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In situ optimization of a set of localized orbitals with respect to a systematically improvable basis set
independent of the position of the atoms, such as psinc functions, would theoretically eliminate the
correction due to Pulay forces from the total ionic forces. We demonstrate that for strict localization
constraints, especially with small localization regions, there can be non-negligible Pulay forces that
must be calculated as a correction to the Hellmann-Feynman forces in the ground state. Geometry
optimization calculations, which rely heavily upon accurate evaluation of the total ionic forces, show
much better convergence when Pulay forces are included. The more conventional case, where the
local orbitals remain fixed to pseudo-atomic orbital multiple-ζ basis sets, also benefits from this
implementation. We have validated the method on several test cases, including a DNA fragment with
1045 atoms. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4728026]

I. INTRODUCTION

Kohn-Sham density functional theory (DFT)1, 2 is widely
used to determine properties of materials and molecules at the
level of quantum theory. The computational cost of traditional
approaches to DFT (Refs. 3–7) scales as O(N3), where N is
the number of atoms in the system, usually limiting the range
of calculations to no more than some hundreds of atoms. More
recently, efforts have been put in the development of linear-
scaling approaches based on the principle of nearsightedness
of electronic matter.8 In systems with a non-zero band gap,
the single-particle density matrix decays exponentially with
the distance between two points. This property can be ex-
ploited to reduce the computational cost to O(N ) by introduc-
ing spatially localized orbitals and by truncating the elements
of the density matrix that belong to atoms further than a given
cutoff radius.9, 10 Programs such as ONETEP,11 CONQUEST,12

SIESTA,13 and OPENMX14 belong to this category of linear-
scaling methods and are capable to perform calculations on
thousands of atoms.15

The ground state is found by self-consistent field (SCF)
minimization of the energy with respect to a number
of variational parameters of the system.16 The Hellmann-
Feynman (HF) theorem17, 18 provides a computationally ef-
ficient method for calculating the ionic forces at the ground
state of the system that eliminates the need to calculate
the derivatives of the variational parameters that describe
the orbitals. The Hellmann-Feynman theorem holds for self-
consistent solutions in the limit of a complete basis set.19–21

However, practical computational approaches to DFT employ
a finite number of basis set functions with a certain degree
of incompleteness. In such cases, Pulay forces22 must be cal-
culated as corrections to the Hellmann-Feynman forces if the
basis set functions explicitly depend on the ionic positions.

a)Electronic mail: C.Skylaris@soton.ac.uk.

Other approaches23 perform a self-consistent optimization of
the center of localization of the orbitals, so that the Pulay
forces vanish at the ground state.

Different choices of localized atomic orbitals include
analytical functions such as Gaussian24, 25 or Slater-type26

orbitals and numerical representations such as all-electron
numerical atomic orbitals27, 28 or pseudo-atomic orbitals
(PAOs)29–33 to account for the valence electrons. Schemes us-
ing a combination of plane waves and Gaussian localized or-
bitals have also been developed.34–37

The quality of the basis set is controlled by the number of
functions for each atomic shell and the symmetry inherent to
the angular momentum of each of these functions. These fac-
tors are used to construct multiple-ζ basis sets, which can also
contain polarization and diffuse orbitals, key to describing the
electronic structure of a molecular system. A large number of
basis functions is normally required to achieve chemical ac-
curacy in the description of the Kohn-Sham ground state. To
reduce the number of atomic orbitals without decreasing the
accuracy, a set containing the minimum number of localized
orbitals to describe the valence electrons can be optimized
in situ in terms of a systematically improvable basis set.38

This maneuver removes the restriction of fixed angular shape
characteristic of conventional atomic orbitals.

In this work, we show that Pulay forces must be calcu-
lated in cases where the localized orbitals are optimized in
terms of a basis set independent of the ionic coordinates. Ge-
ometry optimizations carried out with corrected forces show
improved systematic convergence with the basis set, allow-
ing efficient calculations on complex molecules. Addition-
ally, Pulay forces are necessary in the more conventional
case where the localized orbitals remain fixed in the shape
of atomic orbitals. In some cases, especially for large sys-
tems, geometry optimization calculations with fixed multiple-
ζ PAO basis set can result in faster time-to-solution runtimes,
whilst retaining high accuracy in the final geometries.
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We have implemented the functionality that enables
calculation of Pulay forces within the ONETEP11 program.
Section II offers a brief description of the SCF minimization
of the energy and explains the conditions that must be met
at convergence of the calculations. In Sec. III, we elaborate
on the evaluation of the ionic forces and the origin of the
Pulay forces as a consequence of the strict localization
constraints. In Sec. IV, we show our results regarding
the convergence of the total forces in ONETEP, including
the Pulay forces, with respect to the basis set for a CO2

molecule and a water dimer complex. We then demonstrate
that the Pulay terms do not vanish when the localized orbitals
are optimized in situ with respect to a position-independent
basis set. To validate our method, we performed geometry
optimization calculations on an adenine-thymine DNA base
pair, and on the self-assembling superstructure known as the
“tennis-ball” dimer.39, 40 To demonstrate the applicability of
our methods to large-scale systems, we performed geometry
optimization calculations on a DNA fragment of 1045 atoms,
and we provide an example of time saving when using a PAO
multiple-ζ basis set of medium size.

