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Biomolecular simulations with atomistic detail are often required to describe interactions with chem-
ical accuracy for applications such as the calculation of free energies of binding or chemical reactions
in enzymes. Force fields are typically used for this task but these rely on extensive parameterisation
which in cases can lead to limited accuracy and transferability, for example for ligands with unusual
functional groups. These limitations can be overcome with first principles calculations with meth-
ods such as density functional theory (DFT) but at a much higher computational cost. The use of
electrostatic embedding can significantly reduce this cost by representing a portion of the simulated
system in terms of highly localised charge distributions. These classical charge distributions are elec-
trostatically coupled with the quantum system and represent the effect of the environment in which
the quantum system is embedded. In this paper we describe and evaluate such an embedding scheme
in which the polarisation of the electronic density by the embedding charges occurs self-consistently
during the calculation of the density. We have implemented this scheme in a linear-scaling DFT pro-
gram as our aim is to treat with DFT entire biomolecules (such as proteins) and large portions of the
solvent. We test this approach in the calculation of interaction energies of ligands with biomolecules
and solvent and investigate under what conditions these can be obtained with the same level of ac-
curacy as when the entire system is described by DFT, for a variety of neutral and charged species.
© 2011 American Institute of Physics. [doi:10.1063/1.3665893]

I. INTRODUCTION

Properties and processes which involve interactions at the
atomic level are ubiquitous in nature. These interactions in-
volve electrons, atoms, and molecules and can in principle
only be described by quantum theory. Modern classical force
fields which have been extensively parameterised are remark-
ably accurate and can thus be used instead of quantum calcu-
lations in several cases leading to speedups in computational
effort which are typically about three orders of magnitude.
Nevertheless, force fields can suffer from transferability is-
sues as suitable parameters for new ligands or unusual func-
tional groups are not readily available and may be difficult to
determine. A further issue is the inability of force fields to
describe electronic charge transfer and polarisation although
significant progress in this area is being made via the devel-
opment of polarisable force fields. Most importantly, force
fields cannot be used to describe chemical reactions as the
breaking and forming of chemical bonds requires rearrange-
ment of electrons, and the electrons are excluded from force
fields. To overcome these limitations, the quantum mechani-
cal/molecular mechanics (QM/MM) approach was introduced
by Warshel and Levitt1 which aims to partition the system in
a central active part that is treated by a QM approach and
a larger environment which is assumed to be chemically in-

a)Electronic mail: c.skylaris@soton.ac.uk

ert and is modelled by a classical force field MM approach.
This approach is particularly appealing as the computational
effort can be concentrated in the region where high quantum
accuracy is needed while the region far from the active site is
treated with the much more economic classical force fields.
Details of the implementation of such techniques are how-
ever highly non-trivial as one needs to carefully define the
partitioning of the system in QM and MM parts so that the
QM part includes all the chemically important regions and is
large enough so that the desired properties are converged with
respect to its size. In practice, one has to make an informed
compromise between the size and the accuracy with which the
quantum region is described so that the cost of the quantum
calculations is kept tractable.2 An even more difficult choice
is how to connect the quantum system to the classical system
in the cases where the interface cuts through chemical bonds.
Unfortunately this is the rule rather than the exception and a
large number of schemes have been developed for connect-
ing the classical and quantum systems. In fact the QM/MM
techniques are classified according to the method of creat-
ing this interface with variants that are used in chemistry and
biochemistry,3–5 and materials.6, 7

In cases where the quantum and classical systems are
not connected through chemical bonds, the interaction be-
tween the quantum and classical parts includes only non-
bonded terms (Coulomb, exchange repulsion, and dispersion).
The electrostatic coupling in the QM/MM approach in this
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http://dx.doi.org/10.1063/1.3665893
http://dx.doi.org/10.1063/1.3665893
http://dx.doi.org/10.1063/1.3665893
mailto: c.skylaris@soton.ac.uk


224107-2 Fox et al. J. Chem. Phys. 135, 224107 (2011)

case is usually referred to as “electrostatic embedding” as
the quantum system is embedded in an environment of fixed
charges. This is particularly relevant in biomolecular simula-
tions where some molecules (e.g., ligands) may be treated by
quantum methods while the surrounding solvent (usually wa-
ter) is treated by MM.8–10 A recent study11 which involved
molecular dynamics (MD) simulations of a single “quantum
water” embedded into a simulation box filled with “classical
waters” showed that the compatibility of the two models de-
pends substantially on the choice of classical force field and
extensive testing is required to ensure even qualitative correct-
ness of structural and energetic properties. For example, the
TIP5P force field for water when combined with the quantum
model produced a qualitatively wrong solvation shell struc-
ture with consequent large errors in free energies.

Such inconsistencies are unavoidable and while they can
be minimised by the judicious choice of MM and QM ap-
proaches, they cannot be eliminated unless a significant part
of the solvent is also treated at the quantum level. Performing
first principles quantum calculations on entire biomolecular
entities including also a significant amount of solvent would
result in QM calculations including thousands of atoms which
would not be feasible even on modern supercomputers due
to the unfavourable (cubic or higher power) scaling of the
computational effort with the number of atoms of conven-
tional QM approaches. An alternative approach is that of the
frozen-density embedding theory12 where a high accuracy re-
gion is embedded to the frozen density of a lower accuracy
region.

Recent developments, based on the quantum mechanical
principle of the nearsightedness of electronic matter,13 have
led to approaches where the computational cost of the cal-
culation increases only linearly with the number of atoms,14

especially in the area of density functional theory (DFT).
Linear-scaling DFT can be used to perform calculations with
thousands of atoms hence opening a whole new frontier in
accurate simulations. Such calculations have the potential to
overcome some of the difficulties encountered by QM/MM
approaches by enabling usage of a quantum region which is
so large that the method with which the interfacing between
QM and MM is done will have negligible effect in the cal-
culated properties as a consequence of the nearsightedness
principle. Furthermore, for simulations of many biomolecu-
lar systems, linear-scaling DFT calculations can remove alto-
gether the need for coupling the quantum and classical parts
through chemical bonds by treating the entire biomolecular
assembly at the quantum level and (most of) the solvent clas-
sically. In this way, the coupling of the quantum and classical
parts can be done purely through electrostatic interactions in
a well-defined and unambiguous way.

