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ABSTRACT: The accurate prediction of ligand binding affinities to a protein remains a desirable goal of computational
biochemistry. Many available methods use molecular mechanics (MM) to describe the system, however, MM force fields cannot
fully describe the complex interactions involved in binding, specifically electron transfer and polarization. First principles approaches
can fully account for these interactions, and with the development of linear-scaling first principles programs, it is now viable to apply
first principles calculations to systems containing tens of thousands of atoms. In this paper, a quantum mechanical Poisson-
Boltzmann surface area approach is applied to a model of a protein-ligand binding cavity, the “tennis ball” dimer. Results obtained
from this approach demonstrate considerable improvement over conventional molecular mechanics Poisson-Boltzmann surface
area due to the more accurate description of the interactions in the system. For the first principles calculations in this study, the
linear-scaling density functional theory program ONETEP is used, allowing the approach to be applied to receptor-ligand
complexes of pharmaceutical interest that typically include thousands of atoms.

1. INTRODUCTION

With the growing number of experimentally determined 3D
molecular structures refined to a high atomic resolution, molec-
ular modeling is expanding its role in understanding structure/
function relationships of biomolecules. Techniques of increasing
sophistication are available for describing atomic forces, ranging
from classical molecular mechanics (MM) with coarse grained or
atomistic force fields to first principles electronic structure
calculations.1 Computational simulations with these techniques
can be used to calculate structural, dynamic, and thermodynamic
properties and have found wide usage as tools for assessing
potential pharmaceutical drugs and for potentially reducing the
need for experimental work.

A central problem in drug discovery is the prediction of
receptor-ligand binding free energies. Among the many ap-
proaches available for free energy calculations, docking and
scoring2 are among the least computationally expensive but also
most approximate. In these methods ligand orientations (poses)
are assigned scores, and the quality of the fit is expressed by an
empirical function, the scoring function. These scores are used to
rank each pose relative to other poses and other ligands. Methods
with a higher level of statistical mechanics rigor includemolecular
mechanics Poisson-Boltzmann surface area (MM-PBSA)3 and
molecular mechanics generalized Born surface area (MM-
GBSA).4 These methods estimate absolute free energies of
bound and unbound reference states using molecular dynamics
(MD) simulations to sample phase space. Free energies of bind-
ing are obtained as averages of interaction energies over snap-
shots from the MD simulations with entropic contributions
calculated from vibrational frequency calculations and the solva-
tion free energy contributions from an implicit solvent model.
Although this approach has found extensive usage, especially for
the calculation of relative free energies of binding, its accuracy is

limited by the approximate nature of including entropy and
solvation effects as well as the force field, which is required to
reproduce structures and energies with high accuracy. At the most
theoretically rigorous end of the spectrum we have methods, such
as potentials of mean force and alchemical free energy calculation
approaches.5 An example of an alchemical method is thermo-
dynamic integration (TI). It follows an unphysical pathway,
where one ligand is mutated to another. It evaluates ratios of
partition functions to estimate relative binding free energies and
their gradual change during themutation, which happens in small
steps and fully includes the entropic and solvation contributions
which are heavily approximated with the less rigorous approaches.
In principle, alchemical free energy calculations allow the exact
prediction of relative binding free energies, at very high compu-
tational cost. However, inadequacies in the force fields used and
insufficient sampling introduce errors into the calculated free
energies. These errors are exacerbated by ligands that cause
changes which are difficult to capture by classical force fields,
such as charge transfer and polarization or conformational change
on binding, which may require extremely long simulations.

A large number of force fields have been developed and
extensively parametrized for common amino acids found in pro-
teins, but the development and parametrization of force fields for
general ligands are a muchmore difficult task. Even in the protein
force fields there are issues with their transferability and accuracy,
as their form can allow only for an average picture of electronic
polarization and no inclusion of electronic charge transfer; yet
these effects are ubiquitous and can often make important
contributions to energies and structures. Promising progress is
being made into polarizable force fields,6 but these approaches
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are still not as general or as able to achieve the required levels of
accuracy.

