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Large-Scale DFT Calculations in Implicit Solvent—A Case
Study on the T4 Lysozyme L99A/M102Q Protein
Jacek Dziedzic,[a],† Stephen J. Fox,[a] Thomas Fox,[b] Christofer S.Tautermann,[b]
and Chris-Kriton Skylaris∗[a]

Recently, variants of implicit solvation models for first principles
electronic structure calculations based on a direct solution of
the nonhomogeneous Poisson equation in real space have been
developed. These implicit solvation models are very elegant from
a physical point of view as the solute cavity is defined directly via
isosurfaces of the electronic density, and the molecular charge is
polarized self-consistently by the reaction field of the dielectric
continuum which surrounds the solute. Nevertheless, the imple-
mentation of these models is technically complex and requires
great care. A certain level of care is required from users of such
models as a number of numerical parameters need to be given
appropriate values to obtain the most accurate and physically rel-
evant results. Here, we describe in what parts of the solvent model
each of these numerical parameters is involved and present a

detailed study of how they can affect the calculation, using the
solvation model which has been implemented in the ONETEP
program for linear-scaling density functional theory (DFT) calcu-
lations. As ONETEP is capable of DFT calculations with thousands
of atoms, we focus our investigation of the numerical parame-
ters with a case study on protein–ligand complexes of the entire
2602-atom T4 Lysozyme L99/M102Q protein. We examine effects
on solvation energies and binding energies, which are critical
quantities for computational drug optimization and other types
of biomolecular simulations.We propose optimal choices of these
parameters suitable for routine “production” calculations. © 2012
Wiley Periodicals, Inc.

DOI: 10.1002/qua.24075

Introduction

Chemistry, biochemistry, and materials and interfacial processes
typically take place in and require the presence of solvent. There-
fore, simulations at the atomic level must include a description
of the solvent. Implicit solvent models, which describe the sol-
vent as a dielectric continuum, have proved very effective in
this task and have been an active area of research with many
improvements over the years, both within atomistic classical
force field simulation methods and in first principles quantum
chemistry methods. These models are particularly effective in
the context of quantum chemistry calculations, as the reaction
field of the dielectric is included directly in the Hamiltonian
operator and polarizes the density during the self-consistent
solution of the quantum mechanical model. Notable variants of
such self-consistent implicit solvation models are the polarizable
continuum model (PCM) of Tomasi and coworkers,[1] the COSMO
model[2] as well as the very accurate but heavily parameterized
SMD model of Truhlar and coworkers,[3] which is founded in the
integral equation formalism[4] of the PCM model. Although the
physical principles on which these models are based are very
elegant, the actual implementation can depend on a large num-
ber of parameters which need careful determination by fitting
to experimental or theoretical data.

Recently, Fattebert and Gygi[5] proposed a new model of con-
tinuum solvation, where the dielectric is defined as a functional
of the electronic density of the solute. This model was further
extended by Scherlis et al.[6] to include the calculation of the
cavitation energy, by defining it in terms of the quantum surface
of the solute. This model is particularly attractive, as it retains the
elegance of the implicit solvent philosophy, as the reaction field

is obtained by direct solution of the nonhomogeneous Poisson
equation (NPE) in real space:

∇ · (ε[ρ]∇φNPE(r)) = −4πρtot(r), (1)

where ρ(r) is the electronic density and ρtot(r) is the total
density due to electrons and nuclei (or ionic cores in the case
of pseudopotentials). Despite this, results obtained with this
model in its original formulation were reasonable but significantly
less accurate than the conventional approaches such as PCM,
especially for charged molecules. We have recently shown[7]

how this limitation can be overcome using appropriate boundary
conditions, including dispersion interactions with the solvent and
redetermining appropriately the two parameters in the functional
ε[ρ]. The solvent model by Dziedzic et al. has been validated on
an extensive set of more than 130 molecules (a representative
selection of 20 neutral, 20 cationic, and 20 anionic molecules
from Ref. [8], and 71 larger neutral molecules from Refs. [9, 10])
and produces solvation energies that agree with experimental
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measurements, with the degree of agreement comparable to that
of the SMD approach.Our solvation model has been implemented
in the ONETEP[11] program for linear-scaling density functional
theory (DFT)[12–14] calculations, which, owing to its linear-scaling
algorithms, has the capability of performing very large DFT
calculations with many thousands of atoms.[15] This combination
of solvation and linear-scaling DFT opens up new possibilities for
realistic large-scale simulations of entire biomolecular assemblies
or nanostructures in the presence of solvent.

In this article, we describe the main methodological and com-
putational developments on which the electrostatic component
of our solvent model is based and test their numerical behavior
to provide users of the model with a set of reference data that
will be valuable as a guide for the correct application of the
model. For details on its nonelectrostatic components, we refer
the reader to Ref. [7]. Given that the ONETEP code is intended for
large-scale calculations, we have chosen to perform our tests on
two complexes of a ligand with an entire protein (T4 Lysozyme)
which contains 2602 atoms. We used phenol and toluene as lig-
ands. In “Smeared Core Charges, Boundary Conditions and Defect
Correction” section, we describe important components of the
solvent model such as the application of open boundary condi-
tions, the smearing of the ionic charges and the defect correction
procedure. In “Calculation Details” section, we describe how the
protein system was prepared for our simulations and the set up
of the calculations within ONETEP. In “Results and Discussion”
section, we present extensive benchmark calculations examining
the behavior of the different components of the solvent model
and their numerical stability. Finally, in Conclusions section, we
summarize our findings and suggest the most stable numerical
settings for our solvation model.

Smeared Core Charges, Boundary Conditions
and Defect Correction

The solution of the NPE [Eq. (1)] is achieved in real space via
a multigrid approach.[16, 17] Even though the atomic cores are
represented by pseudopotentials, in ρtot(r) the atomic cores are
replaced by Gaussian charge distributions for numerical con-
venience. This does not alter the simulated physical system, as
with the procedure we outline in Appendix A the obtained total
electrostatic energy is that due to the pseudopotential cores and
not the Gaussians. By representing the atomic cores as smeared
charge distributions rather than point charges, it becomes pos-
sible to efficiently and accurately solve the Poisson equation for
the total electrostatic potential, due to the total charge density.
This avoids the singularities associated with point charges, which
are especially problematic in the context of multigrid calcula-
tions and treats the ionic and electronic charge distributions
on equal footing.[17] Gaussian smearing is commonly used,[6, 7, 17]

although cube-shaped charge distributions have been studied[17]

as well. Our model uses Gaussian smearing, and we describe the
formalism in more detail in Appendix A.