II. ENERGY MINIMIZATION

ONETEP11 is based on a reformulation of Kohn-Sham
DFT with norm-conserving pseudopotentials41, 42 in terms of
the single-particle density matrix, ρ(r, r′), expressed in terms
of a set of non-orthogonal generalized Wannier functions
(NGWFs),43 φα(r), as:

ρ(r, r′) = φα(r)Kαβφ∗
β(r′), (1)

where our notation assumes implicit summation over re-
peated Greek indexes. The matrix elements Kαβ form the den-
sity kernel. In non-metallic systems, Kαβ are non-zero only
if |Rα − Rβ | < RK , with Rα and Rβ being the coordinates
of the centers of the NGWFs α and β, and RK a real-space
cutoff length.44

The NGWFs are non-orthogonal functions centered on
the nuclear coordinates which are enforced to be strictly lo-
calized within a sphere of finite radius Rα . The overlap matrix
S is defined as,

Sαβ =
∫

dr φα(r)φ∗
β(r). (2)

At the same time, the NGWFs are expanded as a linear com-
bination of psinc functions,45 Dm(r), as,

φα(r) =
m∈LR(α)∑

m

D(r − rm)cmα, (3)

where the m index denotes the points of the real-space Carte-
sian grid rm inside the localization region of φα , referred to
as LR(α). The psinc functions form an orthogonal basis set
of bandwidth-limited delta functions related to plane-waves
by a unitary transformation. Hence, they share many of their
desirable properties, notably, the independence from the nu-
clear coordinates and the ability to form a basis set that can
be systematically improved by increasing a single parameter:
the kinetic energy cutoff.42

The total energy is minimized self-consistently with
respect to Kαβ and cmα in two nested loops,43, 46 subject to the
constraints of conservation of the total number of electrons
and idempotency of the density kernel. The first constraint is
enforced by ensuring that the density kernel is appropriately
scaled so that the relation tr[KS] = Ne holds at all points
during the energy minimization. On the other hand, idempo-
tency is taken into account by using the Li-Nunes-Vanderbilt
(LNV) method,47 which builds an idempotent density kernel
K from a nearly idempotent matrix L whose elements are
found by direct energy minimization. This scheme also
preserves the orthonormality of the Kohn-Sham states at
zero electronic temperature. As a result, the converged,
self-consistent solution satisfies,

∂E

∂Kαβ
= 0 ∀ α, β, (4)

and

δE

δφα

= 0 ∀ α. (5)

We emphasize that the NGWFs are optimized in situ based on
the variational principle. The condition in Eq. (5) expresses
the fact that at self-consistency the energy is stationary with
respect to the NGWFs represented as a linear combination of
psinc functions. Therefore, at self-consistency, the following
condition is also true:

δE

δcmα

= 0 ∀ m,α. (6)

An alternative approach to self-consistent energy mini-
mization is to employ a single loop to optimize the elements
of the density kernel. In these cases, the basis set is formed by
localized orbitals which remain fixed during the calculation.
A recent addition to ONETEP allows generation of suitable
multiple-ζ basis sets out of PAOs that can be used to obtain
accurate results given a large enough basis. The PAOs
are closely related to the Sankley-Niklewski “fireballs”29

subject to strict localization constraints. The PAO solver
is described in the Appendix. The NGWFs differ from the
PAOs in that they are expressed and optimized in situ in
terms of a linear combination of psinc basis functions. The
PAOs, although they are also expressed in terms of psincs for
consistency throughout, remain fixed during the calculation.
Consequently, the condition in Eq. (5) never holds for PAOs.

III. IONIC FORCES

The evaluation of the ionic forces using NGWFs in
ONETEP has been studied previously in Ref. 48. The force
acting on ion γ is defined as the negative total derivative of
the energy with respect to the nuclear coordinates,

Fγ = − dE

dRγ

= − ∂E

∂Rγ

− ∂E

∂Kβα

∂Kαβ

∂Rγ

− ∫
dr

δE

δφα(r)

∂φα(r)

∂Rγ

. (7)
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This equation includes terms due to the explicit dependency
of the energy on the nuclear coordinates, and terms due to the
implicit dependency of the density kernel and NGWFs on the
nuclear coordinates.