First principles quantummechanical (QM)methods explicitly
include the electrons and therefore can fully take into account the
electronic charge transfer and polarization and are transferable to
any chemical environment. They are therefore ideal for biomo-
lecular simulations, since the interactions between ligand and
receptor always involve rearrangement of electrons to a certain
extent, and first principles calculations would be expected to
provide more accurate binding free energies. The most widely
used first principles approach is Kohn-Sham density functional
theory (DFT),7 as it offers a good compromise between accuracy
and computational cost. However, the applicability of first
principles calculations in such simulations is limited because in
general they are 1000 times more computationally demanding
than force field approaches, and more importantly, their compu-
tational cost increases with the third power in the number of
atoms. In practice this limits the size of the calculations to a few
hundred atoms at most, while most biomolecular systems of
interest tend to include thousands of atoms. In cases where
quantum calculations are unavoidable, such as for example, in the
study of chemical reactions in the active sites of enzymes, small
parts of the active site are simulated using quantum mechanics
while the rest of the system is described by a classical force field. A
variety of suchQM/MMapproaches have been developed,8,9 but
their application requires extensive experience in order to effect a
physically meaningful partition of the system to QM and MM
regions and also to properly describe the interaction between
these two fundamentally differentmodels. An alternative approach
would be to perform first principles calculations on the entire
biomolecular system if there was a way to avoid their cubic
scaling cost. This can be achieved by using linear-scaling first
principles approaches10 which have the capability for calculations
onmany thousands of atoms. The development of such approaches
has been slow, as it required dealing with a variety of nontrivial
physical and computational issues, but today a number of
linear-scaling DFT packages are available such as ONETEP,11

CONQUEST,12 SIESTA,13 and others.14

In this work we are evaluating the use of first principles
calculations in combination with a classical force field to simulate
host-guest interactions. The system we have selected to study is
a model for a protein ligand-binding cavity based on a self-
assembling superstructure, the “tennis ball”dimer (Figure 1). We
have chosen this model as it combines simplicity with realism and
also because there are previous computational15 studies and
experimental16 data to compare with. We first compare structure
optimization with a force field and first principles approaches in

terms of the structural parameters. We then introduce dynamic
effects through MD simulations and compare binding energies
calculated fromMM-PBSA andQM-PBSA to experimental values.
For our first principles calculations we use linear-scaling DFT as
implemented in the ONETEP11 program which has a demon-
strated capability for DFT calculations with thousands of atoms.17

These are the length scales of several proteins of relevance to
current therapeutical challenges, and therefore the use of linear-
scaling DFT will allow, with further future testing and validation,
the application of first principles-based simulations to some of
these proteins.

In Section 2.1 the ONETEP approach is discussed. Section 2.2
will detail the computational methods used in this study. Section
2.3 will outline the procedure and parameters. In Section 3 the
results are given and analyzed, and Section 4 summarizes our
results and conclusions.

2. METHODS

2.1. The ONETEP Approach. The ONETEP11 program is a
linear-scaling DFT code that has been developed for use on
parallel computers.18 ONETEP combines linear scaling with
accuracy comparable to conventional cubic-scaling plane-wave
methods, which provide an unbiased and systematically impro-
vable approach to DFT calculations. Its novel and highly efficient
algorithms allow calculations on systems containing tens of
thousands of atoms.17 ONETEP is based on a reformulation of
DFT in terms of the one-particle density matrix. The density
matrix in terms of Kohn-Sham orbitals is

Fðr, r0Þ ¼ ∑
¥

n¼ 0
fnψnðrÞψ�

nðr0Þ ð1Þ

where fn is the occupancy and ψn(r) and ψn(r0) are the Kohn-
Sham orbitals. In ONETEP the density matrix is represented as

Fðr, r0Þ ¼ ∑
R
∑
β
φRðrÞKRβφ

�
βðr0Þ ð2Þ

where φR(r) is the localized nonorthogonal generalized Wannier
functions19 (NGWFs) and KRβ, which is called the density
kernel, is the representation of fn in the duals of these functions.
Linear-scaling is achieved by truncation of the density matrix,
which decays exponentially for materials with a band gap and
by enforcing strict localization of the NGWFs onto atomic
regions. In ONETEP as well as optimizing the density kernel,
the NGWFs are also optimized, subject to a localization