In vacuum, we solve the homogeneous Poisson equation (HPE):

∇2φHPE(r) = −4πρtot(r) (2)

in the simulation cell, � with open boundary conditions, that is,
we set up Dirichlet boundary conditions of the form

V vac
BC (r) =

∫
�

ρtot(r′)
|r − r′| dr′ for r ∈ ∂� (3)

on the faces of the simulation cell, ∂�. A direct application of Eq.
(3), where the integral is replaced with a sum over a Cartesian
grid, is impractical. For a particular grid fineness, the associated
computational effort scales as O(L2V), which, for localized charge,
implies O(L2N) (where L2 represents the area of a face of the
simulation cell, V its volume, and N is the number of atoms), and
the prefactor is prohibitively large. To reduce the computational
cost, a coarse-grained representation ρCG

tot (r) of ρtot(r) can be
used instead. In this work, ρCG

tot (r) is constructed as a set of
NCG point charges, each of which corresponds to a cubic block
of the simulation cell, encompassing p × p × p grid points. The
magnitude of each point charge is the sum of the charges on the
grid points belonging to the block, and the charge is positioned
at the center of charge of the block, Rl , which, in general, does
not lie on a grid point. Althogh this approach does not help
with the unfavorable scaling, it easily reduces the prefactor by
2–3 orders of magnitude simply by replacing the integral in Eq.
(3) with a sum over a small number of point charges:

V vac
BC (r) ≈

NCG∑
l

ρCG
tot (Rl)

|r − Rl | for r ∈ ∂�. (4)

The parameter p can be used to balance accuracy (which increases
as p is made smaller) and computational efficiency (as NCG ∼ p−3).

In solution, where the NPE (1) needs to be solved, the open
boundary conditions can be no longer obtained from Eq. (3). In
our approach, we use an approximation, where for the purpose
of calculating the boundary conditions, we assume the dielectric
permittivity to be homogeneous and to have the bulk value ε∞
everywhere, that is, we approximate the potential on the faces
of the cell as

V sol
BC (r) ≈ 1

ε∞

NCG∑
l

ρCG
tot (Rl)

|r − Rl | for r ∈ ∂�. (5)

As in the presence of the solvent the solute molecule is screened
by the dielectric which polarizes in response to the charge density
of the solute, the values of the potential on the boundaries of
the cell are much smaller than in vacuum.

The multigrid solver uses a second-order discretization of the
Laplacian operator which, even at numerical convergence, limits
the accuracy of the solution to that of a second-order represen-
tation on each grid point. It is possible to obtain more accurate
higher order solutions by applying, after the second-order solu-
tion has converged, an iterative improvement technique known
as defect correction,[18, 19] which is outlined in Appendix B. With
this approach, the order of the defect correction applied is the
resulting polynomial order with which the solution of the HPE or
NPE is obtained at each grid point. Of course, as the grid spacing
becomes finer, it is expected that the second-order solution will
asymptotically reach the higher order solution.

772 International Journal of Quantum Chemistry 2013, 113, 771–785 http://WWW.CHEMISTRYVIEWS.ORG



http://WWW.Q-CHEM.ORG FULL PAPER

Calculation Details

T4 lysozyme L99A/M102Q

Lysozymes are enzymes that act as a natural form of pro-
tection from pathogens, forming part of the innate immune
system. They destroy bacteria by attacking the carbohydrate
chains which are the main component of the bacterial cell wall
(“skin”) that braces their delicate membrane against the cell’s high
osmotic pressure. The process involves catalyzing hydrolysis of
1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-
d-glucosamine residues. The lysozyme binds to the bacterial cell
wall and destroys its structural integrity so that the bacteria
burst under their own internal pressure.

There has been a great deal of research into protein stabil-
ity, folding, and design by looking at mutations of the lysozyme
from the bacteriophage T4.[20–26] T4 lysozyme can only hydrolyze
substrates which have peptide side chains bonded to the polysac-
charide backbone. One of the many mutants of T4 lysozyme is
Leu99Ala/Met102Gln (or L99A/M102Q). This mutation creates a
small buried polar cavity which is capable of encapsulating small
aromatic ligands. The T4 lysozyme L99A/M102Q has been used
to compare and validate binding free energy methods and to
develop docking procedures.[21, 25] As it is a (relatively) small,
stable protein, with wide availability of experimental as well as
computer simulation data, it is a good choice for our benchmark
calculations.

Preparation of protein coordinates

The X-ray crystal structure of the complex of T4 Lysozyme
L99A/M102Q with phenol (PDB: 1LIE) was protonated (except its
single histidine, which is solvent accessible, which was protonated
manually) using the Protonate3D approach[27] within the MOE
program,[28] before solvating with explicit water in a rectangular
box with periodic boundary conditions in the AMBER version
10 package.[29] The total charge of the complex was +9 and
it was neutralized by including 9 Cl− anions in the simulation
box. The complex consisted of 2615 atoms. Before a “produc-
tion” molecular dynamics (MD) simulation, an equilibration stage
is required. To achieve this within the limited timescales that
dynamics can be run, which are of the order of ns, complex
multiple step equilibration protocols need to be used. The fol-
lowing equilibration procedure was used: the hydrogens were
relaxed, all heavy atoms were kept fixed with harmonic restraints
in the protein and solvent, then the solvent was relaxed with
the protein atoms still fixed. The system was heated gradually
to 300 K over 200 ps, with the protein still restrained, in the NVT
ensemble and ran for a further 200 ps in the NPT ensemble at
300 K. The system was subsequently cooled to 100 K over 100 ps
and a series of minimizations was carried out with the restraints
on the protein heavy atoms reduced in stages (500, 100, 50, 20,
10, 5, 2, 1, 0.5 kcal mol−1 A−2). Finally, the system was heated to
300 K with no restraints over 200 ps and then ran for a further
200 ps at 300 K with NPT, at the end of which the energy and
the density of water in the simulation cell were stabilized and
so was the internal structure of the protein, as measured by the
root mean square deviation of the backbone atoms from the

starting structure, which was 0.75 Å. The final coordinates from
this equilibration stage were used as starting coordinates for a
production simulation for 20 ns with the NVT ensemble at 300 K.

For our MD simulations, we used the Langevin thermostat, the
particle mesh Ewald method for the long range electrostatics,
a time-step of 2 fs, and the SHAKE algorithm[30] to constrain
hydrogen-containing bonds. The AM1-BCC method was used
to obtain partial charges for the ligands with antechamber in
the AMBER package. The ff99SB forcefield[31] was used for the
protein with the TIP3P model[32] for the water solvent and the
generalized amber forcefield (gaff )[33] for the ligands.

The complex of T4 lysozyme with toluene was also simulated.
For this, we started from the final structure from the equilibration
stage of the complex with phenol. In this structure, phenol was
replaced by toluene, and a production simulation was run for
20 ns, again with the NVT ensemble at 300 K.

Next, we performed Molecular Mechanic Poisson-Boltzmann
Surface Area (MM-PBSA)[34, 35] binding free energy calculations
on 1000 snapshots from each MD simulation. In each case, we
selected the single snapshot that provided the median value
of the free energy. The structures for the complex from these
snapshots, with explicit water and counterions removed, were
used for this study. In each case,the“host”and“ligand”coordinates
were extracted from the complex geometry.