When self-consistent convergence is achieved, the condi-
tions in Eqs. (4) and (5) apply, leaving a much simpler expres-
sion for the total force,

Fγ = − ∂E

∂Rγ

. (8)

This result corresponds to direct application of the Hellmann-
Feynman theorem after successful SCF energy minimization,
with vanishing Pulay forces. The total Hellmann-Feynman
force on atom γ is formed by individual contributions to the
Hamiltonian, and does not consider derivatives of the NG-
WFs. In this case, the terms included in the total force are
those due to the local and non-local terms of the pseudopo-
tential, the Ewald energy, and (where applicable) non-linear
core correction (NLCC) terms,

FHF
γ = Fnl

γ + Floc
γ + Few

γ + FNLCC
γ . (9)

The ionic forces calculated using this expression are gener-
ally valid in all cases where both the density kernel and the
localized orbitals are optimized to self-consistency.48

The LNV algorithm46, 47 allows to converge the energy
with respect to Kαβ to a very tight tolerance, so that the con-
dition in Eq. (4) is regularly achieved. However, in many
cases, obtaining tight convergence of energy with respect to
the psinc expansion of the NGWFs can be very difficult. The
competing effects of the kinetic energy operator, which tends
to spread the NGWFs across the cell, and the constraint of
strict localization within a sphere can result in the NGWF en-
ergy gradient converging to small non-zero values.49 Whereas
the total energy converges quadratically with respect to the
Kohn-Sham states during the SCF procedure, the forces con-
verge at a slower rate.22 As a result, the residual NGWF en-
ergy gradient has a negligible effect in the evaluation of the
ground-state energy, yet can produce non-negligible correc-
tions to the Hellmann-Feynman forces. The Pulay forces in
ONETEP are due entirely to the NGWF gradient contribution
in Eq. (7),

FPulay
γ =

∫
dr

δE

δφα(r)

∂φα(r)

∂Rγ

. (10)

Therefore, given convergence of the energy with respect to
the density kernel and the NGWFs, the total force on atom
γ is the sum of the Hellmann-Feynman and Pulay forces,
Ftotal

γ = FHF
γ + FPulay

γ .
This expression is valid for any set of localized functions.

As the PAOs are also represented as a linear combination
of psinc functions, the method presented hereafter for deter-
mining the Pulay forces holds for both NGWFs and PAOs.
As seen from Eq. (10), the Pulay forces require the evalua-
tion of two terms and the integration of their product on a
real space grid within the localization region of the relevant
NGWF. These terms are the energy gradient with respect to
the NGWFs and the derivative of the NGWFs with respect
to the ionic coordinates. The first is evaluated at each step of
the SCF optimization of the NGWFs and does not need to be

re-calculated to evaluate the forces. This makes the computa-
tion of Pulay forces inexpensive compared to the SCF cycle,
which takes most of the computational effort. The analytical
form of δE

δφα (r) has been derived before by Soler et al.13 for a
generalized Lagrangian to keep orthonormality of the Kohn-
Sham states and by Miyazaki et al.50 for the LNV method.
The expression is equivalent in the case of ONETEP,

δE

δφα(r)
= 4[Ĥφβ(r)Kβα + φβ(r)Qβα], (11)

where, for a converged density kernel, Qαβ = −(KHS−1)αβ .
The prefactor of 4 in Eq. (11) appears as the NGWFs are real
functions and closed shells are assumed.

On the other hand, derivatives with respect to the ionic
coordinates can be calculated by applying the gradient opera-
tor, ∇r, to the NGWFs,

∂φα(r)

∂Rγ

= −∇rφα(r)δαγ . (12)

This operation takes places in the reciprocal space represen-
tation of the function φα(r) using the well-tested FFT-box
technique.45 The equivalence of the psinc functions and plane
waves allows us to expand Eq. (3) as,

φα(r) = 1

Np

Gmax∑
G

φ̃α(G)eiG(r−Rα ), (13)

where G denotes the reciprocal lattice vectors on the FFT-box
up to a magnitude of Gmax, defined by the kinetic energy cut-
off. Np indicates the number of points in the FFT-box, whose
size is proportional to the NGWF radii. It is necessary to stress
that the dependency of φα(r) on Rα does not involve a change
in the functional form of the NGWFs as expressed in terms
of the psinc basis set, but instead it remains as a translational
phase factor that takes into account the displacement of the
NGWF center across the simulation cell. Direct differentia-
tion of Eq. (13) provides the derivative of the NGWFs with
respect to Rγ ,

∂φα(r)

∂Rγ

= 1

Np

Gmax∑
G

−iGφ̃α(G)eiG(r−Rα )δαγ . (14)

Equations (11) and (14) are evaluated in the FFT-box of φα ,
so that FPulay

γ can be calculated with O(N ) cost.

