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Abstract

An efficient approach for evaluating effective core potential integrals which involve projection operators has been
implemented in the MAGIC quantum chemistry program. The methodology is presented and its performance is examined
through illustrative calculations on transition metal and actinide compounds. q 1998 Elsevier Science B.V. All rights
reserved.

1. Introduction

The study of complexes of heavy elements by ab
initio quantum chemical methods requires the incor-
poration of relativistic effects since it has been shown
that they play a significant role in the properties of

w xsuch compounds 1 .
To a great extent, the incorporation of such ef-

fects can be achieved through the use of effective
Ž . Žcore potentials ECP also called pseudopotentials
.by some authors or by some approximate method of

solving the Dirac–Schrodinger equation adjusted to a¨
w xmany-electron system 2,3 . The design of ECPs is a

compromise between two requirements. First, they
have to imitate the interactions of core electrons of a
many-electron atom with the valence electrons. Se-

1 Corresponding author. E-mail: cks22@cus.cam.ac.uk

cond, this imitation of core electrons has to be
limited only to the valence region. This means that
they have to produce valence orbitals that resemble
the true valence orbitals in the valence region but

Ž .have no features nodes, etc. in the core region. This
requirement, which is not so trivial, is necessary to

Ž .ensure that a smaller i.e., valence only basis set is
needed for the atom in question. The ECPs are
routinely used because in most cases they afford
results of comparable accuracy to all-electron meth-
ods at reduced computational cost. Even in the cases
of first-, second- and third-row atoms, where rela-
tivistic effects are usually negligible, the use of ECPs
is very common due to the computational savings
that are achieved from the use of ‘valence only’
basis sets.

The effective core potential operators of the func-
w xtional form first proposed by Kahn et al. 4,5 are

widely used today. The only effort in using them in a

0009-2614r98r$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.
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molecular calculation rests in the evaluation of their
one-electron integrals which are their matrix ele-
ments with the Cartesian Gaussian functions of the
basis set.

The matrix element of the ECP operator consists
of two distinct types of integrals, one of which does
not involve projection operators and one of which
does. A few methods and corresponding computer
programs for evaluating these integrals are known
w x5–8 . The integral which involves the projection
operators is by far the most difficult from a theoreti-
cal and practical point of view.

In this Letter we present a new method to calcu-
late this integral which is simple in concept and
implementation. The implementation was done in-

w xside the MAGIC quantum chemistry program 9 .
MAGIC was written entirely from the begining for
the purpose of studying large molecules of industrial
significance at the DFT level of theory. No limita-
tions on the maximum angular momentum of basis
functions and projection operators or the values of
the parameters involved exist. Furthermore, the size
of the molecular system to be studied is only re-
stricted by the available computer resources. Section
2 is a brief summary of the ECP method. Sections 3
and 4 present the new methodology for evaluating
the integral. Finally, some example calculations on
inorganic compounds are presented in Section 5.

2. ECP integrals

An ECP represents the interaction of the core
electrons with the valence electrons by a potential

w xoperator of the following semi-local form 5 :

Ly1 l
B B < :U sU r q lm;BŽ . Ý ÝL

ls0 msyl

= B B ² <U r yU r lm;B , 1Ž . Ž . Ž .l L

where Ly1 is the largest angular momentum orbital
belonging to the core. It is expressed in terms of

Ž .spherical polar coordinates r,u ,f with origin on
the centre B of the ECP. As one would expect, U B

l

and U B approach zero asymptotically at large dis-L
< :tance from B. The functions lm;B are real spheri-

cal harmonics Z centred on B, according to thelm

definition

1r2< <2 lq1 ly m !Ž . Ž .
Z u ,f sŽ .lm ž /< <2p lq m !Ž .

=

° < m << <cos m f P cosu , m)0 ,Ž .Ž . l

1
<0 <~ P cosu , ms0 ,Ž .l'2

< m <¢ < <sin m f P cosu , m-0 .Ž .Ž . l

2Ž .

The core potential operators are expressed in analyti-
cal form by fitting the numerical potentials to linear
combinations of Gaussian functions:

N 2cB n yz rk L k LU r s q d r e , 3Ž . Ž .ÝL k Lr k

U B r yU B r s d r nk leyz k l r
2
, 4Ž . Ž . Ž .Ýl L k l

k

where N is the number of core electrons. In allc

ECPs derived to date, the powers n and n arek L k l

restricted to the values 0, y1 and y2, although the
method which we describe in this Letter assumes no
such restriction. We will try to follow the notation of
earlier works on core potential integral evaluation
w x5,6,8 . The basis sets we use consist of Cartesian
Gaussian functions. The general form of an unnor-
malised Cartesian Gaussian function on centre A is

f sx n x y n y z n zexp ya r 2 . 5Ž .Ž .A A A A A

Evaluating the matrix elements of the integrals be-
tween functions f and f results in the evaluationA C