Details of the DFT calculations

The ONETEP[11] program is a linear-scaling DFT code that is
capable of achieving large basis set accuracy comparable to
that of conventional cubic-scaling plane-wave or Gaussian basis
set DFT methods. Its novel and highly efficient algorithms allow
DFT calculations with tens of thousands of atoms. It is based
on a linear-scaling reformulation of DFT in terms of the one-
particle density matrix. The density matrix is represented in
terms of strictly localized nonorthogonal generalized Wannier
functions (NGWFs),[36] φα(r), and the density kernel, K, which
is the matrix representation of the density matrix in the duals
of the NGWFs. Linear-scaling is achieved by truncation of the
density matrix, and by enforcing strict localization of the NGWFs
onto atomic regions. During calculations with ONETEP both the
density kernel and the NGWFs are optimized self-consistently.
Kohn–Sham orbitals[13] are not computed at any stage of the
calculation and suitable sparse matrix algebra algorithms are
used to ensure computational effort that increases linearly with
the number of atoms. Optimizing the NGWFs in situ allows for
a minimum number of NGWFs to be used, while still achieving
large basis set accuracy. The NGWFs are expanded in a basis
set of periodic sinc (psinc) functions[37] which are equivalent
to a plane-wave basis set. Using a plane-wave basis set allows
the accuracy to be improved by changing a single parameter,
equivalent to the energy cutoff in conventional plane wave DFT
codes. The psinc basis set provides a uniform description of
space, meaning that ONETEP does not suffer from basis set
superposition error.[38]

For the structures described above, single-point energy calcu-
lations were performed with ONETEP. A kinetic energy cutoff of
827 eV was used, corresponding to a grid spacing of 0.5 a0. Charge
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Table 1. Total energy (in kcal/mol) in vacuum and in solution of the complex, host, and ligand (phenol: top, toluene: bottom), their corresponding free energies
of solvation and the binding energy of the ligand, as a function of the localization radius of the NGWFs (in atomic units).

NGWF
Total energy in vacuum Total energy in solvent Free energy of solvation Ligand binding energy

Radius Complex Host Ligand Complex Host Ligand Complex Host Ligand In vacuum In solution

7 −7360591.8 −7326671.2 −33889.413 −7363006.4 −7329086.5 −33893.387 −2414.56 −2415.32 −3.97 −31.25 −26.51
8 −7361235.1 −7327312.7 −33892.766 −7363645.4 −7329723.3 −33896.764 −2410.33 −2410.55 −4.00 −29.59 −25.37
9 −7361521.6 −7327598.4 −33894.032 −7363938.5 −7330015.7 −33898.112 −2416.93 −2417.33 −4.08 −29.17 −24.69
10 −7361677.9 −7327754.2 −33894.640 −7364102.0 −7330178.4 −33898.799 −2424.08 −2424.21 −4.16 −29.05 −24.77

7 −7354735.8 −7326526.9 −28183.835 −7357210.5 −7329000.4 −28182.489 −2474.73 −2473.48 1.35 −25.06 −27.66
8 −7355377.5 −7327166.7 −28187.388 −7357848.3 −7329636.3 −28185.950 −2470.80 −2469.59 1.44 −23.38 −26.03
9 −7355664.2 −7327452.8 −28188.646 −7358141.8 −7329929.1 −28187.224 −2477.61 −2476.39 1.42 −22.84 −25.47
10 −7355821.4 −7327609.4 −28189.173 −7358306.5 −7330093.3 −28187.790 −2485.03 −2483.86 1.38 −22.83 −25.39

densities were represented on a grid twice as fine, this was also
the grid used in the multigrid calculations. Exchange–correlation
was described with the PBE functional. Dispersion interactions
between the solute atoms were taken into account with a DFT+D
approach due to Hill et al.,[39] whereas those between the solute
and the solvent were approximately modeled in the implicit
solvent approach.

To ensure maximum cancellation of errors, the calculations in
vacuum used smeared ions and used the multigrid approach
in the electrostatics calculations, similarly to the calculations
performed in solution.The converged electronic density obtained
in vacuum was used to generate the density-dependent dielectric
cavity in solution. We have shown earlier[7] that the error incurred
by keeping the dielectric fixed (rather than allowing it to respond
to the changes in the electronic density throughout the SCF
procedure) is modest, and we accordingly kept the dielectric
fixed in all calculations reported here.

We have investigated several parameters that are of interest
in DFT studies of solvation and binding energies with implicit
solvent. First, we verified how the obtained energies converge
with the choice of the localization radius of the basis functions
(here, NGWFs). To this effect, we performed full calculations in
vacuum and in solution, for four different localization radii, for
all the structures. Second, we set out to verify the effect of
including solute-solute dispersion energy in the calculation. As
in the DFT+D approach, this energy term does not depend on the
electronic degrees of freedom, the situation with no dispersion
could be easily modeled by an a posteriori subtraction of this term
from the energies. Third, we studied the effect of a parameter of
the smeared ion formalism, the ion smearing width. Here too, full
calculations in vacuum and in solution were performed, for six
smearing widths. This was only done for the systems involving
the phenol ligand.

The effect of the remaining two parameters was studied in
a simplified manner, to reduce the computational effort. The
simplification consisted in performing only single evaluations of
the Coulombic energy (A6) for calculations in vacuum and in
solution that had previously been converged with the reference
parameters. Only the changes in this energy term were consid-
ered. The parameters studied in this fashion were: the block size
used for charge coarse-graining when determining the boundary
conditions (denoted with p in “Smeared Core Charges, Boundary
Conditions and Defect Correction” section), and the order of the

finite differences used during defect correction. This was also
done only for systems involving the phenol ligand.

Calculations of binding energies were performed on the single
snapshots of the T4 Lysozyme L99A/M102Q complexes which
were produced as described in “Preparation of Protein Coor-
dinates” subsection. The binding energy was obtained as the
difference of the energy of the host and ligand from the energy
of the complex. The host and ligand geometries were the same
as in the complex. No entropic effects were included in the
calculations.

Results and Discussion

NGWF radius

In this section, we investigate the effect of the localization radius
of the NGWFs on the obtained total energies, free energies of
solvation, and binding energies. Accuracy but also computational
effort increase with NGWF radius, so it is important to select the
smallest NGWF radii which give the required level of accuracy.[40]

We found that the total energies, which we report in Table 1, are
well-converged for all the systems,both in vacuum and in solution.
The difference between the results obtained with the smallest
cutoff of 7 a0 and with the largest (10 a0) is less than 0.02% in
all cases, whereas assuming a localization radius of 8 a0 (what
we propose as a default) leads to differences of about 0.006%,
compared with results obtained with a radius of 10 a0. Although
the total energies converge monotonically with an increase of the
NGWF radius (as it is a variational parameter[41]), their respective
differences (i.e., solvation energies) do not. However, for the
complex and the host the solvation energies do not vary by
more than 0.5% as the NGWF radius is changed. In the case of the
ligands, the relative difference is somewhat larger (up to 2%), yet
this corresponds to absolute differences of less than 0.2 kcal/mol.
Such differences are not unexpected, given that in our implicit
solvent model the dielectric permittivity is a function of the
electronic density—thus changes in the localization radius of
the NGWFs, which slightly affect the electronic density, will in turn
lead to changes in the dielectric permittivity and, consequently,
solvation energies. Another effect at play here is the inherent
incompleteness of the SCF convergence procedure. We verified
this by repeating a subset of the calculations with stricter energy
convergence thresholds. The observed changes in the obtained
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solvation energies of the complex and the host were in the
order of 2–3 kcal/mol. This is an inevitable consequence of the
fact that the solvation energies are obtained as a difference of
two very large quantities (total energies, which in the case of
the complex and the host are as big as 7 × 106 kcal/mol). This
demonstrates the importance of converging the total energies
very accurately.

The binding energies, which are the most important of the
energies presented as far as chemical applications are concerned,
both in vacuum and in solvent and for both ligands, quickly
converge as the NGWF radius is increased, as we demonstrate
in Table 1 and in Figure 1. They are already converged to better

Figure 1. Binding energy (in kcal/mol) of the ligand (phenol: top, toluene: bot-
tom) in vacuum (black diamonds) and in solution (blue squares) as a function
of the localization radius of the NGWFs (in atomic units). [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

than 1 kcal/mol (“chemical accuracy”) with an NGWF localization
radius of 8.0 a0, for both ligands.