In Sec. II of this article we introduce the theory of elec-
trostatic embedding in DFT calculations, and we describe its
implementation in the ONETEP linear-scaling DFT program15

and the set up of the simulations we use to test and validate
the application of this embedding approach. In Sec. III, we
validate the method in the context of calculating interaction
energies for a variety of receptor-ligand systems where the
role of the receptor is played either by the surrounding sol-
vent (water) or by an entire protein, such as the T4 lysozyme

protein, and the solvent. We finish with our conclusions in
Sec. IV.

II. THEORY AND CALCULATION DETAILS

A. Electrostatic embedding in quantum mechanical
calculations from first principles

Our aim is to study a quantum system when it is im-
mersed (“embedded”) in an environment of Nemb atom-like
charge distributions qa(r − Ra), each of which is localised
around a point Ra , and r is the position in space where the
charge distribution is evaluated. The energy of the whole em-
bedded system is therefore composed of the following terms:

EQM/q = EQM + Eint + Eq, (1)

where EQM is the electronic energy of the quantum system
(with its density/wavefunctions polarised by the potential due
to the embedding charges), Eint is the energy of interaction
of the electrons and nuclei of the quantum system with the
embedding charges, and Eq is the electrostatic energy of the
embedding charges.

More specifically, in atomic units, we have

Eint =
Nat∑
J=1

Nemb∑
a=1

ZJ

∫
qa(r − Ra)

|r − RJ | dr

−
Nemb∑
a=1

∫ ∫
qa(r − Ra) n(r′)

|r − r′| dr′dr, (2)

where the first term on the right hand side is the Coulomb (i.e.,
electrostatic) energy of interaction between Nat nuclei (with
atomic number ZJ) and the Nemb is the embedding charges qa

and the second term is the Coulomb energy of interaction be-
tween the electronic density n(r) and the embedding charges.
We also have

Eq =
Nemb∑
a=1

Nemb∑
b>a

∫ ∫
qa(r − Ra) qb(r′ − Rb)

|r − r′| dr′dr, (3)

which is the energy of interaction between the point charges.
The above description is valid whether the embedding

has been done either as an a posteriori correction after
the quantum calculation (and the electronic density is kept
“frozen” to its form for the non-embedded quantum system)
or when the embedding charges have been present through-
out the quantum calculation (by a self-consistent field (SCF)
approach) and as a result the electronic density has been
polarised accordingly. Here we are interested in the latter
case, as applied in DFT calculations. For this self-consistent
embedding to take place, the usual Kohn-Sham electronic
Hamiltonian,

ĤKS = T̂ + V̂H + V̂xc + V̂ext , (4)

where the T̂ is the electronic kinetic energy operator, V̂H is the
Hartree (Coulomb) potential, V̂xc is the exchange-correlation
potential, and V̂ext is the external potential, needs to be aug-
mented by a further term due to the potential that each elec-
tron will experience from the embedding charge distribu-
tions. Therefore, in the presence of the embedding charges
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the Hamiltonian becomes

ĤKS/q = T̂ + V̂H + V̂xc + V̂ext + V̂emb, (5)

where

V̂emb(r) =
Nemb∑
a=1

∫
qa(r′ − Ra)

|r − r′| dr′ =
Nemb∑
a=1

υ̂
(a)
emb(r − Ra), (6)

with υ̂
(a)
emb(r − Ra) being the potential due to each charge dis-

tribution qa(r′ − Ra), as defined by the above equation.

B. Electrostatic embedding in the ONETEP program

The ONETEP program15 is based on the reformulation of
DFT in terms of the one-particle density matrix,

ρ(r, r′) =
N∑

i=1

fi ψi(r)ψi(r′), (7)

where N is the total number of Kohn-Sham molecular or-
bitals {ψi(r)}Ni=1 and fi are their occupancies. The one-
particle density matrix is the basis of many linear-scaling
DFT approaches14 where the memory and central processing
unit (CPU) requirements increase linearly with Nat. This is
achieved by taking advantage of the exponential decay of the
density matrix in systems with a bandgap, which is a man-
ifestation of the “nearsightedness of electronic matter.”13 In
ONETEP the density matrix is expressed in the following form:

ρ(r, r′) =
∑

α

∑
β

φα(r)Kαβφβ(r′), (8)

where the “density kernel” K is the density matrix expressed
in the duals of the set of non-orthogonal generalised Wannier
functions (NGWFs) (Ref. 16) {φα(r)}. The NGWFs are con-
strained to be strictly localised within spherical regions cen-
tred on atoms and their shape is optimised self-consistently
by expressing them in a psinc basis set.17 This is mathemati-
cally equivalent to a plane wave basis set and is therefore sys-
tematically improvable to near-complete basis set accuracy18

without suffering from basis set superposition error (BSSE),19

characteristic of basis sets which move with the atoms. We
demonstrate this point with a set of benchmark calculations
in Table I where we present binding energies of a phenol
molecule to a configuration of water molecules from its first
solvation sphere with ONETEP and with a Gaussian basis set
approach (as implemented in the NWChem program20). A ki-
netic energy cutoff of 800 eV was used to define the psinc
basis set. As we can see, with this basis set the binding en-
ergies converge rapidly with increasing NGWF radius to the
values that are obtained with very large Gaussian basis sets
such as the cc-pVTZ. The cc-pVTZ basis set results in 1765
contracted Gaussian basis functions for this system, and con-
sequently matrices of these dimensions, as compared to the
166 NGWFs that are needed in the ONETEP calculations. We
should note that the ONETEP NGWFs were initialised to STO-
3G contracted Gaussians (excluding the 1s functions for the
second row elements, as we are using pseudopotentials), so
the effect of their in situ optimisation is evident from the re-
sults in the table.

