included in the fitting set, indicating the generality of the empirical dispersion
correction. For the hydrogen-bonded base pairs and other hydrogen-bonded
complexes, where the binding is mainly due to hydrogen bonds, the inclusion of the
empirical dispersion contribution is not as successful. In a few cases, such as the
water dimer, for example, the uncorrected ONETEP binding energy is already too
large, and the dispersion correction leads to further overbinding. DF2 gave a
significant overbinding for every hydrogen-bonded complex (r.m.s. difference
5.777 kcal molK1), so this function is less applicable to systems with significant
hydrogen bonding, which is the norm for many biological molecules. DF3
performed better than DF1 for all but two of the hydrogen-bonded complexes; the
r.m.s. differences were 1.225 and 1.367 kcal molK1, respectively. For the non-
hydrogen-bonded complexes, all the damping functions produced binding energies
Proc. R. Soc. A (2009)



Table 2. Binding energies in (kcal molK1) for complexes that were not included in the fitting of
parameters. (Values obtained with just the LDA and PBE exchange-correlation functionals are
given, as well as values calculated with PBE plus dispersion with DF1, DF2 and DF3.)

complex LDA PBE DF1 DF2 DF3 literature

interstrand base pairs
AA20 3.05 ATis2005 K2.58 K1.23 K2.41 K2.68 K2.36 K2.34
GA10 3.15 A Cis 0.44 1.13 K0.08 K0.11 K0.06 K0.31
GA10 3.15 T Gis 1.02 1.20 0.56 0.56 0.56 0.58
GG0 3.36 CGis036 K3.21 K2.46 K3.94 K3.94 K3.91 K3.68
TG0319 T Cis K1.17 K0.95 K1.39 K1.39 K1.39 K1.15

stacked base pairs
AAst K6.44 0.27 K8.38 K8.17 K8.52 K8.58
CCst K8.56 K2.65 K9.61 K9.53 K9.69 K10.02
GGst K10.39 K2.94 K12.39 K12.30 K12.44 K12.67
UUst K7.67 K2.31 K8.60 K8.47 K8.61 K7.46

hydrogen-bonded base pairs
2tU 2tU K17.40 K10.87 K12.58 K14.16 K12.40 K12.60
6tG C WC pl K38.08 K28.66 K31.30 K33.40 K31.12 K29.50
A 4tU WC K18.74 K12.46 K14.80 K16.07 K14.63 K13.20
adenine–thymine K15.65 K15.65 K18.21 K19.94 K18.01 K16.37
G 2tU K21.85 K14.82 K16.65 K18.42 K16.47 K16.60
G 4tU K23.82 K16.37 K18.46 K20.23 K18.26 K17.80
uracil dimer hb (C2h) K27.09 K20.11 K21.91 K23.60 K21.75 K20.65

other hydrogen-bonded complexes
2-pyridoxine 2-aminopyridine (C1) K23.70 K16.86 K19.20 K20.93 K19.02 K16.71
ammonia dimer (C2h) K5.07 K2.93 K3.35 K4.06 K3.31 K3.17
formamide dimer (C2h) K22.48 K16.01 K17.23 K18.80 K17.08 K15.96
formic acid (C2h) K27.28 K19.54 K20.39 K22.40 K20.18 K18.61
water dimer (Cs) K7.83 K5.20 K5.40 K6.10 K5.31 K5.02
root mean square error 4.494 3.588 1.073 2.048 0.968 0
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of similar accuracy; the r.m.s. differences for DF1, DF2 and DF3 were 0.444, 0.452
and 0.430 kcal molK1, respectively. LDA binding energies have been included for
comparison. As expected, these energies are too large for the hydrogen-bonded
complexes (Elstner et al. 2001). For the non-hydrogen-bonded complexes, LDA
(r.m.s. 1.202 kcal molK1) produced more accurate binding energies than
PBE (r.m.s. 5.366 kcal molK1); however, they are still inferior to the corrected
PBE energies.