It is interesting to note that absolute binding energies obtained
with implicit solvent models are not directly comparable with
experimental free energies of binding. For example, the ener-
gies of binding for phenol and toluene for NGWF radii of
8.0 a0 in Table 1 are −25.4 and −26.0 kcal/mol, whereas the
experimentally determined free energies of binding are −5.5
and −5.2 kcal/mol[25] respectively. For comparison, the values
obtained with the force field described in “Preparation of Pro-
tein Coordinates” section with the same Poisson–Boltzmann
implicit solvent model as in the MM-PBSA calculations and same
coordinates as in Table 1, are −11.7 and −13.8 kcal/mol, respec-
tively. Averaging over many configurations as in the MM-PBSA
approach will lead to converged values but not to agreement
with experiment as the entropy of binding is not included in such
calculations. These entropic terms, however, are expected to can-
cel out to a great extent when relative free energies of binding
with respect to the same protein are considered. In our example,
the relative energies of binding are 0.6 kcal/mol for ONETEP,
2.1 kcal/mol for AMBER, and −0.3 kcal/mol for experiment.

Dispersion

Here, we briefly demonstrate the importance of dispersion inter-
actions in simulations of biomolecular association. In particular, it
is well known that common generalised gradient approximation
(GGA) exchange-correlation functionals fail to correctly describe
the attractive component of dispersion interactions. If this defi-
ciency is not corrected (either with DFT+D as we do here,[39]

or using nonlocal exchange-correlation functionals that include
dispersion[42]), extremely inaccurate energies of binding, both in
vacuum and in solvent are obtained. This is apparent from the
last two columns of Table 2. This confirms previous reports[39, 43]

indicating that the inclusion of dispersion in the context of bio-
chemical simulations is essential. We note that in the implicit
solvent approach the solute–solvent component of dispersion
is modeled implicitly and thus, the values for the free energy
of solvation reported in Table 2 are independent of whether
solute–solute dispersion has been taken into account.

Smeared ions

The only parameter of the Gaussian smeared ion formalism is
the smearing width, σI of the Gaussian distributions representing
the ions. Although, in principle, this quantity can depend on the
species of atom I, for the sake of simplicity, we will assume

Table 2. Total energy (in kcal/mol) in vacuum and in solution of the complex, host, and ligand (phenol: top, toluene: bottom), their corresponding free energies
of solvation and the binding energy of the ligand, depending on whether or not dispersion was taken into account.

Total energy in vacuum Total energy in solvent Free energy of solvation Ligand binding energy

Dispersion Complex Host Ligand Complex Host Ligand Complex Host Ligand In vacuum In solution

yes −7361235.1 −7327312.7 −33892.766 −7363645.4 −7329723.3 −33896.764 −2410.33 −2410.55 −4.00 −29.59 −25.37
no −7359163.9 −7325267.0 −33890.826 −7361574.2 −7327677.5 −33894.825 −2410.33 −2410.55 −4.00 −6.06 −1.84

yes −7355377.5 −7327166.7 −28187.388 −7357848.3 −7329636.3 −28185.950 −2470.80 −2469.59 1.44 −23.38 −26.03
no −7353314.6 −7325132.4 −28184.631 −7355785.4 −7327602.0 −28183.193 −2470.80 −2469.59 1.44 2.47 −0.18
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Figure 2. Total energy of the complex (black diamonds—in vacuum, blue
squares—in solution) as a function of the smearing width used to smear
the ions. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

that the smearing width is identical for all atoms in the system.
This section is devoted to the analysis of the influence of this
parameter on the obtained total energies of the complex, host,
and phenol ligand, their free energies of solvation and the binding
energy of the phenol ligand.

Figure 2 shows the total energy of the complex, in vacuum and
in solution as the smearing width is varied. These energies are
also listed in the first columns of Table 3, along with similar values
for the host and the phenol ligand. As detailed in Appendix A, the
introduction of smeared ions in vacuum should not, in principle,
have any effect on the energy, as both the self-interaction and
the nonself-interaction of the Gaussian charge distributions are
accounted for in the energy. In practice, however, these charge
distributions are represented on a grid with a finite spacing, which
inevitably introduces a numerical discretization error which is a
consequence of the inability of the grid to accurately represent
the Gaussian function as the smearing width is made smaller
and becomes comparable with the grid spacing. Here, the grid
spacing was 0.25 a0 and a moderate inaccuracy in the total energy
can already be observed for σ = 0.6 a0. The inaccuracy becomes
apparent for σ = 0.4 a0, where it reaches about 2275 kcal/mol
(or 0.03%) for the complex. Similar behavior is observed for the
host and the ligand (cf. Table 3). This may give the impression
that the problem can easily be alleviated simply by increasing

the smearing width, but such conclusion would only be valid in
vacuum.

As the dielectric in our implicit model is polarized by the total
charge density of the solute, it is essential to ensure that the
charge of the smeared ions is well-screened by the electronic
charge density. Otherwise, if the ions are smeared too wide, their
Gaussian tails approach too close to the cavity boundary, leading
to an unphysical depolarization of the dielectric.The fact that even
moderate smearing widths already begin to display this effect is
shown in Figure 3, which presents cross-sections through charge
densities of a hydrogen and a carbon atom, respectively. These
plots serve to demonstrate the need to use the smearing width
to balance the discretization error (where the thinnest, tallest
Gaussians are poorly represented on the grid) with the unphysical
behavior arising from excessively broad smearing. Indeed, it is
apparent from Figure 2 that the computed energy in solution
progressively starts to suffer from the latter inaccuracy as the
smearing becomes excessive. For our calculations, we use σ =
0.8 a0 which represents a reasonable compromise. Calculations
using finer grids could very well use smaller values of σ , which
we demonstrate on the example of the phenol ligand in Figure
4. With a small molecule like phenol, we were able to use a
finer grid (with a spacing of 0.125 a0 rather than 0.25 a0). It is
clear that with progressively finer grids, it becomes possible to
accurately represent Gaussians with smaller smearing widths.

The fact that the total energies in vacuum are not sensitive
to large values of the smearing width σ , whereas the energies
in solution are, has as a consequence that the free energy of
solvation significantly depends on the smearing width. Figure
5 shows this dependence for the complex and for the phenol
ligand, serving as evidence that the description of the solvation
effect becomes inaccurate if unphysically broad smearings are
used. Here again, owing to its smaller size, we can investigate
the phenol ligand in more detail—a plot of the its free energy
of solvation is shown in Figure 6. Similarly as with total energies,
the use of a finer grid allows representing thinner Gaussians
accurately, however, it is apparent that even with a very fine grid
(with a spacing of 0.125 a0), the use of Gaussians with σ = 0.2
already leads to numerical inaccuracies. Indeed, the half-width
of such a Gaussian is merely 0.167 a0, which is comparable with
the grid spacing.

We should note that, to a certain extent, the smearing width
effect can be ameliorated using an identical or similar smearing
width when parameterizing the solvation model. For instance,

Table 3. Total energy (in kcal/mol) in vacuum and in solution of the complex, host, and phenol ligand, their corresponding free energy of solvation and the
binding energy of the ligand in vacuum and in solution, as a function of the smearing width σ of smeared ions (in atomic units).