Figure 1. Two-dimensional (2D) diagram of the monomer (left). Truncated structure of the tennis ball depicting the shape of the cavity (middle).
Encapsulation of a methane molecule in the whole dimer (right).
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constraint. Optimizing the NGWFs in situ allows for a minimum
number of NGWFs to be used while still achieving plane-wave
accuracy. TheNGWFs are expanded in a basis set of periodic sinc
(psinc) functions,20 which are equivalent to a plane-wave basis as
they are related by a unitary transformation. Using a plane-wave
basis set allows the accuracy to be improved by changing a single
parameter, equivalent to the energy cutoff in conventional plane-
wave DFT codes. The psinc basis set provides a uniform des-
cription of space, meaning that ONETEP does not suffer from
basis set superposition error.21

2.2. MM-PBSA and QM-PBSA. The MM-PBSA3 approach is
commonly used to calculate relative (and absolute) binding
affinities of small molecules to proteins via differences between
bound and unbound states. Representative structural ensembles
are generated by MD simulations in explicit solvent. Snapshots
are extracted at constant time intervals, and the solventmolecules
and counterions are removed. Binding energy calculations are
then performed on the individual structures using the MM force
field together with an implicit solvent approach (PBSA). The free
energy of binding is then obtained as an average over the
ensemble binding energies. In the solvent model the polar
solvent contributions are calculated via the Poisson-Boltzmann
(PB) equation, and the nonpolar solvent contributions are cal-
culated from the solvent accessible surface area (SA). The free
energy of binding is calculated according to

ΔGbind ¼ ÆΔHvacæþ ÆΔGsolvæ- TÆΔSæ

¼ ÆΔHvacæþ ÆΔGpolar
solv æþ ÆΔGnonpolar

solv æ- TÆΔSæ ð3Þ

Where ÆΔHvacæ arises from the average difference in van der
Waals and electrostatic contributions from the MM force field,
ÆΔGsolvæ is the average free energy of solvation from the PBSA
model, and ÆΔS æ is the entropy of binding which is approximated
from harmonic vibrational frequency calculations averaged over
the snapshots. A common assumption is that similar ligands
bound to the same receptor contribute comparably to the
binding entropy, and hence this term is often omitted from the
calculations. The difference in free energies of binding between
two ligands, A and B, is then given by

ΔΔGA f B ¼ ΔÆΔHvacæA f B þΔÆΔGsolvæA f B ð4Þ

The MM-PBSA method used in this study is the single-
trajectory approach. In this approach the receptor and ligand
structures are taken from the geometry of the complex. It has
been observed that this approach produces relative free energies
of binding that converge faster with the number of snapshots
sampled and are also more accurate, compared to the three-
trajectory approach, due to cancellation of errors.22

A significant source of error in MM-PBSA can be the accuracy
of the interaction energies computed for each snapshot, as this
depends on the selected force field. Several attempts have been
made toward overcoming these limitations by the inclusion of
the rigor of quantum mechanics in QM-PBSA extensions of the
MM-PBSA approach, which uses semiempirical QM23 or hybrid
QM/MM.24,25

More recently a QM-PBSA approach26 has been presented,
where the calculation of the interaction energies by the force field
is replaced by DFT calculations on the entire molecules involved.
In more detail, the energy of each snapshot is obtained as EQM =
EDFT þ Edisp, where Edisp is the dispersion correction27 to the

total DFT energy, EDFT. The free energy of solvation for each
snapshot from the MM-PBSA calculation is scaled to match the
electrostatics of the QM calculation in the following way:

ΔGQM
solv ¼ ΔGMM

solv
ΔEQM
ΔEMM

� �
ð5Þ

whereΔEMM is the total binding energy from theMM force field,
and, as in usual MM-PBSA, is averaged over the snapshots and
added to the total DFT energy to give the free energy of binding
as