IV. RESULTS

A. Convergence of the forces

Convergence with respect to the psinc basis set, deter-
mined by the kinetic energy cutoff, and the radius of the
spherical localization region of the NGWFs, is vital for ac-
curate calculation of ionic forces within this method. This as-
pect has been studied in Ref. 48 for the Hellmann-Feynman
forces alone. Figure 1 reproduces some of the results present
in that work and additionally demonstrates the effect of
the Pulay correction to the total forces. The calculations
involve the force acting on an oxygen atom in CO2 and the
force acting on a hydrogen atom in a H2O dimer. We used
the local-density approximation (LDA) exchange-correlation
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234101-4 Ruiz-Serrano, Hine, and Skylaris J. Chem. Phys. 136, 234101 (2012)

-9.2

-9.1

-9.0

-8.9

-8.8

-8.7
H

F
 F

or
ce

 (
eV

/Å
)

R=3.0 Å

CO
2
 covalent bond

600 700 800 900 1000 1100 1200
Kinetic energy cutoff (eV)

-9.3

-9.2

-9.1

-9.0

-8.9

-8.8

T
ot

al
 f

or
ce

 (
eV

/Å
)

R=6.0 Å

-0.3

-0.2

-0.1

0.0

P
ul

ay
 f

or
ce

 (
eV

/Å
)

R=4.0 Å

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

H
F

 F
or

ce
 (

eV
/Å

)

R=3.5 Å

H
2
O dimer hydrogen bond

600 700 800 900 1000 1100 1200
Kinetic energy cutoff (eV)

-0.20

-0.15

-0.10

-0.05

0.00

T
ot

al
 f

or
ce

 (
eV

/Å
)

CASTEP

-0.04

-0.03

-0.02

-0.01

0.00

P
ul

ay
 f

or
ce

 (
eV

/Å
)

R=5.0 Å

FIG. 1. Convergence of the forces with respect to the kinetic energy cut-
off and the NGWF radius. Left: force acting on an oxygen atom in CO2
along the covalent bond. Right: force acting on a hydrogen atom in H2O
dimer along the hydrogen bond. The first row corresponds to the Hellmann-
Feynman force, the second to the Pulay force, and the third are the Pulay-
corrected (PC) total forces (Hellmann-Feynman forces plus Pulay). R refers
to the NGWF radii.

functional and employed one NGWF for hydrogen and four
for carbon and oxygen atoms.

The total forces, calculated as the sum of the Hellmann-
Feynman components and the Pulay corrections, converge to
a single value as the kinetic energy cutoff and the NGWF
radii increase, and are comparable to the results obtained with
traditional plane-wave DFT using CASTEP. The Pulay cor-
rections to the Hellmann-Feynman forces ensure a greater
degree of consistency between ground-state energies and the
total force acting on ions for any size of localization region.
The Pulay forces take a non-negligible value for small local-
ization radii, and converge to zero when the NGWFs become
larger and more delocalized. Also, they do not vanish as the
kinetic energy cutoff increases, showing the strong correla-
tion with the localization constraint. The relative strength of
the Pulay correction is greater in the case of the hydrogen
bond in the water dimer (up to 15% of the Hellmann-Feynman
force) than in the covalent bond of CO2 (3%). Therefore, Pu-
lay forces can be expected to play a more significant role in
the ionic forces of weakly bonded systems, particularly when
modeled with small NGWF radii.

Real-space grid methods can suffer from the so-called
“egg-box” effect,51, 52 which appears when the localized or-
bitals are displaced by a fraction of the grid-spacing in
the simulation cell, generating periodic oscillations of the
converged ground-state energy and forces. An estimation
of the egg-box effect in the total energy and the forces
is shown in Fig. 2. These calculations consecutively dis-
place a CO2 molecule along the first axis of the simulation
cell (parallel to the CO2 covalent bond) by a given step of
1/20 of the grid spacing of 0.24 Å. We use the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional53

with a kinetic energy cutoff of 1000 eV and NGWF radii
of 4.23 Å to ensure convergence of the forces with the
basis set. Single-zeta (SZ), double-zeta plus polarization

FIG. 2. Egg-box effect on the energy (top) and force along the covalent bond
(bottom) of a CO2 molecule with SZ (red circles), DZP (blue squares), and
TZDP (green diamonds) PAO basis sets and NGWFs (black triangles).

(DZP), and TZDP basis sets were constructed using PAOs
as described in the Appendix. The magnitude of the egg-
box effect is reduced when NGWFs are used instead of
PAOs contributing to more stability in calculations where
the ionic coordinates vary, such as geometry optimization.
The maximum variation of the energy using NGWFs is of
1.6 × 10−3 eV, which is up to ten times smaller compared
to SZ calculations. NGWFs also reduce the magnitude of the
egg-box effect on the forces to 0.01 eV/Å, nearly a third of
the magnitude in the case of SZ calculations.

B. Geometry optimization using NGWFs

We have performed geometry optimization calcula-
tions using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm54 in ONETEP to test the accuracy of the force eval-
uation in practical applications. Calculations on an adenine-
thymine DNA base pair were carried out as a first test case.
This system is weakly bound by two hydrogen bonds, O···H
and N···H, and therefore more sensitive to small variations of
the energy and forces. We performed calculations using the
PBE53 exchange-correlation functional with 1200 eV kinetic
energy cutoff. We employed one NGWF for the hydrogen
atoms and four for oxygen, carbon, and nitrogen atoms, and
various NGWF radii to test the convergence of the geometry
optimization calculations both with uncorrected Hellmann-
Feynman forces and Pulay-corrected forces. We compared the
resulting structures with those given by NWCHEM with a cc-
pVTZ Gaussian basis set and CASTEP with the same kinetic
energy cutoff and pseudopotentials. The results are shown in
Table I.