Total energy in vacuum Total energy in solvent Free energy of solvation Ligand binding energy

σ Complex Host Ligand Complex Host Ligand Complex Host Ligand In vacuum In solution

0.4 −7358965.5 −7325053.8 −33882.101 −7361432.3 −7327520.7 −33886.429 −2466.8 −2466.9 −4.33 −29.584 −25.188
0.6 −7361150.5 −7327228.5 −33892.370 −7363596.1 −7329674.3 −33896.575 −2445.6 −2445.8 −4.21 −29.611 −25.218
0.8 −7361235.1 −7327312.7 −33892.766 −7363645.4 −7329723.3 −33896.764 −2410.3 −2410.6 −4.00 −29.585 −25.369
1.0 −7361241.0 −7327318.7 −33892.795 −7363555.5 −7329633.6 −33896.136 −2314.4 −2314.9 −3.34 −29.587 −25.789
1.2 −7361241.5 −7327319.0 −33892.797 −7363387.3 −7329465.5 −33894.815 −2145.8 −2146.4 −2.02 −29.607 −27.000
1.4 −7361241.3 −7327318.9 −33892.797 −7363262.0 −7329340.2 −33893.520 −2020.7 −2021.2 −0.72 −29.595 −28.324
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Figure 3. Cross-sections through charge densities for a hydrogen atom (top
panel) and a carbon atom (bottom panel). Blue squares — electronic density.
Black crosses—smeared ions with varying smearing widths. The spacing of
the points in the plot coincides with the grid spacing used in the simulations.
The dashed red curves indicate the exact shape of the Gaussians, whereas the
dotted black lines denote a linear interpolation between the points.The vertical
dashed lines correspond to the location of the cavity surface. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

during the parameterization of the model used in this work,
σ = 0.8 a0 was used throughout. Naturally, using the lowest
smearing widths possible constitutes a more elegant solution
to the problem but the associated necessity to make the grid
finer quickly makes this impractical due to the inverse-cubic
dependence of the CPU and memory requirements on the grid
spacing.

We conclude this section by investigating the dependence of
the ligand binding energy on the smearing width. As expected,
the binding energy in vacuum is almost insensitive to the value
of this parameter, as illustrated in Figure 7. The same figure
shows the binding energy in solution, which, similarly to the
free energy of solvation, rapidly deteriorates in accuracy when
unphysically broad smearing widths are used. However, for “sen-
sible,” moderately broad smearing widths, such as σ = 0.8 a0,
the effect on the accuracy is minimal. In this case, for example,
the difference in the binding energy between calculations using

Figure 4. Total energy of the phenol ligand (black diamonds—in vacuum, blue
squares—in solution) as a function of the smearing width used to smear the
ions. Filled symbols and solid lines—for a grid with a spacing of 0.25 a0. Empty
symbols and dashed lines—for a grid with a spacing of 0.125 a0. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.
com.]

Figure 5. Free energy of solvation of the complex (top panel) and the phenol
ligand (bottom panel) as a function of the smearing width used to smear the
ions.
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Figure 6. Free energy of solvation of the phenol ligand as a function of the
smearing width used to smear the ions. Filled symbols and solid lines—for a
grid with a spacing of 0.25 a0. Empty symbols and dashed lines – for a grid with
a spacing of 0.125 a0.

Figure 7. Binding energy of phenol in vacuum (black diamonds), and in solu-
tion (blue squares) as a function of the smearing width σ . [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

σ = 0.8 a0 and those using σ = 0.4 a0 was less than 0.2 kcal/mol
or about 0.7%.

Approximations in the boundary conditions

Here, we investigate the effect of the approximations (4) and (5)
on the accuracy of the obtained absolute energies, free energies
of solvation and ligand binding energies. In each case, we shall
use the value obtained for p = 1 (i.e., without any coarse-graining
of the charge) as reference. In addition, we shall investigate the
magnitude of the error incurred by using zero-Dirichlet boundary
conditions instead of the open boundary conditions. As has been
already mentioned in “Details of the DFT Calculations” section,
only single calculations of the Coulombic energy (A6) have been
performed here for the sake of reducing the computational
effort. For this reason, further discussion will concern the polar
component of the free energy of solvation rather than the free
energy of solvation itself and the Coulombic component of the
binding energy (i.e., the difference in Eq. (A6) in solvent and in
vacuum) rather than the binding energy itself.

Figure 8. Error in the Coulombic energy of the complex (black diamonds—in
vacuum, blue squares—in solution) as a function of the block size used for the
calculation of boundary conditions.The horizontal lines correspond to the error
incurred when zero boundary conditions are used instead (dashed black—in
vacuum, dotted blue—in solution). The percentages reported on the right axis
correspond to the Coulombic energy in vacuum. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]

Figure 8 shows the error in the Coulombic energy of the
complex incurred by the use of the approximation (4) (in vacuum)
and (5) (in solution). The magnitude of this error is seen to be
extremely small for both the calculations in vacuum and in
solution, even if the coarse-graining proceeds over large blocks.
The fact that the error incurred in solution is smaller by about two
orders of magnitude is a consequence of the screening of the
solute by the dielectric. We note that while using zero-boundary
condition is a reasonable approximation in solution (leading to
an error of less than 4 kcal/mol or 0.0005% in the energy), the
same approximation is rather inaccurate in vacuum (leading to
an error of about 300 kcal/mol, or 0.04% in the energy). This
demonstrates the necessity of using physically sound boundary
conditions for charged molecules for obtaining accurate absolute
energies.

Figure 9 shows the error in the electrostatic (polar) term of
the free energy of solvation incurred by the approximations in
question. As the complex is a large, charged molecule, this term
itself is rather large in magnitude—about −2800 kcal/mol, which
means that extraordinary care needs to be taken to calculate it
to chemical accuracy. In all cases, the error incurred by the use
of charge coarse-graining was below 2 kcal/mol (less than 0.1%).
We typically use p = 5, which is shown to incur only a modest
error of 0.003 kcal/mol (or about 0.0001%), while reducing the
computational effort of calculating the boundary conditions by
a factor of p3 = 125. When zero-boundary conditions were used,
the error was unacceptably large (about 10%).

In Figure 10, we show the error in the Coulombic component
of the binding energy of phenol incurred by the approximations
in question. Even for the largest blocks, this error is negligible,
particularly in solution. We point out that owing to judicious
cancellation of errors, even if zero boundary conditions are
used, accurate binding energies in solution can be obtained,
even though the solvation energies suffer from about 10% error
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Figure 9. Error in the polar term of the free energy of solvation of the complex
as a function of the block size used for the calculation of boundary condi-
tions. The dashed line corresponds to the error incurred when zero boundary
conditions are used instead.

Figure 10. Error in the Coulombic component of the binding energy of phe-
nol (black diamonds—in vacuum, blue squares—in solution) as a function of
the block size used for the calculation of boundary conditions. The horizon-
tal lines correspond to the error incurred when zero boundary conditions
are used instead (dashed black—in vacuum, dotted blue—in solution). The
percentages reported on the right axis correspond to the binding energy in
vacuum. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

under this approximation. We stress that this should probably
not be expected to hold in general—here, the ligand was small
and neutral and the potential on the faces of the cell due to
the complex and host was thus very similar. In consequence, the
unphysical compensating potential introduced by zero bound-
ary conditions was very similar in both cases, leading to good
cancellation of errors. If the ligand was charged and/or larger,
the degree of such cancellation would be much smaller. If open
boundary conditions are used, this is no longer a concern.