ΔGtot ¼ ÆΔEQMæþ ÆΔGQM
solv æ ð6Þ

The scalingmethod used in previous works26 scaled the solvation
energy by the fraction of the electrostatic components of the
binding energy. In our system that scaling method does not work
since dispersion interactions are responsible for most of the
binding energy, leading to the MM electrostatic component of
the binding energy in the denominator, being very close to zero.
We found that the simpler form shown in eq 5 produces reason-
able solvation energies.
The first application of QM-PBSA26 has been on protein-

protein interactions. The results obtained were in good agree-
ment with the MM-PBSA, most likely because the force field
employed has been extensively and carefully parametrized for
protein systems and improved over a number of years. As our
present system does not consist of amino acids, we do not have
the advantage of using such a well-developed force field. This is a
situation which is common in drug design as nonstandard
residues and new ligands are explored and the reliability of a
general force field needs to be checked on a case by case basis.
Here we are aiming to investigate how QM-PBSA can be used in
such a case, as a an accuracy benchmark for MM-PBSA or as an
alternative approach.
2.3. Simulation Details. The tennis ball structure was built

and loosely minimized with the MOE28 program. MM simula-
tions were carried out using the AMBER 1029 package. The
tennis ball was modeled using the generalized AMBER force
field30 (gaff) and solvated with the CHCl3 explicit solvent model
(as implemented in AMBER 10) in a periodic box.
To equilibrate the system, the hydrogens were relaxed keeping

all heavy atoms restrained in the host and solvent, then relaxing
the solvent with restraints still on the host. The system was
heated to 300 K still restraining the host for 200 ps with the NVT
ensemble and ran for a further 200 ps with the NPT ensemble at
300 K in order to equilibrate the solvent density. This was cooled
to 100 K over 100 ps and minimization’s carried out reducing the
restraints on the host heavy atoms in stages (500, 100 ,50, 20, 10,
5, 2, 1, and 0.5 kcal mol-1 Å-2). Finally the system was heated to
300 K with no restraints over 200 ps and then ran for a further
200 ps at 300 K with the NPT ensemble, at the end of which the
root mean squared deviation of the carbon, nitrogen, and oxygen
atoms was converged and less than 0.8 Å relative to the starting
frame. production simulations were run for 2 ns with the NPT
ensemble at 300 K. All MD simulations used the Langevin
thermostat, the particle mesh Ewald (PME) sum for the electro-
static interactions, a time-step of 2 fs, and the SHAKE
algorithm.31 For the MM-PBSA calculation an infinite non-
bonded cutoff was used with a dielectric constant of 4.5 to
represent the chloroform solvent. All ONETEP single-point
energies were converged to 0.0002 hartree (∼0.1 kcal mol-1).
Four NGWFs were used to describe carbon, oxygen and
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nitrogen, 1 for hydrogens and 9NGWFs for the halogen atoms. A
kinetic energy cutoff of 800 eV for the psinc basis set was used, with
the GGA exchange-correlation functional PBE32 combined with
our implementation of the DFTþD approach to account for
dispersion parametrized specifically for this functional.27

3. RESULTS AND DISCUSSION

3.1. Validation tests. In cases where two different approaches
are used to explore the conformational space, the compatibility of
the methods used is an important consideration.33 First, it is
desirable that the minima on the potential energy surface bet-
ween the QM and the MM approach are as close as possible. To
investigate this we have carried out geometry optimizations of
the three complexes using ONETEP and AMBER. We have also
carried out further validation of the QM approach by doing the
same geometry optimizations with the Gaussian34 program
which can perform all-electron DFT calculations with Gaussian
basis sets. For these all-electron calculations we used a correla-
tion consistent split valence basis set (cc-pVDZ35) and the B97
exchange-correlation functional36 with the DFTþD approach
for including dispersion contributions, as parametrized by
Grimme et al.37 The structural parameters between the opti-
mized geometries by the three methods were compared. Bond
lengths vary by less than 0.03 Å, and internal angles, such as those
within rings, vary by less than 0.5, with the more flexible angles
differing by 2-3. Hydrogen bonds from ONETEP (Gaussian)
are shorter than these from the AMBER optimized structure by
0.2 Å (0.1 Å), and the distance separating the monomers differs
by as much as 0.5 Å between the ONETEP and AMBER
structures. All the methods predict hydrogen bonds which are
longer by around 0.2 Å for the CHCl3 complex compared to the
tennis ball complexed with CH4 or CF4 and the empty dimer,
which is to be expected as the CHCl3 is slightly larger than the
size of the empty cavity.
As we are interested in properties at finite temperatures