TABLE I. Binding energy (BE) of a phenol molecule to its first solva-
tion shell (consisting of 22 water molecules), for the structure shown on
the left. Top panel: Energies obtained with ONETEP calculations, with in-
creasing NGWF radii. Bottom panel: Energies obtained with Gaussian basis
sets of increasing size with the NWChem program, without and with counter-
poise correction21 for basis set superposition error. NNGWFs is the number of
NGWFs and NCGs is the number of contracted Gaussian functions.

NGWF radii (Å) NNGWFs BE (kcal/mol)

2.9 166 −11.93
3.2 166 −12.86
3.7 166 −8.25
4.2 166 −7.06
4.8 166 −7.04

Basis set NCGs BE (kcal/mol) BE with CP (kcal/mol)
STO-3G 195 −23.17 −7.98
3-21G 361 −46.48 −12.55
6-31G* 535 −27.77 −8.95
6-311+G* 817 −17.71 −8.79
6-311++G** 1017 −12.49 −7.39
cc-pVDZ 685 −33.26 −7.28
cc-pVTZ 1765 −19.59 −7.04
cc-pVQZ 3780 −12.41 −7.22

The localisation of the density matrix is effected via the
localisation of the NGWFs and truncation of the density ker-
nel elements which correspond to NGWF centres longer than
a threshold value rK. ONETEP has been implemented with
advanced parallel algorithms,22, 23 following the distributed
memory paradigm using the message passing interface (MPI)
library, and efficient and robust linear-scaling energy min-
imisation approaches.24 Even though it is a new code, it is
already being used in an increasing number of studies of
nanostructures25 and biomolecular systems.26–28 An example
of the linear-scaling behaviour of the code is provided in Fig-
ure 1 where the time to perform single-point energy calcula-
tions on protein fragments of increasing size is plotted as a
function of the number of atoms. In these calculations a value
of rK = 10.6 Å was used.

ONETEP obeys periodic boundary conditions, which are
naturally compatible with the plane waves from which the
psinc basis functions are constructed. As in conventional
pseudopotential plane wave approaches,30 certain quantities
are generated in reciprocal space. However, these need to be
Fourier transforms to real space as this is where the localisa-
tion of the density matrix is performed, and for these Fourier
transforms the fast Fourier transform (FFT) box approach31

is employed, in order to retain the linear-scaling behaviour.
The external potential due to the ionic cores which are repre-
sented by norm-conserving pseudopotentials is expressed in
the Kleinman and Bylander representation,

V̂ext(r) = V̂ext,loc(r) + V̂ext,nl(r)

=
Nat∑
p=1

[
υ̂

p

ps,loc(r − Rp) + υ̂ps,nl(r − Rp)
]
, (9)

where Nat is the total number of atoms and Rp is the position
of atom p. The potential due to the embedding charges is of
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FIG. 1. Scaling of CPU time for single-point energy calculations with
ONETEP on segments of amyloid fibrils of increasing size. The calculations
were performed on 256 cores of the Iridis3 supercomputer of the University
of Southampton and the structures were obtained by kind permission from
the authors of Ref. 29.

similar form to the local part of the external potential,

V̂emb =
Nemb∑
a=1

υ̂
(a)
emb(r − Ra). (10)

We therefore generate directly the sum of the two, which can
be written in the following form:

V̂ext,loc(r) + V̂emb(r) =
Nspecies∑
k=1

Nk∑
I=1

υ̂
(k)
ps,loc(r − Rk,I )

+
Nemb−species∑

j=1

Nj∑
L=1

υ̂
(j )
emb(r − Rj,L), (11)

where υ̂
(k)
ps,loc(r − Rk,I ) is the local pseudopotential for a par-

ticular “species” of atomic core (e.g., oxygen) which is cen-
tred at position Rk,I . In the same manner, υ̂

(j )
emb(r − Rj,L) is

the electrostatic potential due to a particular type of embed-
ding charge distribution which is centred at position Rj,L. If
the Fourier transform of the potential of each species is pro-
vided, the Fourier transform of the total local potential can be
obtained as follows:

Ṽext,loc(g) + Ṽemb(g) =
Nspecies∑
j=1

υ̃
(j )
ps,loc(g)

Nj∑
J=1

e−ig·Rj,J

+
Nemb.species∑

p=1

υ̃
(p)
emb(g)

Np∑
P=1

e−ig·Rp,P

=
Nspecies∑
j=1

υ̃
(j )
ps,loc(g) S(j )

ps (g)

+
Nemb.species∑

p=1

υ̃
(p)
emb(g) S

(p)
emb(g), (12)

where the terms S
(j )
ps (g) and S

(p)
emb(g) as defined by the above

equation are the structure factors32 for each species of pseu-

dopotential and embedding potential, respectively. Therefore
the incorporation of the embedding potentials to the Kohn-
Sham Hamiltonian can be done with minimal additional cost
by building them into the Fourier transform of the local part
of the external potential. Furthermore, the above form gives
us the flexibility to use any functional form for the embed-
ding charge distribution q

(p)
emb(r), since if its Fourier transform

q̃
(p)
emb(g) can be obtained, it is possible to obtain an expression

for its potential, υ̃
(p)
emb(g). The incorporation of the embedding

potentials into the electronic Hamiltonian through Eq. (12)
ensures that the second term in Eq. (2) is obtained as part
of the interaction of the electrons with the external potential
(now augmented by the embedding potentials).

The Fourier transform of the embedding potential υ̃(p)
emb(g)

is constructed from the Fourier transform for the charge dis-
tribution q̃p(g) as a solution of the Poisson equation,

υ̃
(p)
emb(g) = 4π

	

q̃p(g)

g2
. (13)

This equation is well-defined, except for g = 0. This is a con-
sequence of the fact that the electrostatic potential and en-
ergy are divergent for periodically repeated charge distribu-
tions with non-zero total charge. We overcome this obstacle
by subtracting a uniform charge distribution of total charge
equal and opposite to qp(r) to obtain υ̃

(p)
emb(0) as follows:

υ̃
(p)
emb(0) = lim

g→0

4π

	

[
q̃p(g)

g2
− q̃p(0)

g2

]
. (14)

To further simplify this expression we need to provide the ex-
plicit form for the charge distribution q̃p(g). In this work we
consider two kinds of charge distribution,

1. Point charge. In this case q̃p(g) = q̃p(0) and υ̃
(p)
emb(0)

= 0.
2. A Gaussian, so that qp(r) = Zp(αp/π )3/2e−αpr2

. In this
case q̃p(g) = Zpe−g2/(4αp) and υ̃

(p)
emb(0) = −Zpπ/(	αp).