Žof two distinct types of integrals referred to as type
.1 and type 2 .

x s f r nk Lexp yz r 2 f dt 6Ž .Ž .HAC A k L C



( )C.-K. Skylaris et al.rChemical Physics Letters 296 1998 445–451 447

and

`
n q2 2k l² < :g s f lm;B r r exp yz rŽ . Ž .HAC A k l

0

=² < :f lm;B r d r 7Ž . Ž .C

where

² < :f lm;B r s f V ,r Z V dV . 8Ž . Ž . Ž . Ž .HA A lm

Formulae for the analytical calculation in spherical
polar coordinates around the centre B of the core

w xpotential are available for the above integrals 6,8 .
In this context, the calculation of the type 1 integral,
which does not involve projection operators, is rela-
tively straightforward. Calculation of the type 2 inte-
gral which involves projection operators is more
involved, at least from an implementational point of
view of the radial integral. The purpose of this Letter
is to present a simpler method of calculating the type
2 integral.

3. Calculation of the type 2 integral

Our approach towards the evaluation of the type 2
integral consists in performing the angular integra-
tions analytically and the radial integration by
quadrature on a one-dimensional grid of points. Pre-

w xvious efforts 5,6,8 have focused on the analytical
evaluation of the radial integrals

` 2yj r ne i br i cr r d r 9Ž . Ž . Ž .H l m
0

Ž .that emerge after the full expansion of Eq. 7 in
spherical polar coordinates. We would expect the
evaluation of this integral by quadrature to be ineffi-
cient compared to the analytical approach. On the
other hand, quadrature makes possible the calcula-
tion of integrals which cannot be done analytically.
We can therefore use it to evaluate directly the

Ž .integral of Eq. 7 as a whole. This leads to an
efficient method for evaluating the type 2 integral.
This would not be possible without the presence of
the angular projection operators that allow the isola-
tion of the basis functions from each other, as far as
the angular integration is concerned.

² < :Ž .First, the terms f lm;B r are evaluated ana-A

lytically at every point r of the radial grid according

to the following formula which can be derived by
expressing the Gaussian function f in terms ofA

w xfunctions centered on the ECP centre 5,6

nn nyx z nn yx² < :f lm;B r s4pŽ . Ý Ý ÝA ž /k kž /x yk s0 k s0 k s0x y z

=
nz n yk n yk n ykx x y y z zBA BA BAx y zž /k z

=
lqn

22qr .k qk qk ya ŽA Bx y zr eÝ
ls0

=
l $

i 2aABr Z ABŽ .Ž . Ýl lm

msyl

= Z r Z r x k x y k y z k z dV ,Ž . Ž .ˆ ˆ ˆ ˆ ˆH lm lm

where nsn qn qn is the angular momentum ofx y z

f , BA is the distance from the centre B of the ECPA $
to the basis function centre A and AB is the unit
vector from B to A. The angular integrals
in the above equation are expressed as sums
of triple integrals of spherical harmonics. The term

22qr .ya Ž A B Ž .e i 2aABr has to be evaluated as thel

exponential of the sum of its logarithms for retaining
precision. The spherical modified Bessel function of
the first kind i is computed by a standard imple-l

w xmentation 10 and its assymptotic form is used for
w xlarge values of its argument 11 .

The computation of g is completed by sum-AC
² < :Ž . nk l Ž 2 .ming the f lm;B r and r exp yz r termsA k l

over the radial grid
nr

nk l² < : ² < :g s f lm;B r f lm;B r rŽ . Ž .ÝAC A i C i i
is1

=exp yz r 2 w , 10Ž .Ž .k l i i

where n is the number of radial quadrature pointsr

and w are the corresponding weights.i

A point worth noting is that the calculation of the
² < :Ž . Žf lm;B r which is the computationaly inten-A i

.sive step scales linearly with the size of the system
Ž .number of basis functions N . Of course, the radial
quadrature part scales quadratically, but it has a
small prefactor so its contribution is negligible for all
systems we present in this Letter. If the quadratic
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part starts to dominate in large systems, linear scal-
ing could still be achieved, if necessary, by screening
of integrals that can be predicted to be negligibly
small.

For the calculation of first and second derivatives
of g with our mixed analytical–numerical method,AC

we recommend to avoid differentiating directly the
ECP operator by using the principle of translational

w xinvariance as has been done by Cui et al. 12 for
other ECP integral methods.