The addition of Pulay corrections to the Hellmann-
Feynman forces improves the convergence of the BFGS algo-
rithm for all the range of NGWF radii. It has a more important
effect for small localization regions, allowing relaxation of
the structure to tighter tolerance thresholds. The calculations
using uncorrected Hellmann-Feynman forces with small
NGWF radii result in a poor description of hydrogen bonding
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TABLE I. Geometry optimization of adenine-thymine using ONETEP for different localization radii Rα with HF
forces and PC forces. Results show the hydrogen bond lengths, the maximum absolute value of the force, |F|max,
and the number of BFGS steps required.

O· · · H bond (Å) N· · · H bond (Å) |F|max (eV/Å) BFGS steps

Rα (Å) HF PC HF PC HF PC HF PC

ONETEP 3.70 9.77 1.73 10.64 1.60 1.028 0.010 203 222
4.23 5.39 1.75 7.15 1.62 1.542 0.015 128 73
4.86 1.90 1.80 1.65 1.65 1.542 0.015 80 73
5.39 1.61 1.83 1.62 1.69 0.514 0.015 95 90
5.82 1.73 1.83 1.64 1.71 1.028 0.015 100 63
6.45 1.75 1.83 1.57 1.72 0.463 0.015 92 63
6.98 1.85 1.84 1.62 1.72 0.463 0.015 97 65
7.41 1.81 1.84 1.68 1.73 0.206 0.015 92 74
7.94 1.83 1.84 1.67 1.73 0.051 0.015 78 69

NWCHEM · · · 1.84 1.73 0.026 102
CASTEP · · · 1.85 1.75 0.010 88

in the adenine-thymine complex, leading to heavily distorted
geometry and unphysical configurations. In the uncorrected
case, increasing the NGWF radius eventually results in a
bound and symmetric system, although the maximum value
of the residual force remains higher than in the corrected case
after a similar number of BFGS steps. The convergence of
the maximum element of the force is plotted in Fig. 3, which
demonstrates that accuracy in the forces is crucial to achieving
efficient geometry relaxation using the BFGS method. Our
results also show that the converged geometry of the adenine-
thymine complex obtained with Pulay-corrected forces is still
sensitive to changes in the NGWF radius. Using small NGWF
localization results in overbinding of the hydrogen bonds.
As the NGWF radius increases, the geometry converges
to the optimized structures obtained with NWCHEM and
CASTEP.

We have used the relaxed structures (obtained both
with uncorrected and corrected forces) to calculate the bind-
ing energy of the adenine-thymine complex, defined as

FIG. 3. Convergence of the maximum absolute value of the force during
geometry optimization of the adenine-thymine DNA base pair with NGWF
radii of 3.70 Å (top) and 7.94 Å (bottom). The convergence threshold was
0.015 eV/Å.

Ecomplex − Eadenine − Ethymine. The first term corresponds
to the energy of the geometry-optimized complex, and
the last two are the energies of the isolated adenine and
thymine molecules, respectively. In each case, the individ-
ual molecules retain the same geometry as in the complex.
The results, represented in Fig. 4, show that the calculations
using uncorrected Hellmann-Feynman forces lead to extreme
variations and erratic convergence with increasing NGWF ra-
dius. In contrast, the structures obtained with Pulay-corrected
forces converge systematically with respect to the size of the
localization region. In this case, the binding energies converge
within 1 kcal/mol for NGWF radii larger than 5.5 Å. The
convergence of these calculations is due to the simultaneous
change of the basis set (as a result of increasing NGWF radii)
and the change in the initial structure. To determine the con-
vergence of the binding energies with respect to the basis set

FIG. 4. Convergence of the binding energy in the adenine-thymine complex
with increasing NGWF radii. The calculations that use structures obtained
with Pulay-corrected forces show systematic convergence (blue squares) with
increasing NGWF radius. In contrast, the calculations with structures ob-
tained with uncorrected Hellmann-Feynman forces (red circles) lack of con-
vergence and show large variations of the binding energy. The calculations
represented with black crosses show convergence of the binding energy with
increasing NGWF radius. They are based on fixed molecular geometries ob-
tained with Pulay-corrected forces and NGWF radius of 3.70 and 7.94 Å.
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FIG. 5. Convergence of the maximum force during the BFGS geometry op-
timization of the tennis-ball dimer using Hellmann-Feynman forces (top left
molecule) and Pulay-corrected forces (top right).

only, we chose the structures obtained with a radius of 3.70
and 7.94 Å (Pulay-corrected) and re-calculated the binding
energies for different NGWF radii. In these calculations, the
binding energy converges within 1 kcal/mol for NGWF radii
larger than 4.2 Å. Basis set superposition error is eliminated
due to the optimization of the NGWFs in terms of the psinc
basis set.55