The first term of Eq. (2) and the Eq energy of Eq. (3)
are obtained by treating the embedding charge distributions
as point charges and including these in the calculation of
the nucleus-nucleus interaction energy through an Ewald
summation.33 This is exact under the assumption of no over-
lap between ionic cores and charge distributions, which ap-
plies in practice.

All the terms containing electrostatic energies in
Eq. (1) are computed for periodically repeated charge distri-
butions and uniform background charges have to be used as in
Eq. (14) to ensure charge neutrality in each step. In cases
where the total charge in the unit cell is non-zero, the uniform
background charge neutralises the total charge to zero.

Finally, the DFT+D approach as implemented in
ONETEP (Ref. 34) is used to include dispersion interactions.
This is a purely empirical correction that is added to the DFT
energy at the end of the calculation, and as such it does not
affect the self-consistent electronic energy optimisation pro-
cess in any way. Such approaches have been shown to capture
dispersion interactions extremely well.35 For example, for the
approach we use here with “damping function 1,” with pa-
rameters fitted specifically for the PBE exchange-correlation
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FIG. 2. Electron density isosurfaces of the diaqua ASP complex, with the molecular structure overlayed, for the case qO = −4.0 e (isosurface value
= 0.2 e a−3

0 ). Spilling of electronic density occurs when the embedding is done with point charges (left), but not when Gaussian charge distributions are
used (right).

functional, the root mean square (rms) error in the binding
energies of a validation set of 21 complexes with a variety
of interactions is reduced from 3.6 kcal/mol for pure PBE to
about 1 kcal/mol for PBE+D.34

C. Investigation of “charge spilling”

Previous workers have reported that “charge spilling” in
electrostatic embedding approaches, which is caused by the
attraction of the electronic density to the positive embedding
charge distributions6 can be a serious issue. This can be ex-
acerbated in cases of large Gaussian basis sets or extended
uniform basis sets such as plane waves. To avoid this unphys-
ical effect, the υ̂emb(r) is not the potential of a point charge
but it has been given a more diffuse form similar to that of
an empirical pseudopotential,36 or the potential of a Gaussian
function.37 In order to investigate the possibility of charge
spilling in our implementation, we have carried out tests on
an aspartate anion (ASP). This is a particularly challenging
system as it is negatively charged and is thus expected to have
a strong tendency to donate some of its electronic density to
neighbouring positive embedding charges. The system stud-
ied is shown in Figure 2, where the aspartate anion is hydro-
gen bonded to two water molecules, one at each of its car-
boxylic groups. In our tests we represented the atoms of the
water molecule bound to the side chain carboxylate group as
embedding charges, whilst the rest of the system was treated
using DFT.

The energy of interaction was calculated as the difference
in the energy of this diaqua complex from its energy when the
“quantum” water has been translated 4 Å away from the com-
plex and so that it is effectively no longer hydrogen bonded.
These tests were carried out with the embedding charges be-
ing represented as point charges and as Gaussians, with a
halfwidth of 1.0 a0. NGWF radii of 3.7 Å were used. As a
result, most NGWF regions overlap with the classical charges
so the likelihood of density spilling to occur would be ex-
pected to be comparable to that of a plane wave basis set
approach. Embedding charges of qO = −0.834 e for oxygen
and qH = 0.417 e for hydrogen as in the TIP3P force field
were used as well as some excessively large values such as qO

= −2.0 e and −4.0 e. Careful investigation of the electronic
density for the embedding charges of qO = −0.834 e and qH

= 0.417 e, revealed no signs of charge spilling, regardless of
the representation as Gaussians or as point charges. Only with
the values qO = −2.0 e and −4.0 e, we observed some charge
spilling for the case of the point charges but not for the case

of the Gaussian functions. This is demonstrated by examining
the electron density isosurfaces, which are shown in Figure 2.

The interaction energies obtained for each set of charges
and type (point charge or Gaussian) are presented in Table II.
Using the fully quantum calculation as the benchmark, both
the point charge and Gaussian methods still agree well with
each other and the benchmark calculation with the charge
value of qO = −2.0 e. However, at the even larger embedding
charge of qO = −4.0 e, the point charge model shows large
deviation in the energies obtained. As the charges we use for
our embedding calculations here are those of the TIP3P water
model, it is very unlikely that charge spilling can occur with
either representation of the embedding charges. Nevertheless,
in our implementation we have selected to use the safer op-
tion of the Gaussian smeared embedding charges (but with a
halfwidth of 0.3 a0 in the calculations that follow, in order to
ensure the validity of the assumption of non-overlaping ionic
cores of Sec. II B) as the computational effort using the for-
malism of Sec. II B is the same regardless of the shape of
the embedding charge. Also, as the embedding charges are
incorporated in the calculation as a component of the external
potential (Eq. (12)), they only contribute to a slight increase in
the one-off cost of the initialisation of the external potential,
which itself is insignificant as it typically takes about 0.001%
of the total calculation time. As a result, the inclusion of elec-
trostatic embedding charges results in no observable increase
in the cost of the calculation.

D. Molecular dynamics simulations

The electrostatic embedding method we describe in this
paper is intended for a variety of applications, such as with
rigorous statistical mechanics approaches for the calculation

TABLE II. Interaction energy of the aspartate anion with the quantum water
using different partial charges and charge distribution methods for the embed-
ding charges. Charges are given in atomic units (e) and energies in kcal/mol.