Defect correction order

Here, we investigate the effect of using defect correction (cf.
Appendix B) when solving the HPE (2) (in vacuum) or the NPE
(1) (in solvent) and of the order of the finite differences used

during defect correction on the accuracy of the obtained absolute
energies, free energies of solvation, and ligand binding energies.

We begin by showing how not using defect correction and
instead relying on a second-order solution of Eq. (2) introduces
a non-negligible error into the Hartree energy of the phenol
ligand in vacuum. We measure this error by comparison with two
reference calculations performed with open boundary conditions.
The first of these uses the Martyna–Tuckerman approach,[44]

whereas the second one uses the cutoff-Coulomb technique[45]

to calculate the Hartree energy with open boundary conditions.
For a more detailed description of these approaches, the reader
is referred to Ref. [15]. Our choice of the ligand for this test, rather
than the larger lysozyme molecule, was dictated by the fact that
significantly larger “padded” grids need to be used when using
the aforementioned approaches, which increases their memory
footprint. Although the Hartree energies computed with both
reference approaches agreed to machine precision, the Hartree
energy obtained by solving Eq. (2) (for ρtot ≡ ρ) with second-order
finite differences and no defect correction differed by as much
as 83 kcal/mol (about 0.07%), cf. Table 4. Using defect correction,
we can drastically improve the agreement in the Hartree energy
with our reference value. The magnitude of the discrepancy
decreases monotonically with an increase in the order of the
finite differences used, as shown in Figure 11. Smeared ions
were not used in this case, as the quantity of interest, here,
was the Hartree energy, rather than the Coulombic energy (A6),
furthermore, we did not want the numerical inaccuracies of
the smeared ions themselves to complicate the picture. The
convergence criteria for the multigrid solver were identical in all
cases, we assumed convergence when |φ(i+1) − φ(i)| < 1 × 10−5

(a.u.).

Table 4. Hartree energy (kcal/mol) of phenol in vacuum as a function of the
finite-difference (FD) order used for the defect correction. An FD order of 2
corresponds to no defect correction.

FD order Hartree energy in vacuum

2 113640.335
4 113558.656
6 113557.583
8 113557.502
10 113557.485
12 113557.480
MT 113557.47446894
CC 113557.47446894

MT and CC denote reference calculations performed with the Martyna–
Tuckerman[44] and cutoff-Coulomb approaches,[45] respectively.

As neither of the methods used as a reference above could
be applied in solution, and their use for large systems was
cumbersome, in the remainder of this section, we shall use the
results obtained with the highest finite difference order (i.e., 12),
as a reference against which results obtained with lower orders
or without defect correction will be compared. We will focus on
the Coulombic energy (A6) as the relevant quantity in solution.
Note, on the example of the phenol ligand, that this energy
is much smaller in magnitude than the Hartree energy, as it
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Figure 11. Convergence of the Hartree energy of phenol in vacuum to
the exact result. Open boundary conditions were used. The exact result
was obtained using the cutoff Coulomb technique and with the Martyna–
Tuckerman approach, which agreed to machine precision.

corresponds to the interaction of a neutral charge distribution
with itself, whereas the latter—to the interaction with itself of
a distribution with a total charge of 36 electrons.

The obtained Coulombic energies, in vacuum and in solution,
for the complex, host, and phenol ligand are shown in Table 5,
whereas Table 6 lists the corresponding errors. For the case of the
complex, this error is plotted in Figure 12.The behavior of the error
is very similar in vacuum and in solution and across the studied
systems. When defect correction is not used, errors as large as
1.7% in the Coulombic energy are incurred. This corresponds
to more than 13,000 kcal/mol for the complex and host and

Figure 12. Error in the Coulombic energy of the complex (black diamonds—
in vacuum, blue squares – in solution) as a function of the order of the finite
differences used for the defect correction of the solution of the NPE. The order
of 2 corresponds to no defect correction.The percentages reported on the right
axis correspond to the energy in vacuum. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

about 73 kcal/mol for the ligand. When defect correction is used,
the magnitude of the error quickly diminishes monotonically
with increasing order of the finite differences used in the defect
correction. This demonstrates the importance of using defect
correction (or a high-order multigrid solver), if accurate absolute
energies are desired.

We now shift our attention to the effect of defect correction on
the free energies of solvation. Again, we shall only be concerned
with the polar term, the values for which are shown in Table 7 for

Table 5. Coulombic energy (in kcal/mol) in vacuum and in solution of the complex, host, and phenol ligand, as a function of the order of the finite differences
used for the defect correction of the solution of the Poisson equation.

Coulombic energy in vacuum Coulombic energy in solvent

FD order Complex Host Ligand Complex Host Ligand

12 765280.2 761079.1 4240.088 762448.9 758252.6 4216.994
10 765282.5 761081.4 4240.098 762450.8 758254.5 4217.000

8 765292.0 761090.9 4240.141 762459.5 758263.1 4217.033
6 765351.4 761150.0 4240.432 762518.5 758321.8 4217.305
4 765983.6 761778.9 4243.688 763182.0 758982.2 4220.876
2 778986.6 774712.7 4312.981 776155.0 771885.9 4289.865

An order of 2 corresponds to no defect correction.

Table 6. Error in the Coulombic energy (in kcal/mol and as a percentage) in vacuum and in solution of the complex, host, and phenol ligand, with respect to
the defect correction order of 12, as a function of the order of the finite differences used for the defect correction of the solution of the Poisson equation.

Error in the Coulombic energy in vacuum Error in the Coulombic energy in solvent

FD order complex host ligand complex host ligand

12 0.0 0.0000% 0.0 0.0000% 0.000 0.0000% 0.0 0.0000% 0.0 0.0000% 0.000 0.0000%
10 2.3 0.0003% 2.3 0.0003% 0.010 0.0002% 1.9 0.0002% 1.9 0.0002% 0.006 0.0001%

8 11.8 0.0015% 11.8 0.0015% 0.053 0.0013% 10.6 0.0014% 10.5 0.0014% 0.039 0.0009%
6 71.2 0.0093% 70.9 0.0093% 0.344 0.0081% 69.6 0.0091% 69.2 0.0091% 0.311 0.0074%
4 703.4 0.0919% 699.8 0.0920% 3.600 0.0849% 733.1 0.0962% 729.6 0.0962% 3.882 0.0921%
2 13706.4 1.7910% 13633.6 1.7913% 72.893 1.7191% 13706.1 1.7976% 13633.3 1.7980% 72.871 1.7280%

An order of 2 corresponds to no defect correction.
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Table 7. Polar component of the free energy of solvation and the Coulombic component of the binding energy of the ligand in vacuum and in solution, as a
function of the order of the finite differences used for the defect correction of the solution of the Poisson equation.