We have also performed geometry optimization calcula-
tions in the larger system of the “tennis-ball” self-assembling
superstructure,39, 40 consisting on 176 atoms. This system is
a model for protein-ligand binding interactions, formed by
two identical structures that bind each other through eight
hydrogen bonds when rotated 90◦. We performed geom-
etry optimization calculations using the PBE53 functional,
1200 eV kinetic energy cutoff and one NGWF per hydro-
gen atom and four per oxygen, nitrogen, and carbon atoms
with NGWF radius of 3.70 Å. The results, included in
Fig. 5, show that calculations with uncorrected Hellmann-
Feynman forces result in an asymmetric complex and in
an unstable and highly oscillating minimization of the to-
tal force. On the other hand, when the Pulay corrections
are taken into account, the BFGS method converges to a
symmetric structure and a low threshold of force tolerance
(0.015 eV/Å).

C. Geometry optimization using PAOs

We performed a number of geometry optimization
calculations on the adenine-thymine DNA base pair us-
ing PAO multiple-ζ basis sets, using the same exchange-
correlation functional, pseudopotentials, and kinetic energy

TABLE II. Length of the two hydrogen bonds in the adenine-thymine com-
plex obtained with different PAO multiple-ζ basis sets of different localiza-
tion radius, R, given in Å. The total forces converged to 0.015 Å/eV.

O· · · H bond (Å) N· · · H bond (Å)

R = 3.70 R = 4.23 R = 4.86 R = 3.70 R = 4.23 R = 4.86

SZ 1.41 1.42 1.42 1.32 1.31 1.31
SZP 1.57 1.61 1.56 1.32 1.31 1.31
DZ 1.66 1.67 1.65 1.49 1.52 1.53
DZP 1.74 1.73 1.71 1.58 1.58 1.57
TZ 1.70 1.71 1.69 1.53 1.58 1.56
TZP 1.83 1.84 1.81 1.68 1.69 1.68
TZDP 1.79 1.84 1.79 1.68 1.68 1.68
QZ 1.73 1.71 1.71 1.55 1.56 1.57
QZP 1.81 1.82 1.81 1.67 1.66 1.69

cutoff than in the case of the NGWFs calculations discussed in
Sec. IV B. The results, shown in Table II, are consistent
with those obtained with NGWFs for the same radii. The
calculations with the smaller basis sets tend to overbind the
hydrogen bonds. Progressively larger basis sets result in struc-
tures that converge to those obtained with NGWFs, NWCHEM

and CASTEP, previously shown in Table I. Basis sets of
medium size such as TZP, TZDP or QZP can lead to optimum
geometries.

D. Geometry optimization of large systems

As an example of the application of the aforementioned
methods to large-scale systems, we performed a geometry
optimization calculation on a DNA fragment of 16 base
pairs consisting of 1045 atoms in vacuum. The initial
structure was created using AMBER NUCGEN56 (sequence
ATCGATTGAGCTCTAG), after which we protonated the
phosphate groups so that the total charge is zero. The
calculations were run using the PBE exchange-correlation
functional53 and a kinetic energy cutoff of 1200 eV. We used,
for each test case, NGWFs (one for hydrogen atoms, four
for oxygen, nitrogen, and carbon, and nine for phosphorus),
DZP and TZP PAO basis sets. The localization radius was
3.70 Å in all cases. In such large systems, achieving the same
degree of convergence of the total force as we would achieve
in smaller systems can be cumbersome, due to the greater
number of degrees of freedom involved in the calculation.
Therefore, we consider that a higher convergence threshold
of 0.16 eV/Å is suitable for the purpose of demonstrating that
effective structural relaxation occurs.

Figure 6 shows the convergence of the force for the
different calculations, and Table III shows the optimized
value of some relevant structural parameters and their change
throughout the calculation. The maximum value of the
force converges to the given threshold in all cases. The final
structure obtained with the DZP basis set possesses clear
differences with respect to those obtained with TZP and
NGWFs. It displays a shorter length, a smaller radius and
much shorter N···H hydrogen bonds between the base pairs.
Such observations are in agreement with the results of the
adenine-thymine complex discussed in Secs. IV B and IV C,
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FIG. 6. Convergence of the maximum value of the force during the geometry
optimization of the DNA molecule using NGWFs and DZP and TZDP PAO
basis sets.

in which the DZP basis set tends to overbind hydrogen bonds
compared to TDZP and NGWFs. These last two calculations,
on the other hand, produce very similar results.