(usually room temperature), using only equilibrium geometries
is not sufficient, as dynamical motion causes the molecules to
visit many configurations which can differ from the relaxed
structures. Thus, MD simulations are run for time scales which
are long enough (ns) to sample the dynamical behavior of this

system, using the classical force field approach. The importance
of accounting for dynamic motion for the tennis ball system is
shown in Figure 2. Here we examine hydrogen-bond lengths in
the CH4 and CHCl3 complexes throughout the 2 ns MD
simulations. During the simulation, the hydrogen bonds in the
CH4 complex are stable, staying at around 2 Å. In contrast, the
hydrogen bonds in the CHCl3 complex are intermittent. We
observe that the dimer opens at a point, around 4 Å, then moves
back into position, re-establishes the hydrogen bond, and breaks
at another point. This happens due to the size of the chloroform
ligand; it is too large to fit comfortably between the monomers
causing the cavity to open and close during the simulation.
Figure 2 demonstrates that the CHCl3 complex has one hydro-
gen-bond broken most of the time. In this case the minimum
energy structure, which has all the hydrogen bonds intact, albeit
elongated, will not provide an adequate description of the
ensemble of structures encountered at room temperature. We
can demonstrate this further by noting that the binding energy
for the CHCl3 complex as calculated with ONETEP on the
optimized structure is 2.6 kcal mol-1, while when taking into
account 200 snapshots extracted from the MD ensemble, it is-
7.1 kcal mol-1 (see Section 3.2), in close agreement with the
experimental value of-7 kcal mol-1. As a dynamical ensemble of
structures is necessary for this study, we also need to confirm that
the conformations sampled by the force field are not unphysical
as far as the QM potential energy surface is concerned. To
explore this issue, we have compared forces on atoms calculated
from ONETEP and AMBER on several of the snapshots. An
indication that the compatibility of the two approaches is good in
this case is given by the values reported in Table 1, which presents
the average (maximum) of the absolute values of the force on all

Figure 2. Plots of the hydrogen-bond lengths from four hydrogen-bonding positions (CdO0s of top monomer to H—N0s of bottommonomer) in the
CH4 complex (left) and CHCl3 complex (right). Structures taken as ‘‘snapshots’’ at two points of the simulations are shown, the green dashed lines
represent the hydrogen bonds present at each snapshot. In the graphs, the four colored lines correspond to the four hydrogen bonds measured in each
complex (phenyl rings not displayed).

Table 1. Average (Maximum) of Forces on Atoms from
AMBER and ONETEP from 10 Snapshotsa

complex ONETEP AMBER

CH4 29.3 (153.0) 29.9 (107.0)

CHCl3 29.3 (147.8) 29.7 (105.0)

CF4 30.1 (150.8) 30.1 (128.1)
aValues in kcal/mol/Å.
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atoms over 10 equally spaced snapshots. Even though these agree
extremely well between the two approaches, if we look inmore detail
at individual atoms, the agreement is not so good. The largest
difference between the QM and MM forces on any single atom is
80 kcal mol-1 Å-1, but for most atoms, it is less than 20 kcal mol-1

Å-1. Figure 3 compares the forces between QM and MM between
individual atoms for a single snapshot of the CH4 complex, colored
according to the type of element. We can observe that for hydrogen
and carbon atoms both ONETEP and AMBER forces agree reason-
ably well. The large differences on the oxygen and nitrogen atoms are
as expected, this is because the parametrization of the ligand is done
in group-wise fashion, so an amine-group will have a charge of one,
but it is not clear how the charges are distributed over the atoms, thus
the charges for heteroatoms will strongly differ from ONETEP
causing a strongdifference in gradient. This behavior is representative
of all snapshots for the three systems. Our comparisons show that
there is substantial variability in the forces obtained with the two
approaches, however the forces in both cases are within expected
ranges, and the average forces are comparable. This suggests that no
unphysical conformations are visited by the force field.
Having established the importance of taking into account the