We have also investigated the effect of the dispersion contribution on the atomic
forces by examining the molecular structures obtained during geometry
optimization. We have performed full (unconstrained) geometry optimizations on
four systems: a benzene dimer; a methane dimer; a methane–benzene complex; and
an indole–benzene complex. All the calculations were performed with DF1 and the
PBE functional and a rather tight maximum absolute force convergence threshold
of 0.001 Eh/a0 was used as the forces due to dispersion are obviously very weak.

For the case of the benzene dimer, the optimization with dispersion
contributions resulted in the equilibrium structure shown in figure 2, where the
two benzene molecules are in a conformation with their planes parallel, at a
Proc. R. Soc. A (2009)
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Figure 2. Optimized structures with ONETEP of (a) benzene sandwich dimer, (b) methane dimer,
(c) methane–benzene and (d ) indole–benzene.
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separation of 3.7 Å. This is in close agreement with the value of 3.9 Å that has
been obtained with CCSD(T) calculations with a near-complete basis set by
Sinnokrot & Sherrill (2004). When we do not include dispersion interactions, the
pair of benzene molecules experiences only the repulsive potential of the PBE
functional and no binding is observed, but the geometry optimization is simply
completed when their separation is 5.1 Å, as at this distance the forces are smaller
than the set threshold.

For the methane dimer, when dispersion interactions are included ONETEP
was able to reproduce the geometry obtained by MP2 calculations using a large
Gaussian basis set (cc_pVTZ; Dunning 1989). The final structure obtained with
ONETEP is shown in figure 2. The structure has the correct symmetry, and the
distance between the hydrogen atoms of the two molecules (3.08 Å) is in
agreement with the MP2 value (3.07 Å). When the empirical dispersion
contributions are omitted from the ONETEP geometry optimization, the methane
molecules end up much further from each other and their orientation is very
different from that obtained using the MP2 approach.

In the case of the benzene–methane complex, the benzene–methane distance we
obtain after optimization when using our empirical dispersion contribution is
3.15 Å (figure 2), which is in close agreement with the value of 2.98 Å from an
accurate MP2 geometry (Jurečka et al. 2006). Omitting the dispersion contribution
results in a distance of 3.62 Å. For the indole–benzene complex, the indole–benzene
distance increased from 3.40 Å in an MP2-optimized geometry (Jurečka et al. 2006)
to 3.52 Å when optimized with our empirical dispersion and 3.92 Å when optimized
without it. Clearly, in all cases, the inclusion of the empirical dispersion
contribution has significantly improved the geometries obtained.
4. Conclusions

We have presented an implementation of the empirical dispersion contributions for
the ONETEP code, including optimization of parameters for use in biological
simulations. Optimization of the parameters significantly improved the obtained
binding energies for weakly bound complexes. Further validation calculations,
which compare with the literature results from explicitly correlated wavefunction
methods, show that the inclusion of dispersion interactions provides an adequate
description of the binding energies of weakly bound complexes. We found that the
damping functions DF1 and DF3 produced the best binding energies, with DF3
being superior for hydrogen-bonded complexes. Inferior corrected binding energies
Proc. R. Soc. A (2009)
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were obtained when DF2 was used, especially for hydrogen-bonded complexes.
The dispersion contributions have also been included in the calculation of the
forces and allow ONETEP geometry optimizations to produce accurate structures.
While the emphasis of this work has been on biomolecular simulations, the code is
completely general and can in future be extended to other classes of molecules and
materials if suitable parameters are provided.

Q.H. would like to thank the EPSRC for research studentship funding. C.-K.S. would like to thank
the Royal Society for a University Research Fellowship.
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Langreth, D. C., Dion, M., Rydberg, H., Schröder, E., Hyldgaard, P. & Lundqvist, B. I. 2004 Van der

Waals density functional theory with applications. Int. J. Quant. Chem. 101, 599–610. (doi:10.
1002/qua.20315)

Lennard-Jones, J. E. 1931 Cohesion. Proc. Phys. Soc. 43, 461–482. (doi:10.1088/0959-5309/43/5/301)
London, F. 1930 Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 63, 245–279. (doi:10.
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