Method qO 
E

All QM . . . −8.4
Point charges −0.834 −8.5

−2.0 −7.9
−4.0 −5.0

Gaussians −0.834 −8.5
−2.0 −8.0
−4.0 −7.2
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of free energies of binding as outlined in Sec. III A. There-
fore, rather than testing it on simplified model systems, we
have sought to test it on physically meaningful structures,
free of steric clashes, as the ones that would be obtained in a
real-world application scenario via well-equilibrated molecu-
lar dynamics simulations.

For the protein ligand complexes, the x-ray crystal struc-
tures were checked and protonated with the MOE program,38

then solvated with explicit water in a rectangular box with pe-
riodic boundary conditions in the AMBER version 1039 pack-
age. Prior to a production MD simulation, an equilibration
stage is required since the initial structures and velocities are
typically far from the equilibrium phase space of the simula-
tion conditions. To achieve this within the limited time scales
that dynamics can be run, which are of the order of ns, com-
plex multiple step equilibration protocols need to be used. The
following equilibration procedure was employed: the hydro-
gens were relaxed keeping all heavy atoms fixed with har-
monic restraints in the protein and solvent, then the solvent
was relaxed with the protein atoms still fixed. The system
was heated gradually to 300 K while still restraining the pro-
tein for 200 ps with the NVT ensemble and ran for a further
200 ps with the NPT ensemble at 300 K. This was cooled
to 100 K over 100 ps and a series of minimisations was car-
ried out reducing the restraints on the protein heavy atoms in
stages (500, 100, 50, 20, 10, 5, 2, 1, and 0.5 kcal mol−1 Å−2).
Finally, the system was heated to 300 K with no restraints
over 200 ps and then ran for a further 200 ps at 300 K with
NPT, at the end of which the energy and the density of water
in the simulation cell were stabilised and so was the internal
structure of the protein as measured by the root mean squared
deviation of the backbone atoms from the starting structure,
which was 0.75 Å. Production simulations were run for 10 ns
with the NVT ensemble at 300 K.

To equilibrate the ligand in a waterbox, the system was
heated to 300 K with the NVT ensemble over 300 ps then
switched to the NPT ensemble for 200 ps, in order to adjust
the volume of the simulation cell and consequently the density
of the water. Then the equilibration was completed with the
NVT ensemble for 200 ps again at 300 K. The production
calculation was with NVT at 300 K for 1 ns.

All MD simulations used the Langevin thermostat, the
particle mesh Ewald sum for the long range electrostatics,
and a time-step of 2 fs with the SHAKE algorithm. The AM1-
BCC method was used to obtain partial charges for the ligands
with antechamber in the AMBER package. The ff99SB force
field was used for the protein with the TIP3P model for the
water solvent and the generalised amber force field40 for the
ligands. The small systems (ligands in water and amino acid
pairs) were solvated in such a way that the simulation cells
were cubes with faces at least 15 Å away from the atoms of
the initial structure of the solute. This resulted in a total of be-
tween 1500 and 1600 water molecules in each simulation cell.

E. ONETEP calculations

To generate the ONETEP inputs, the MD trajectories were
post processed using the ptraj tool within AMBER. Each sys-
tem was re-centred so that the solute is at the centre of the

waterbox and the water molecules were indexed according to
their distance from the ligand. This facilitated the partition-
ing of waters to quantum and to classical embedding charges.
Snapshots were taken at constant time intervals throughout
the trajectory (written as PDB files) to create an ensemble of
structures; A few of these structures were randomly selected
and used for the tests reported here.

The rms value criterion on the NGWF gradient, as
in Ref. 15, was used to determine convergence of the
ONETEP calculations, with a NGWF rms gradient threshold of
2 × 10−6Eha

3/2
0 . However, we have additionally checked that

the total energies were converged to at least 0.0002 Eh

(∼0.1 kcal mol−1) even for the largest calculations, such as
the lysozyme-phenol complex in Sec. III A 2 surrounded by
a 12 Å thick shell of quantum waters, which contained 10151
atoms in total. Given that SCF convergence criteria lead to er-
rors in the energy that are constant per atom but increase with
the system size, if one wants to calculate accurate energy dif-
ferences on even larger systems, the tightness of the gradient
convergence criterion would need to be increased. It is con-
ceivable, however, that beyond some system size the subtrac-
tion of total energies will no longer be a practical way of cal-
culating interaction energies and an alternative approach will
be needed. We did not encounter any convergence problems
for the calculations reported here and the number of NGWF
SCF iterations needed to converge to our NGWF rms gradi-
ent threshold showed very little variation with system type
or the presence of embedding charges or not. For example,
15 iterations are needed to converge a configuration of the
cysteine zwitterion of Sec. III A 1 when surrounded by its
first solvation sphere (22 water molecules) with and without
embedding charges, 22 iterations for the same molecule in a
simulation cell filled with explicit quantum waters (1518 wa-
ter molecules) while the 10151-atom lysozyme-phenol-water
structure mentioned above required 19 iterations, again re-
gardless of whether embedding charges are included in the
calculation or not.