We tested our method by comparing with an
w ximplementation of a variant 13 of the method of

w xMcMurchie et al. 6 , which is available in MAGIC.
It was ensured that the variant code yielded accurate
results; however, it was not optimised for speed. We
found that our method is considerably faster than the
variant which requires a prohibitively large amount
of time for molecules larger than 4–5 atoms. A wide
range of molecular geometries was used in the tests
and they seem to have no effect on the method. For

2q Žexample, correct results are obtained for UO U2
w x .ECP from 14 , DZP basis on O when varying the

U–O distance from 0.01 to 10.0 a .0

4. Radial quadrature

As far as the radial quadrature is concerned, the
w xLog3 scheme of Mura et al. 15 was found to be

particularly efficient. In order to obtain the points,
we start with a number n of equally spaced pointsr

Ž .x on the interval 0,1i

i
x s 11Ž .i n q1r

then these points are mapped to points r on thei
Ž .interval 0,q` by

r sya ln 1yx 3 , 12Ž .Ž .i i

where a is an empirically determined parameter and
has the value 5 or 7, according to the type of atom
w x15 . The weights are given by

3a 3 x 2 ln2 1yx 3Ž .i i
w s . 13Ž .i 31yx n q1Ž .Ž .i r

Ž . Ž .The form of Eqs. 12 and 13 allows for the use of
an integration technique that converges the values of

the integrals to a certain predefined precision. We
can gradually increase the number of points without
having to recalculate the value of the integrand at the
points we have already used in the previous step.

In particular, we can first evaluate the integrals
with a number of radial points nŽ1. and weightsr

Ž . Ž2.given by Eq. 13 . If we then choose to use n sr

2nŽ1.q1 radial points for evaluating the integrals atr

improved precision, we observe that every second
point

r Ž2. , js2, 4, . . . , nŽ2.y1 , 14Ž .Ž .j r

coincides with a point of the first set nŽ1. and itsr

corresponding weight wŽ2. is half of the weight wŽ1.
j i

of r Ž1.. Therefore calculating an integral with all thei

nŽ2. quadrature points is equivalent to calculating itr

using only the subset

r Ž2. , ks1, 3, . . . , nŽ2. 15Ž .k r

and adding to the result half of the value calculated
in the previous step with the nŽ1. points.r

Using this algorithm we can increase the number
of quadrature points consecutively, and check the
convergence of the integrals at each step. We use
only the extra points added in each step, therefore
avoiding carrying out the integration from the begin-
ing with all the points. In our implementation, we
start with 31 points and the results typically con-
verge to the 10th decimal by the time we reach 2047
points or 4097 points for a few cases.

The performance of the Log3 scheme was found
to be consistently better than that of the Euler–Mac-

w xlaurin radial quadrature scheme 16 which was also
Ž .examined. This scheme maps points to the 0,q`

interval according to

x 2
i

r s . 16Ž .i 21yxŽ .i
The Euler–Maclaurin scheme is not as efficient for
our purpose, requiring on average an order of magni-
tude more points in order to produce the same results
as the Log3 scheme. This trend was common in all
examples we tried. As an illustration, the number of
points required by each type of grid for a variety of
molecules, ECPs and basis sets is shown in Table 1.

Both quadrature schemes are routinely used in
DFT calculations for the evaluation of the
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Table 1
ŽComparison of the performance of the Log3 and Euler–Maclaurin radial grids. Each molecule contains only one ECP centre the metal

.atom with the accompanying valence basis set. The integrals were converged to the 10th decimal digit

Molecule Basis ECP Log3 points Euler points

w xRbCl 631G2DP Wadt et al. 26 4095 16383
q w xAuH O DZ Wadt et al. 27 4095 327672

2q w xUO DZP Hay et al. 14 2047 655352
w xUF DZ Hay et al. 14 1023 655356
w xAgH PVTZ Hay et al. 17 255 32767

yŽ . w xPt C H Cl DZ Wadt et al. 27 127 655352 4 3
w xRbCl 631G2DP 28 127 255

q w xAuH O DZ Andrae et al. 29 127 5112
2q w xUO DZP Kuchle et al. 30 127 255¨2

w xUF DZ Kuchle et al. 30 127 255¨6
w xAgH PVTZ Andrae et al. 29 127 511

yŽ . w xPt C H Cl DZ Andrae et al. 29 127 5112 4 3

Ž .Each molecule contains only one ECP centre the metal atom with the accompanying valence basis set. The integrals were converged to the
10th decimal digit.

exchange-correlation potential matrix elements. The
reason for the better performance of the Log3 scheme
could be attributed to its specific design for integra-
tion of Gaussian functions in contrast to the Euler–
Maclaurin scheme which is supposed to be of more
general applicability.