dynamical behavior of this system, we finally tested the

convergence of PBSA energies as a function of the number of
MD snapshots. An increasing number of snapshots was used,
obtained by sampling uniformly through the 2 ns production
simulations. From each simulation, 50, 100, 160, and 200 equally
spaced snapshots were extracted to study the convergence. We
found that the variation in the binding free energies calculated in
ONETEP or AMBER when going from 50 to 200 snapshots was
less than 0.2 kcal/mol for all systems studied. All MM- and QM-
PBSA results we report here were obtained using 200 snapshots.
3.2. Free Energies of Binding. The energies of binding that

were obtained with the MM- and QM-PBSA approaches for all
the complexes are presented in Table 2. The table shows the
enthalpies of binding (ΔH) computed from either the force field
or the DFT calculations with ONETEP and the free energy of
binding (ΔG), which includes solvation contributions. We
observe that for CH4 AMBER predicts a ΔH that agrees well
with experiment (to <0.3 kcal mol-1), however it overestimates
the ΔH for the halogen-containing ligands to over twice the
experimental value. This suggests that the force field does not
capture well the interaction energies of the halogen atoms with
the cavity. ONETEP produces ΔH values that are in close
agreement (within 0.1 kcal mol-1) to the experimentally deter-
mined ΔH values, which supports further our earliest observa-
tion that the ensemble of structures provided by the force field
has a high overlap with the QM ensemble. The larger standard
errors in the calculated energy differences for the CHCl3 com-
plex, 0.27 kcal mol-1 compared to 0.04 kcal mol-1 for CH4, are
expected since this structure shows considerably more fluctua-
tion than the other complexes, as we saw in Figure 2.
Since AMBER overestimates the interaction energies for the

halogen-containing ligands, the calculatedΔΔG’s predict a more
favorable interaction than was found experimentally and in the
previous computational study. Our improvements by the QM
calculations refer to the enthalpic part of the binding energies,
and indeed we can observe that the ΔΔH values are a very good
match to experiment.
As the enthalpy is accounted for so well, and the free energy of

solvation in this case makes a minimal contribution due to the
nonaqueous solvent, the large discrepancy in the free energy
differencesΔG can be attributed to the neglect of configurational
entropy. When considering the ΔΔG values a large fraction of
this error is canceled, and we obtain reasonably good agreement
with experiment [2.7 versus 5.2 kcal mol-1 for ΔΔG(CH4 f
CHCl3) and 3.2 versus 2.8 kcal mol-1 for ΔΔG(CH4 f CF4)]
for ONETEP, while the AMBER values show discrepancies of
more than 5 kcal mol-1, precisely due to the bad estimation of
enthalpy.
Previous computational results by Fox et al.15 were obtained

from TI calculations. Simulations were performed with AMBER
4.1 using the all-atom force field by Cornell et al.38 and the partial
charges obtained from a multiple molecule RESP fit. Table 3
compares their results to TI free energies we obtained with
AMBER 10 using the gaff force field and with our MM- and QM-

Figure 3. Correlation between |FQM| and |FMM| for a single snapshot of
the CH4 complex. Other snapshots and complexes show similar behavior.

Table 2. MM- and QM-PBSA Results Presenting Binding
Free Energies Separated into Differences in Enthalpy and
Free Energy and Relative Differences between Ligands Using
CH4 as a Reference

a

ΔH ΔG

MM-PBSA QM-PBSA expt16 MM-PBSA QM-PBSA expt16

CH4 -8.7( 0.05 -9.0( 0.04 -9 -8.5 ( 0.05 -8.9( 0.05 -3.0
CHCl3 -16.8( 0.19 -7.1( 0.27 -7 -14.9( 0.16 -6.2( 0.23 2.2
CF4 -12.6( 0.09 -6.0( 0.08 N/A -11.9( 0.08 -5.7( 0.08 -0.215

ΔΔH ΔΔG

MM-PBSA QM-PBSA expt16 MM-PBSA QM-PBSA expt16

CH4 f CHCl3 -8.1 2.1 2 -6.4 2.7 5.2
CH4 f CF4 -3.9 3.0 N/A -3.4 3.2 2.815

aΔH is the energy in vacuum. ΔG is the vacuum energy plus the
solvation energy (for MM- and QM-PBSA this term does not include
conformational entropy).