Four NGWFs were used on each heavy atom and one for
each hydrogen with NGWF localisation radii of 3.7 Å. A ki-
netic energy cutoff of 800 eV was used for the psinc basis
set and the PBE (Ref. 41) generalised gradient approximation
(GGA) exchange-correlation functional was used augmented
with dispersion contributions (DFT+D approach).34 In these
calculations the density kernel was not truncated, for a num-
ber of reasons. As we have shown in previous work,18 even
for systems with a regular spatial distribution of atoms such
as crystalline silicon the truncation of the kernel has to be
validated carefully and the self-consistent convergence toler-
ance threshold raised accordingly. Biomolecular assemblies
such as proteins or molecules in explicit water possess an ir-
regular spatial distribution of atoms with different levels of
electronic “nearsightedness” along different directions. As a
result, much larger thresholds for the density kernel truncation
than in the case of crystalline silicon would need to be used in
order to maintain convergence at the level of 0.1 kcal/mol in
the calculations. This, combined with the fact that GGA cal-
culations artificially lower the bandgap so that in biomolecu-
lar systems in explicit water it is nearly zero,42 means that the
systems we study here are still too small for kernel truncation
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if this level of precision in the energy is desired. Similar con-
clusions about the effect of GGA functionals can be reached
from the work of Rubensson and Rudberg43 who have inves-
tigated the bandgaps and the decay of the density matrix in
water clusters and other systems and proposed various ma-
trix truncation schemes. However, we should note that there
is a significant difference between such atomic orbital based
linear-scaling matrix truncation approaches and our work as
in ONETEP the choice to not truncate applies only to the den-
sity kernel while the other matrices (such as Hamiltonian and
overlap) remain sparse by construction due to the strict local-
isation of the NGWFs. As a result, when the kernel is not
truncated the non-linear computational cost is limited only
to matrix operations involving the density kernel. The major
computational cost of constructing the overlap and Hamil-
tonian matrices remains linear-scaling and in practice this
allows calculations with several thousand atoms to be per-
formed routinely. We should clarify here that while the
construction of the Hamiltonian operator (and consequently
the matrix) is linear-scaling, in practice, in our applications
to date, asymptotically it is not strictly linear-scaling but
∼V-ln V, where V is the volume of the simulation cell which
can be proportional to the number of atoms. This happens be-
cause the Coulomb potential is obtained via solution of the
Poisson equation with FFTs.44 The ln V dependence is too
small to be observable in any of the scaling tests we have done
so far with up to tens of thousands of atoms, but we expect that
future enhancements in the parallel algorithms of the code as
well as the availability of more powerful computational plat-
forms will lead to calculations on even larger systems with
hundreds of thousands of atoms where eventually the ln V de-
pendence will become observable. This will then need to be
tackled with further developments such as, for example, con-
fining the use of FFTs only to the shorter length scales and
employing approaches such as hierarchical multiple expan-
sions for longer-range interactions.

Our calculations were performed on the Iridis3 and HEC-
ToR supercomputers which are distributed memory clusters.
Depending on system size, each of our calculations used from
24 to 256 cores.

III. RESULTS AND DISCUSSION

A. Interaction energies

The electrostatic embedding approach developed is ex-
pected to have numerous uses in terms of including long-
range electrostatic interactions between a quantum system
and its surroundings. One of our main interests in using this
approach is to be able to describe a large portion of the sur-
rounding water in biomolecular systems. Particularly useful
in this context is the ability to accurately calculate interaction
energies as these can be used to obtain Gibbs free energies
of binding which are essential in drug design. A variety of
methods are available for this such as the recent approach by
Beierlein et al.45 who have demonstrated via a series of care-
ful tests how the free energies obtained via a classical force
field can be converted to free energies that would be obtained
if a quantum description was used for the ligand and classical
force field for the surrounding atoms. The mutation from the

FIG. 3. Receptor-ligand complex. The interaction energies are obtained by
single point energy calculations of the complex and of the receptor and ligand
in the same geometry as in the complex.

classical to the quantum state happens via a one-step free en-
ergy perturbation formula (the Zwanzig equation), as follows:


GMM→QM = −kBT ln〈e−(EQM
R−L−EMM

R−L)/kBT 〉MM, (15)

where E
QM
R−L is the energy of the receptor-ligand complex in

the quantum description and EMM
R−L is the energy in the force

field description, and the notation 〈· · ·〉MM signifies an ensem-
ble average over the structures obtained from the MD simu-
lations with the MM force field. While Eq. (15) is formally
correct, it is difficult to use in practice due to the large dif-
ferences in magnitude between the quantum and classical en-
ergies which are made up of rather different energy contri-
butions. A more practical form can be obtained if the total
energies are substituted by interaction energies,45


GMM→QM = −kBT ln〈e−(
E
QM
R−L−
EMM

R−L)/kBT 〉MM, (16)

where 
E
QM
R−L is the interaction energy of the receptor-ligand

complex in the quantum description and 
EMM
R−L is the interac-

tion energy in the force field description, obtained as outlined
in Figure 3.

Our goal is to extend such approaches to a quantum me-
chanical treatment of the ligand and a number of atoms from
the surroundings which is large enough to ensure that the in-
teraction energies obtained will be converged to chemical ac-
curacy. While this can be achieved in a purely brute force
manner by simply increasing the size of the quantum re-
gion, the use of electrostatic embedding should significantly
speed up the convergence of interaction energies. The aim
is to be able to obtain interaction energies without any ap-
preciable change in their values as compared to the fully
quantum result (no embedding, all atoms are quantum). In
Secs. III A 1–III A 2, we investigate the effect of embedding
in a variety of systems ranging from ligands in water to lig-
ands in an entire protein.

1. Solvent-ligand interactions

Solvent-ligand interactions are important as solvent is en-
countered in almost all practical applications. We will confine
our study to water as it is the most common solvent, espe-
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FIG. 4. Separation of the phenol-water system into quantum and embedding atoms. From left to right, 50, 250, and 750 water molecules closest to the ligand
are treated as quantum atoms within the ONETEP calculation. The remaining water molecules of the simulation (which was carried out in a waterbox of about
1600 water molecules) are treated as classical embedding charges.

cially in biomolecular systems. As ligands for our tests we
have used the molecules toluene, bromobenzene, phenol, thio-
phenol, catechol (polar), cysteine terminated by N-terminal
acetyl (ACE) and C-terminal N-methyl (NME) groups, cys-
teine zwitterion, and serine zwitterion (a polar amino acid).
We have calculated interaction energies for each of these lig-
ands, where the water molecules in the simulation cell play
the role of the “receptor,” for two MD snapshots that were
randomly selected from the “production” stage of our molec-
ular dynamics simulations. For each such snapshot interac-
tion energies were obtained by including around the ligand a
successively increasing number of water molecules from the
simulation cell waterbox. The waters were included as “sol-
vation shells” of increasing radius, centred on the ligand, as
demonstrated in the example shown in Figure 4. Interaction
energies were obtained with three approaches:

1. Molecular mechanics force field (ff99SB) calculations
for the ligand and the surrounding water solvation shell
(MM).

2. ONETEP DFT calculations for the ligand and the sur-
rounding water solvation shell (QM).

3. ONETEP DFT calculations for the ligand and the sur-
rounding water solvation shell, including the remaining
water molecules of the waterbox via electrostatic em-
bedding (QM EE).