Having decided upon the type of quadrature and
integration technique to be used, there remains the
implementational question of memory usage as the
number of basis functions and quadrature points

² < :Ž .increases. The values of f lm r are calculatedA i

and stored in an array of size N =nŽk . where NBF r BF

is the number of basis functions. Furthermore the
22qr .yz Ž A B Ž .values of e i 2zABr are also precalcu-l

Ž .lated and stored in an array of size N = Lqnexp max

=nŽk ., where N is the total number of primitiver exp

Cartesian Gaussian exponents and n is the highestmax

orbital angular momentum in the basis set. The sizes
of these arrays can be substantial for large molecules
when the number of basis functions approaches or
exceeds 1000 and it is obviously affected by the
increasing number of quadrature points in the itera-
tions for converging the integrals. This dissipation of
memory can be avoided by performing the radial
integration using batches of radial points. In such a
batch formalism, subsets of n of the radial pointsbatch

are used in each step of the integration, until all the
nŽk . radial points are exhausted. Thus, nŽk . is re-r r

placed by n in the sizes of the relevant arrays. Inbatch

the present implementation the value of n wasbatch

set to 64. The use of batches of points makes the
memory demands of the program more or less the
same as those of the usual one-electron integrals.

5. Illustrative results

We are currently examining a variety of molecu-
lar systems and we present here some preliminary
results as examples. We give in Table 2 some
single-point energies of molecules containing various
heavy elements with ECPs. Single-point energies are
a means of verifying our code and provide a point of
reference for others who may try this method.

The uranium and rhodium atoms were represented
by ECPs with the corresponding basis sets from

w x w xreferences 14 and 17 , respectively. The geome-
tries of the rhodium clusters were taken from crystal
structures with the aid of the Quest program of the

w xCambridge Crystallographic Database 18 , while the
geometries of the 18crown6 and the uranyl were

Table 2
Ž .Single point LDA exchange energies

Molecule Energy, Eh

Ž .Rh CO y1428.34494 12
Ž .Rh CO C y2337.86238 19

2qŽ .UO 18crown6 y1104.77792
2qUO q 18crown6 y1104.29772
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obtained from a molecular mechanics geometry opti-
2 w xmisation using Cerius 19 . The LDA exchange

functional was used throughout and no correlation
functional was included. Standard double-zeta basis
sets on the atoms not bearing ECPs were used.

Carbonyl clusters of metals are common examples
w xof molecules with metal–metal bonds 20 . There are

numerous experimental studies on these systems due
to their complexity of structure, variety of unusual
reactions, resemblance to bulk metals and possible

w xuse in catalysis 21,22 . The understanding of their
electronic structure is also a field of active research
w x23 . There are no localised orbitals and the chemical
concept of a bond between two atoms due to an
electron pair cannot be used. Their structures are
explained often in terms of electron counting rules
which have been derived from rudimentary LCAO
arguments. There are no general trends and correla-
tions with the other great class of clusters, the halide
clusters whose properties are rationalised by differ-
ent arguments. Our aim is to optimise the geometries
of representative types of clusters at the DFT level of
theory with the most important relativistic contribu-
tions accounted for through the use of ECPs. We
then hope to derive conclusions concerning the sta-
bility and electronic structure of these compounds.

Ligands which bind uranium, plutonium and other
actinides are of prime importance in the nuclear
industry. For example, ligands such as tributyl phos-

Ž .phate TBP are used in the separation by extraction
of uranium and plutonium from nuclear fission prod-
ucts. Also, special ligands for removing actinides

w xfrom the blood in cases of contamination exist 24 .
There is potential for improving the efficiency of
such separative processes by designing ligands with
better selectivity. Experimental investigation of such
systems is quite expensive and time consuming be-
cause of the hazards involved. A code like MAGIC
is expected to provide chemically useful information
on such systems. As a starting model we have de-
cided to investigate the interaction of a uranyl cation
with the 18crown6 ether. Results by other workers

w xusing the molecular dynamics approach 25 claim
that the complex is stable in the gaseous phase, but
dissociates in water. In the gaseous phase, we find a

Ž .dissociation energy of 0.4802E 301.3 kcalrmolh
Žwhich indicates quite a strongly bound complex see

.Table 2 . A plot of a density isosurface of the

Ž .2qFig. 1. Plot of a density isosurface of UO 18crown6 . The U2

core is represented by an ECP and therefore its core electron
density is not included in the plot.

complex is given in Fig. 1. Studies are underway to
examine its stability in water using the solvent mod-
els of MAGIC. The results of these and related
studies will be presented in a forthcoming publica-
tion.

6. Conclusions

An efficient approach which combines analytical
angular with numerical radial integration is sug-
gested for calculating the ECP integrals that involve
projection operators. It is much simpler in concept
and implementation than purely analytical integra-
tion methods. The implementation of the method has
been done in the MAGIC program and is used in
calculations on large molecules.
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