Polar free energy of solvation Coulombic component to binding energy

FD order Complex Host Ligand In vacuum In solution

12 −2831.3 −2826.5 −23.094 −39.001 −20.683
10 −2831.7 −2827.0 −23.098 −39.001 −20.678

8 −2832.5 −2827.8 −23.108 −39.001 −20.666
6 −2832.9 −2828.2 −23.127 −39.001 −20.640
4 −2801.6 −2796.7 −22.812 −39.001 −21.072
2 −2831.6 −2826.8 −23.116 −39.095 −20.806

The order of 2 corresponds to no defect correction. Energies in kcal/mol.

the complex, host, and the phenol ligand.The corresponding error
and its dependence on the order of the finite differences is shown
in Table 8 and in Figure 13. The magnitude of the error again
decreases monotonically as the order of the finite differences
used for defect correction is increased, however, interestingly,
not using defect correction at all incurs only a negligible error
in the free energy of solvation, even though the corresponding
absolute energies are severely affected.

This somewhat counterintuitive observation is best explained
by referring to Appendix B. It is a consequence of the approximate
nature of Eq. (B6) used during defect correction: even though the
residual r(i)

d is computed with high-order finite differences, the
corresponding approximation of the algebraic error e(i)

2,d is still
obtained with a second-order solver. When solving Eq. (B6), the
solver deals with a right-hand side that is a discrete representation
of r(i)

d on the grid, where normally (when solving Eq. (1) or (2))
the right-hand side is −4πρtot. Although the magnitude of r(i)

d

is significantly smaller than that of −4πρtot (as the former is
merely the inaccuracy in the latter), the reverse is true for the
gradients of these quantities (which we verified for the system
in question). As

r(i) = f − Âφ(i)

= f − ∇ · (ε∇φ(i))

= f − (∇ε) · (∇φ(i)) − ε ∇2φ(i), (6)

the approximation inherent in Eq. (B6) becomes less accurate
in the solvent calculation (where ε is nonhomogeneous) com-
pared with the calculation in vacuum. Thus, even though the

Figure 13. Error in the polar component of the free energy of solvation of the
complex as a function of the order of the finite differences used for the defect
correction of the solution of the NPE. An order of 2 corresponds to no defect
correction. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

defect-corrected φ are more accurate than the uncorrected ones
(both in vacuum and in solution), the fact that the quality of
the approximation involved in defect correction differs between
the calculations in vacuum and in solution translates into an
additional error in the obtained free energy of solvation (their dif-
ference). In the absence of defect correction, this approximation
is not being made at all, which leads to fortuitous cancellation of
errors. As a further confirmation of this numerical behavior, we
note that that the error in the free energy of solvation depends

Table 8. Error (in kcal/mol and as a percentage) in the polar term of the free energy of solvation and in the Coulombic component of the binding energy of the
ligand in vacuum and in solution, with respect to the defect correction order of 12, as a function of the order of the finite differences used for the defect
correction of the solution of the Poisson equation.

Error in the polar free energy of solvation Error in the Coulombic component of binding energy

FD order Complex Host Ligand In vacuum In solution

12 0.0 0.000% 0.0 0.000% 0.000 0.000% 0.000 0.000% 0.000 0.000%
10 −0.4 0.015% −0.4 0.016% −0.004 0.019% 0.000 0.000% 0.005 −0.025%

8 −1.3 0.044% −1.3 0.044% −0.014 0.062% 0.000 0.000% 0.018 −0.085%
6 −1.7 0.058% −1.7 0.059% −0.033 0.143% 0.001 −0.001% 0.043 −0.210%
4 29.7 −1.049% 29.8 −1.055% 0.282 −1.222% 0.000 0.000% −0.388 1.878%
2 −0.3 0.011% −0.3 0.009% −0.022 0.097% −0.094 0.240% −0.123 0.593%

An order of 2 corresponds to no defect correction.
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on the smoothness of the dielectric function (which is controlled
by the parameter β as presented in Ref. [5]). If we decrease β

(leading to a decrease in the values of ∇ε), we observe that the
errors in the free energy of solvation obtained with low-order
defect correction quickly decrease. In the case of the phenol
ligand, for β < 0.6 even fourth-order defect correction leads
to more accurate results than the uncorrected second-order
calculation.

We conclude this section with a discussion of the effect of
defect correction on the binding energy of phenol. The values
of this binding energy, in vacuum and in solvent, for different
orders of the finite differences used for defect correction are
shown in Table 7 and the corresponding errors—in Table 8. These
energies are also plotted in Figure 14, which demonstrates that in
vacuum we deal with a convenient cancellation of errors, and the
binding energy is not sensitive to more than 0.001 kcal/mol to the
details of the defect correction. Even without defect correction,
the error is smaller than 0.1 kcal/mol. The binding energy in
solvent is somewhat more sensitive to this parameter, however,
it still converges well as the order of the finite differences is
increased. Nevertheless, defect correction with the lowest order

Figure 14. Coulombic component of the binding energy of phenol in vacuum
(top panel) and in solvent (bottom panel) as a function of the order of the
finite differences used for the defect correction of the solution of the Poisson
equation. An order of 2 corresponds to no defect correction. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

(i.e., 4), introduces a larger error than neglecting defect correction
altogether, for reasons similar to those discussed in the case of
the free energy of solvation. In all cases, the obtained ligand
binding energy differs less than 0.5 kcal/mol from the “exact”
12th order defect-corrected value.

Conclusions

We have investigated the binding of two ligands (phenol, which is
a polar ligand and toluene which is nonpolar) to the T4 lysozyme
L99A/M102Q protein using large-scale DFT calculations, taking
the solvent environment into account within the framework of
a self-consistent implicit solvent model[7] with direct solution
of the NPE, as implemented in the ONETEP program. We have
investigated the behavior of the main numerical parameters that
need to be carefully considered, when performing calculations
of solvation energies and of binding energies in solvent.

A numerical parameter specific to the ONETEP linear-scaling
DFT program is the localization radius of the NGWFs. We have
shown that a localization radius of 8 a0 for the NGWFs is sufficient
to accurately obtain free energies of solvation and the binding
energies for both ligands.We have demonstrated that the binding
energies can only be accurately obtained if dispersion is explicitly
taken into account, for example, with the DFT+D approach[39]

in the case of the GGA exchange-correlation functionals, as we
use here.

To accurately describe the polarization of the implicit solvent
due to the potential of the ionic cores, we used the smeared-ion
formalism. We have shown how the width of the smearing needs
to be carefully chosen, otherwise the energies in solution, and
consequently, free energies of solvation and binding energies
will be adversely affected. We have ensured that our calculations
are converged with respect to this parameter. We propose to
use 0.8 a0 for the smearing width, unless grids substantially finer
than 0.25 a0 are used.

Throughout this work, we used open boundary conditions.
We used coarse-graining when generating the open boundary
conditions for the solution of the Poisson equation, both in vac-
uum [Eq. (2)] and in solvent [Eq. (1)]. We have shown that the
effect on accuracy associated with this approximation is negligi-
ble, even when very crude representations of the charge density
are used. We demonstrated that using zero-boundary conditions,
when solving the Poisson equation incurs unacceptably large
errors in vacuum, but is a reasonable approximation in solvent,
owing to the dielectric screening.