The interaction energies as a function of the number of
surrounding waters as obtained with the above-mentioned
three approaches are shown in Figure 5. The energies for the
two snapshots (e.g., MM1 is for snapshot 1 and MM2 for
snapshot 2 in the MM calculations) are shown for each ligand.
In all cases the MM energies converge to the full waterbox
result with increasing number of waters more smoothly and
more rapidly than the QM energies. This is to be expected as
no charge polarisation or movement is possible in the MM
case. The embedded QM (QM EE) calculations afford the
smoothest and most rapid convergence from all cases. This
indicates that the combination of a certain number of quan-
tum waters around the solute, with electrostatic embedding to
represent the water occupying the remaining simulation cell,
does capture adequately all the charge polarisation of the lig-

and and the back-polarisation of its surroundings that is char-
acteristic of the quantum description. This approach also de-
scribes correctly the long range electrostatic interactions as
they emerge from the periodic boundary conditions that ap-
ply to both our MD and quantum calculations. A physically
meaningful measure for deciding how many quantum waters
to include in the calculations can be provided by the radii
of the solvation shells. For example, for the case of the phe-
nol molecule in Figure 5 the energies are obtained for shells
of water with approximate distances from the atoms of the
molecule of about 3.4 Å (first solvation shell), 5 Å (second
solvation shell), 9 Å, 12 Å, 14 Å, and 17 Å. For all the ex-
amples of small ligands in Figure 5, we can conclude that
including shells of quantum water up to 12 Å (which consists
of about 400 quantum water molecules) combined with elec-
trostatic embedding is enough to produce interaction ener-
gies which are virtually indistinguishable from the full quan-
tum system which contains about 1500 water molecules. Both
types of calculation are feasible with a code such as ONETEP

but the former requires significantly less computational effort
(336 core hours as compared to 2800 core hours for the full
quantum system). Our observations about the rate of conver-
gence of interaction energies for the QM approach (i.e., with-
out embedding charges) are consistent with the findings of
Bondesson et al.46 who studied with DFT and Hartree-Fock
calculations the behaviour of the interaction energy between
small drug molecules and solvation shells of explicit quan-
tum waters of increasing thicknesses of up to 14 Å and 732
water molecules. As their calculations were performed with
Gaussian basis sets, they found that there is strong depen-
dence on the quality of the basis set and that it is impor-
tant to include polarisation functions. Also, for such fixed
atomic orbital basis sets the correction for BSSE is neces-
sary and remains so even when larger basis sets are used,47 as
we also demonstrate in our validation tests in Table I. Their
calculations did not however include dispersion interactions,
which are a significant contributor to the interaction energy.
For example, the dispersion component of the interaction en-
ergy for snapshot 2 of the catechol molecule in Figure 5 is
−19.1 kcal/mol. Cabral do Couto et al.48 have also used
shells of quantum water molecules surrounded by electro-
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FIG. 5. Interaction energies between ligands and water as a function of increasing number of water molecules.

static embedding charges in order to reduce the undesired sur-
face effects when studying the electronic properties of a water
molecule in bulk water.

A further measure of the performance of the embedding
approach can be provided by investigation of its effect on

atomic charges, which are indicators of the chemical environ-
ment that the atoms experience. In Figure 6, we investigate the
Mulliken atomic charges of the atoms of the cysteine zwitte-
rion for increasing sizes of solvation regions for the QM and
QM EE approaches. Taking the fully quantum calculation as
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(a)

(b)

(c)

FIG. 6. Variation of atomic charges from the quantum calculation on the cysteine molecule as a function of the thickness of the solvation shell, for snapshot
1 (left) and snapshot 2 (right) for (a) 20 quantum waters, (b) 400 quantum waters, and (c) 1000 quantum waters. For each solvation shell, the difference of the
charge on each atom from the charge obtained from the full QM calculation (including all waters in the simulation cell in the quantum description) is given for
the QM and QM EE approaches.

the benchmark, we observe that for the first solvation sphere
the QM EE approach produces for most atoms less than
half the error of the QM calculation. However, for the case of
400 quantum waters or more the differences between QM
and QM EE diminish as the errors become small (less than
0.01 eV), and for this case the difference between the QM
and QM EE interaction energies is small.

2. Receptor-ligand interactions

We next evaluate the performance of the electrostatic em-
bedding approach on biomolecular assemblies treated in their
entirety by quantum calculations. We seek to use electrostatic
embedding to include the electrostatic effects of the environ-

ment (usually solvent molecules). For this task we consider
a number of receptor-ligand complexes. Initially, we consider
small complexes where the receptor is either a lysine (LYS)
(an amino acid with net charge of +1) or ASP (an amino acid
with net charge of −1) and the ligand is a serine (SER) (an
amino acid with net charge 0). The interaction energies ob-
tained for these cases are shown in Figure 7, for increasing
numbers of water molecules surrounding the receptor-ligand
complex.

As the receptors are charged, electrical neutrality is im-
posed by the presence of a counterion (Cl− in the case of LYS
and Na+ in the case of ASP-treated as embedding charges
in the ONETEP calculations. The Gaussian smeared embed-
ding charges ensure that electronic charge spilling to the Na+
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FIG. 7. Interaction energies between a serine (SER) and a lysine (LYS) in water (a) and between serine and an aspartate (ASP) in water (b).

is avoided. We have confirmed that this is indeed the case
by plotting and examining isosurfaces of the electronic den-
sity). In the plots, we show interaction energies for three
snapshots for each receptor-ligand complex. These snapshots
were picked at varying distances of the counterion from the
receptor-ligand complex, at 10 Å in snapshot 1, to 17 Å in
snapshot 2, to 24 Å in snapshot 3 for cubic simulation cells
of side 36.5 Å. These variations do not have any observable
effect in the rate of convergence of the energies. Interaction
energies converge following patterns similar to those of the
neutral ligands in water (Figure 5) for the electrostatic em-
bedding approach. The non-embedded calculations converge
in a less stable fashion as a result of the presence of the charge
separation which is shielded to differing extents by the water
layers of increasing thickness, and very slowly: in some cases
convergence to the fully quantum result is reached only when
the entire simulation cell is filled with water.