Noticeably, the calculation with NGWFs requires fewer
BFGS steps to complete in comparison with DZP and TZDP
basis sets. This is likely to be a consequence of the more accu-
rate description of the Kohn-Sham ground state provided by
the NGWF optimization. Similarly, TZDP also requires fewer
BFGS steps than DZP due to its better degree of complete-
ness. For the basis sets used in this study, each BFGS step is
completed faster when using PAOs, as overall fewer matrix
operations are required due to the absence of the outer loop to
optimize the NGWFs. We run our calculations on 120 cores,
using 15 Intel Nehalem nodes with 8 cores each. On average
a BFGS step took 3.2 h with the DZP basis set, 7.6 h with
TZDP basis set, and 8.3 h with the NGWFs optimized in the
psinc basis set. As we can observe, the time saved per BFGS
step through the use of a PAO basis set decreases as the num-
ber of basis set functions becomes larger. For this system in
particular, using a DZP basis set is nearly twice as fast as the
corresponding NGWF calculation, while the TDZP basis set
is only marginally faster.

TABLE III. Structural parameters of the optimized 1045 atom DNA frag-
ment as optimized by ONETEP. N· · · H(4), N· · · H(8), and N· · · H(12) corre-
spond to the hydrogen bond of the fourth, eighth, and twelfth pairs, respec-
tively, that involve a nitrogen atom.

DZP TZDP NGWFs

Basis set Final Change Final Change Final Change

Length (Å) 49.74 − 1.18 50.62 − 0.35 50.50 − 0.47
Diameter (Å) 15.31 0.04 15.32 0.05 15.21 − 0.06
Helix pitch (Å) 24.05 0.34 23.63 0.08 23.55 0.16
N· · · H(4) 1.66 − 0.21 1.78 − 0.09 1.80 − 0.07
N· · · H(8) 1.48 − 0.33 1.62 − 0.19 1.67 − 0.14
N· · · H(12) 1.54 − 0.27 1.63 − 0.18 1.64 − 0.17

V. CONCLUSIONS

We have shown that the correction to the Hellmann-
Feynman forces due to the Pulay forces is essential to achieve
accuracy in the total ionic forces. Using localized orbitals op-
timized in situ in terms of a basis set that is independent of
the nuclear positions, such as psinc functions, does not elim-
inate the Pulay forces. This is due to the tendency of the ki-
netic energy gradient to delocalize the atomic orbitals which
are constrained to be strictly localized within a sphere of finite
radius. Pulay-corrected forces are consistent with the total en-
ergy after self-consistent optimization.

Geometry optimization calculations, which rely heavily
upon accurate ionic forces, yield much better results when
Pulay forces are taken into account. Molecular systems con-
taining weakly bound components are better described by the
inclusion of Pulay forces. Our method can be used for large-
scale geometry optimization calculations on systems of more
than a thousand atoms. The results converge systematically
with respect to the basis set.

The corrections due to the Pulay forces also allow calcu-
lations in which the localized orbitals are fixed during the cal-
culation to PAO. PAOs are a reliable and improvable method
to construct suitable multiple-ζ basis sets of increasing ac-
curacy. Faster geometry optimization steps are possible with
PAO basis sets of medium size.
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APPENDIX: PSEUDOATOMIC SOLVER

1. Generating valence PAOs

Initial NGWFs can be generated by performing a Kohn-
Sham DFT calculation for a pseudoatom. The pseudopotential
of a single isolated ion provides the external potential, and the
single-electron Kohn-Sham states are solved self-consistently
at fixed occupancies. The resulting states form an ideal pseu-
doatomic orbital basis for calculations on molecules or solids
with the same choice of pseudopotential and functional.

The PAOs are solutions of the Kohn-Sham equation,(
−1

2
∇2 + Vloc(r) + V̂nl

)
|ψnlm〉 = εnl|ψnlm〉, (A1)

where the Hamiltonian contains kinetic, local effective poten-
tial and nonlocal potential contributions for an isolated atom
in spherical confinement.
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The solutions to this spherically symmetric problem
comprise real spherical harmonics Zlm(θ , ϕ) multiplying a
radial part described by a basis of normalized spherical
Bessel functions Bl, ν(r) of given angular momentum l. This
choice has been made in other implementations of similar
methods.29–31 The basis functions are defined by

Bl,ν(r) = jl(ql,νr)

/ [∫ Rc

0
|jl(ql,νr)|2r2dr

]1/2

, (A2)

with ql, ν chosen such that ql, νRc are the zeros of the spherical
Bessel functions jl(x). This ensures that all the basis functions
go to zero at the cutoff radius Rc, which is chosen to coincide
with the NGWF cutoff Rα . Furthermore,

∫ Rc

0 |Bl,ν(r)|2r2dr

= 1 for all ν. The basis is made finite by including only func-
tions with a kinetic energy less than a cutoff energy Ecut. The
criterion 1

2q2
l,ν < Ecut determines the largest ν for each l.