Table 3. Relative Binding Free Energies (kcal/mol) Ob-
tained via TI by Fox et al.a

TI15 TI with gaff QM-PBSA MM-PBSA expt16

CH4 f CHCl3 7.8 7.2 2.8 -6.4 5.2

CH4 f CF4 0.9 0.1 3.2 -3.4 2.8
aTI results using the gaff and results from our QM-PBSA approach.



1107 dx.doi.org/10.1021/ct100706u |J. Chem. Theory Comput. 2011, 7, 1102–1108

Journal of Chemical Theory and Computation ARTICLE

PBSA results. We observe that both TI approaches obtain
comparable relative binding free energies (7.8 versus 7.2 kcal
mol-1 for CH4 f CHCl3 and 0.9 versus 0.1 kcal mol-1 for
CH4 f CF4) and considerably better than MM-PBSA
(ΔΔG(CH4 f CHCl3) of 7.8 kcal mol-1 rather than-6.4 kcal
mol-1). While TI is a more rigorous approach which fully
accounts for entropic effects, we observe that our QM-PBSA
energies achieve improved agreement with experiment. So at least
in this system the accurate description of interaction energies that
is provided by the DFT calculations is critical for the correct
calculation of free energy differences.
As we have mentioned in the Introduction, force fields are

significantly less computationally demanding than first principles
quantum calculations, and this is reflected in our timings. For
example, a single-point energy force field calculation on one of
our complexes takes about 0.35 core seconds on an Intel CORE2
machine, while the same calculation with DFT takes about
24 core hours on the same computational platform. Therefore
in terms of throughput, the force field calculations have a clear
advantage. However, the point is that in several cases the
unbiased and accurate description that is provided by the first
principles calculations can be indispensanble. For example, ele-
ctronic polarization, or halogen-π interactions, which are
poorly described by available force fields. We therefore expect
that large-scale first principles quantum calculations will be a
valuable tool in the final stages of computational drug design
where careful refinement is required. The linear-scaling formal-
ism makes it feasible to extend the application of these calcula-
tions to biomolecules with thousands of atoms, especially in
combination with new HPC technologies such as GPUs and
peta-scale supercomputers.

4. CONCLUSIONS

In this paper we have presented an approach for reducing
some of the limitations of the MM-PBSA method. Toward this
aim we have used the ONETEP program to calculate the QM
interaction energies with solvation contributions extracted from
a traditional MM-PBSA method and scaled to match the QM
energies. Conformational space was sampled with classical force
field molecular dynamics simulations, and the compatibility of
the structural ensemble, with respect to the potential energy
surface, was checked by comparing forces on atoms between the
two methods. These showed that, although there was substantial
variation in the forces obtained with the two approaches, the
forces in both cases were within expected ranges and that no
unphysical conformations appear to be visited by the force field.
This QM-PBSA approach obtained energies which are significantly
improved over theMMcomputed energies, with enthalpic energies
agreeing with experimental ΔH values to within 0.1 kcal mol-1.
The neglect of entropy leads to poor agreement with experi-
mental absolute binding free energy values, however, relative
binding free energies show considerable improvement agreeing
well with experiment. These even show an improvement over the
more rigorous TI method.

While the model we have studied is relatively simple and small
(for biomolecular standards), it does include important and
difficult to capture interactions, such as halogen-π interactions,
which are not at all well described by force fields and even
hydrogen bonds whose accurate description by nonquantum
methods is reasonable but cannot be taken for granted. Therefore
this is a small but important step toward modeling some of the

crucial interactions in real protein-ligand systems. Armed with
the experience from this study and with the ability of ONETEP
for DFT calculations with thousands of atoms, we can in the
future extend our investigation with QM-based free energy
approaches to protein-ligand complexes of pharmaceutical
interest. These typically include further challenges, such as
rotatable bonds in the ligand, ligand and pocket desolvation,
and partial solvation of the bound ligand in the case of solvent-
exposed binding pockets.
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