To examine the effect of the inclusion of the solvent
in a real protein-ligand complex we have considered the T4

lysozyme (L99A/M102Q) protein which is a well-studied
model of a polar binding site.49 We have examined the com-
plex between T4 lysozyme (L99A/M102Q) and phenol (PDB
ID: 1LI2), in water. As the complex has a total charge of +8,
electrical neutrality is imposed by including 8 Cl− counteri-
ons in the simulation cell, which contains the complex and
9053 water molecules. The interaction energies were calcu-
lated as in the scheme of Figure 3, where in this case ER−L

is the energy of the entire system (lysozyme, water, and phe-
nol), ER is the energy of the lysozyme and water and EL is
the energy of the phenol. Figure 8 shows the interaction ener-
gies obtained for three snapshots of the complex as well as a
picture of one of the snapshots showing the atoms of the pro-
tein, the waters that are described as quantum atoms and the
waters that are represented as embedding charges. Water is
added in spherical shells centred around the ligand, which is
located in the binding pocket of the protein. DFT calculations
have been performed for zero quantum waters (where only the
2601 protein atoms plus the 13 ligand atoms are described by
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FIG. 8. (a) The complex of L99A/M102Q T4 lysozyme and phenol in water. The second solvation sphere around the ligand binding cavity is shown in ball
and stick representation while the rest of the waters are shown as dots. (b) Interaction energies between phenol and L99A/M102Q T4 lysozyme in water for
increasing numbers of water molecules within a sphere around the binding pocket.
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DFT), and by including shells with thickness of 3.4 Å, 5.0 Å,
7.5 Å, 9.0 Å, 10.5 Å, up to 12.0 Å which results in 10151
atoms in total being treated by DFT.

We can observe for the T4 lysozyme (L99A/M102Q)
protein that the presence of waters has a very small effect
on the interaction energies. The embedded calculation shows
marginally better convergence with respect to the quantum
calculation without embedding but the advantage of embed-
ding is almost negligible with variations which are less than
1 kcal/mol. This is a result of the fact that the cavity of T4
lysozyme (L99A/M102Q) is completely buried and shielded
from the solvent. In complexes with more exposed cavities the
inclusion of water is expected to have a larger effect, depend-
ing on the degree of exposure to the solvent. The regions and
thickness of quantum water layers that need to be included
will vary from one protein to another and need to be deter-
mined on a case by case basis. It is interesting however to
observe that in the case of this protein the use of electrostatic
embedding with no quantum waters leads to the largest errors
as the embedding atoms in contact with the quantum atoms of
the protein appear to over-polarise it. In fact Figure 8 shows
that the DFT calculation with no water at all would be in this
case the best compromise between accuracy and efficiency as
the errors that result are of the order of 0.5 kcal/mol which
is comparable to other errors intrinsic in DFT calculations
(such as the choice of exchange-correlation functional and the
basis set). Indeed, the error in the interaction energies with
respect to the basis set in this case is expected to be of the
order of 1.2 kcal/mol from the validation tests of Table I for
NGWF radii of 3.7 Å. Another interesting observation is that
the QM and QM EE curves, for snapshots 1 and 3, do not
coincide, even for the largest calculations with 2517 quantum
water molecules. As the total energies in our calculations were
converged to 0.1 kcal/mol (Sec. II E) it is unlikely that this is
due to numerical noise but most likely it is a manifestation of
the long-range nature of electronic polarisation which appears
to not be completely converged for these structures even with
this large number of water molecules.

IV. CONCLUSIONS

We have implemented and evaluated a scheme for elec-
trostatic embedding of DFT calculations within a set of
Gaussian charge distributions and have outlined its imple-
mentation within the psinc basis set framework of the linear-
scaling DFT code ONETEP. As the psinc basis set is equivalent
to a plane wave basis set, the implementation of the scheme
as outlined here could be almost carried out in an essentially
identical way on any plane wave basis set code. Usually in
QM/MM approaches the QM and MM interface is required to
“cut” through chemical bonds due to the limitation in the size
of the quantum region that is feasible to work with when using
conventional cubic-scaling DFT methods. With ONETEP it is
possible to perform DFT calculations on entire macromolec-
ular entities such as molecules, proteins and nanostructures.
Some of their surrounding environment (such as the solvent)
can also be described at the DFT level, and we advocate using
electrostatic embedding in order to account for the remaining
long-range electrostatic interactions.

We have tested the scheme in the calculation of inter-
action energies between molecules and the solvent, and be-
tween protein-ligand-solvent complexes and ligands. We have
shown that this scheme offers results of the same quality as
when describing the entire system (solute and explicit sol-
vent) by quantum calculations, but at much lower computa-
tional cost. As the computational cost of the embedding atoms
is essentially zero compared to that of the quantum atoms, the
reduction in the cost of the calculation is due to the reduction
in the number of quantum atoms.

Nevertheless, even with electrostatic embedding, in the
case of interactions with the solvent, a significant number of
solvent molecules which are described by DFT need to be
included. For example, we found that quantum water shells
of thickness 12–13 Å need to be included for the interac-
tion energies to converge to chemical accuracy. For small
ligands, this results in about 400 water molecules described
by DFT while for the ASP-SER and LYS-SER complexes
this results in about 700 DFT water molecules. In light
of this observation, results obtained with previous QM/MM
approaches11, 45, 50 which treat only the solute by QM and the
solvent by MM would need to be re-examined as for example
calculations of free energies and other properties using these
approaches may be dominated by the variation (noise) that the
interaction energies have when zero or a very small number of
quantum waters are included. We expect that one of the first
applications of our embedding approach will be in schemes
for the calculation of free energies of binding of biomolecular
assemblies with full inclusion of charge transfer and polarisa-
tion effects via large-scale DFT calculations.
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