We have investigated how the order to which the Poisson
equation is solved affects the obtained total energies, free ener-
gies of solvation, and binding energies. It has been pointed
out[19, 46] that second-order finite differences are often inad-
equate in the context DFT calculations. In this work, we have
used the defect correction technique,[18, 19] which serves to accu-
rately approximate a high-order solution using a second-order
solver and high-order finite difference operators for the gradi-
ent and Laplacian. We have shown how a second-order solution
leads to highly inaccurate total energies, yet a high degree of
cancellation of errors allows one to obtain rather accurate free
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energies of solvation without using defect correction. We have
demonstrated that defect correction offers excellent improve-
ment in the accuracy of the obtained total energies, but because
of the approximations involved, in the case of the free energies
of solvation an increase in accuracy is only obtained when high-
order (10th or so) finite differences are used, depending on the
exact nature of the system under study. For the binding energies,
we have shown that high-order defect correction offers better
accuracy, however, even without defect correction the error in
the binding energy was smaller than 0.2 kcal/mol.

We hope that our case study provides a detailed understanding
of the strengths and weaknesses of such minimal parameter
solvent models and will hence contribute to their optimal usage.

Appendix A: Electrostatics in the presence of
smeared ions

We will be concerned with the electrostatic energy of an isolated
(nonperiodic) system of N ionic cores and Ne electrons. We will
follow a convention where electronic charge densities are positive
whereas the cores are negatively charged. Let ρI(r) be a Gaussian
charge density centerd on core I that integrates to the core’s
charge, −ZI , that is,

ρI(r) = − ZI

σ 3
I

π− 3
2 exp

(
−|r − RI|2

σ 2
I

)
. (A1)

We denote the potential due to the density (A1) with vI(r):

vI(r) =
∫

ρI(r′)
|r − r′| dr′

= − Zi

|r − RI| erf

( |r − RI|
σI

)
. (A2)

The total density ρtot(r) of the molecule is the sum of the
electronic density ρ(r) and Gaussian core densities

ρtot(r) = ρ(r) +
N∑
I

ρI(r). (A3)

It can be shown[47] that solution of the NPE (Eq. (1)) for the above
density results in an electrostatic potential of the following form

φNPE(r) = φHPE(r) + φpol(r), (A4)

where the polarization potential φpol(r) contains all the effects
due to the nonhomogeneous dielectric permittivity ε in Eq. 1
and φHPE(r) is the solution of the HPE [Eq. (2)].

The electrostatic energy of ρtot(r) interacting with itself in the
presence of the dielectric is then

Etot = 1

2

∫
ρtot(r) φNPE(r) dr (A5)

= 1

2

∫
ρtot(r) φHPE(r) dr + 1

2

∫
ρtot(r) φpol(r) dr

= EHPE + Epol, (A6)

where we have conceptually partitioned the energy into homo-
geneous EHPE and polarization Epol terms. In practice, however,
we compute directly the sum of the two above terms Etot, as in
the case of solvent, we only solve the NPE.

The actual electrostatic energy that we compute in the DFT
calculation of a solute molecule in implicit solvent has the
following form:

EES,DFT = 1

2

∫
ρtot(r) φNPE(r) dr (A7)

+
N∑
I

∫
ρ(r)[vloc,I(r) − vI(r)] dr (A8)

− 1

2

N∑
I,J

∫∫
ρI(r)ρJ(r′)

|r − r′| dr dr′ (A9)

+ 1

2

N∑
I,J

I 
=J

ZI ZJ

|RI − RJ | , (A10)

where the term A8 corrects the EHPE component of Etot for the
fact that in the molecule the interaction of the electronic density
is with local pseudopotentials rather than the smeared Gaussian
nuclei, and the Gaussian–Gaussian interaction is removed from
EHPE in Eq. (A9) and replaced with the interaction between the
pseudopotential cores in Eq. (A10) which under the usual (valid)
assumption of nonoverlap of the ionic cores is the Coulombic
interaction between point ionic charges.

Using standard formulas,[48] the Gaussian–Gaussian term of
Eq. (A9) is computed as

− 1√
2π

N∑
I

Z2
I

σI
− 1

2

N∑
I,J

I 
=J

ZI ZJ

|RI − RJ | erf

⎛
⎜⎝ |RI − RJ |√

σ 2
I + σ 2

J

⎞
⎟⎠. (A11)

The only correction term we have neglected from EES,DFT from
the above equation is the following

1

2

N∑
I

∫
[−ZI − ρI(r)]φpol(r)dr,

which would remove the interaction of the smeared Gaussian
cores with the polarization potential and replace it with the inter-
action of the point ionic charges with the polarization potential.
Even though we do not apply this correction, as we do not have
access to φpol(r), we expect its effect to be negligible. It can
be shown[47] that the polarization potential can be expressed
as the potential due to a polarization density ρpol(r), which is
localized to a narrow region along the vacuum–solute interface
(the effective surface of the solute cavity). The above term can
thus be rewritten as

1

2

N∑
I

∫ [ −ZI

|r − RI| − vI(r)
]

ρpol(r)dr.

As the potential (A2) due to a Gaussian charge distribution quickly
tends to that of a point charge, the difference between the two
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(and, consequently, the correction term above) is expected to
be negligible at that interface.

Obviously, in the case of calculations in vacuum all the terms
with the subscript “pol” are zero by definition.

Appendix B: High-order defect correction

Here, we will briefly describe how a high-order defect correction
method can be applied to reduce the error resulting from the
second-order representation of the differential operators when
solving the NPE (1) with a second-order multigrid solver. For a
more detailed description of this approach, we refer the reader
to Refs. [18, 19].

Our goal is to numerically solve Eq. (1), which we rewrite as

Â[ε]φ = f , (B1)

where Â[ε] = ∇ · ε∇ , f = −4πρtot, and we have omitted the
dependence on r for brevity.

Let Âh
d[ε] be a discrete representation of order d of Â[ε] on a

grid with a spacing of h. This representation is thus accurate to
O(hd). For simplicity, we shall from now on omit the dependence
of Â and its discrete representations on ε from the notation.

The procedure which we describe here is an iterative improve-
ment which is applied once the solution of Eq. (B1) with a
second-order solver has been obtained. It is clear that the solu-
tion of Eq. (B1) with a second-order solver does not yield the
sought φ, but rather φ(1), which satisfies

Âh
2φ

(1) = f (B2)

and is the starting guess for our iterative improvement. The
difference between φ and φ(i), at any iteration i of the calculation,
is termed the algebraic error, e(i):

e(i) = φ − φ(i). (B3)

By applying Â to both sides of (B3), we obtain the so-called
defect equation:

Âe(i) = Âφ − Âφ(i)

= f − Âφ(i)

= r(i), (B4)

where r(i) = f − Âφ(i) is termed the residual (or defect) at
iteration i.

Although, as we lack the exact Â, we can never exactly compute
the residual, we can use a high-order approximation to Â to
compute the approximation to the residual r(i)

d , of order d, as

r(i)
d = f − Âh

dφ(i). (B5)

We can then use the second-order analog of the defect equation
(B4) to obtain a second-order approximation of the algebraic

error, e(i)
2,d , corresponding to this approximation to the residual,

that is, we solve

Âh
2e(i)

2,d = r(i)
d (B6)

with the second-order solver. From Eq. (B3), it follows that

φ = φ(i) + e(i)

≈ φ(i) + e(i)
2,d . (B7)

We can thus obtain a better approximation of the sought quantity
φ as

φ(i+1) = φ(i) + e(i)
2,d (B8)

using only a second-order solver and a high-order representation
of the operator ∇ · ε∇ .

This procedure is iterated until an appropriate convergence cri-
terion is satisfied, for example, |φ(i+1) −φ(i)| is below a prescribed
tolerance.
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