We therefore write the PAO ψnlm(r) in terms of coeffi-
cients cnl, ν for each basis function, in the form

ψnlm(r) =
∑

ν

cnl,ν Bl,ν(r) Zlm(θ, ϕ) , (A3)

with eigenvalues εnl and occupancies fnl (which account for
spin-degeneracy). The occupancies are fixed such that they
obey the aufbau principle and sum to the number of valence
electrons. Spherical symmetry means that the occupancies of
all members of a given set of m-degenerate orbitals are equal,
so we combine the 2l + 1 degenerate states of differing m for
a given nl state into one state to be solved with the sum of the
occupancies of the shell. Henceforth, we will only consider
the radial dependence Rnl(r).

We define the local potential to be

Vloc(r) = Vpsloc(r) + VH (r) + VXC(r) + Vconf(r), (A4)

where the Hartree and XC terms are included in the standard
way, as is an optional confining potential implemented as de-
scribed in Ref. 28.

For each value of l we can define the Hamiltonian and
overlap matrices

Hl
ν,ν ′ =

∫ Rc

0
Bl,ν(r)[ĤBl,ν ′ (r)]r2dr (A5)

and

Sl
ν,ν ′ =

∫ Rc

0
Bl,ν(r)Bl,ν ′(r)r2dr, (A6)

and solve the secular equation

Hl .cnl = εnlSl .cnl, (A7)

to give the coefficients cnl, ν describing the orbitals. The or-
bitals are then evaluated on a regular radial real-space grid and
used to construct the total density. Density mixing with a vari-
able mixing parameter α is then used and the SCF cycle re-
peats until self-consistency is obtained. The result is deemed
to be converged once the Harris-Foulkes57, 58 estimate of the
total energy (the bandstructure energy) matches the total en-
ergy as determined from the density to within a tolerance of
2.7 × 10−4 eV, and the energy has stopped changing at each
iteration to within a tolerance of 2.7 × 10−6 eV.

2. Generating larger basis sets

We follow the procedure described in Ref. 30 for gener-
ating larger PAO basis sets, appropriate for calculations with
a fixed basis. Briefly, this works in two ways: first, the radial
flexibility can be improved by splitting each of the valence
orbitals into multiple zeta functions. Second, the highest l va-
lence states can be polarized using perturbation theory, to pro-
duce orbitals for higher angular momentum values than exist
in the valence states.

The former is achieved by setting fractional values Ni

of the norm, known as the “splitnorms,” which determine
matching radii rm which are then used to divide the function
into components. The matching radius corresponding to each
splitnorm is chosen such that the norm from rm to the cutoff
radius Rc is equal to the Ni. Typically, N1 	 0.15 is suitable for
most elements. The first new function matches the tail of the
original function beyond rm, and has the form rl(ai, l − bi, lr2)
for r < rm. The coefficients al and bl are chosen to match the
value and gradient at rm. A second new function is then cre-
ated by subtracting the new function from the original func-
tion and renormalizing it. This has the advantage that the sec-
ond new function is zero beyond rm and is thus shorter ranged.
This procedure can then be repeated on new functions, using
new matching radii determined from further splitnorms Ni,
where each must be smaller than the last.

Generation of higher angular momentum functions is
achieved through perturbation theory, as used extensively
elsewhere.13, 51 A valence orbital Rnl with eigenvalue εnl is
perturbed by an applied electric field in the z direction,
�V̂ = Ez. Perturbation theory then produces the first-order
change in the wavefunction �Rnl as

(Ĥ − εnl)�Rnl = −(�V̂ − �εnl)Rnl. (A8)

Since the perturbation is an odd function of z, the �εnl term is
always zero. The first-order change �Rnl only contains com-
ponents with angular momenta l + 1 and l − 1, by the dipole
selection rule. In most cases we already have angular momen-
tum l − 1 terms in the basis, so only the l + 1 term is con-
sidered, and the coefficient of this term is dropped as it only
affects the normalization (as does the field strength E).

We can expand the radial part in terms of coefficients dν

multiplying the basis functions for l + 1, as

�Rnl(r) =
∑

ν

dνBl+1,ν(r). (A9)

Multiplying through by Bl+1,ν ′ (r) and solving the resulting
matrix equation gives us

dν = (
Hl+1

νν ′ − εnlS
l+1
νν ′

)−1
Dν , (A10)

where Dν is the overlap of the basis functions with the per-
turbation. After angular integration with �V̂ ∝ −r cos θ this
gives

Dν = −
∫ Rc

0
Bl+1,ν r Rnl(r)r2dr . (A11)

The resulting wavefunctions (after renormalization) approx-
imately match the radial weight distribution of the original
functions and have the same cutoff. They thus form an ideal
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extension of the basis, suited to describing the response of the
valence states to local electric fields.

The choices of PAO basis set we employed in this work
were: SZ, with no extra functions beyond the valence orbitals,
DZ where the valence states are split into two functions, DZP,
where a set of polarization functions are added, as well as
TZ, TZP, TZDP, QZ, and QZP, involving three and four basis
functions and up to two polarization shells. SZ is generally
regarded as insufficiently accurate for meaningful results,
but typically DZP or above can be used for moderately
accurate calculations, with TZDP and above providing a
well-converged result (albeit at rather high cost).
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