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ABSTRACT: Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years,
where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the
quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular
configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and
charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into
account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum−classical (QM/MM) calculations
are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this
work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into
account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a
molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration
calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic
molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations.
The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc
basis set on over 600 atoms using the ONETEP program.

1. INTRODUCTION

Rigorous free-energy calculation approaches can provide, in
principle, exact values for the relative free energies of binding of
a set of ligands to a host. Free-energy perturbation (FEP),
thermodynamic integration, and other free-energy methods1−5

have been in use and in continuous development over the
years, motivated by important applications such as drug
optimization, where the accurate calculation of free energies
is crucial.
High-level ab initio quantum mechanical calculations should

ideally be used to describe the receptor−ligand systems in the
simulations in order to obtain an accurate and unbiased
description of all of the interactions. However, due to the large
number of atoms typically involved in free-energy calculations
and the large amount of configurational sampling required, ab
initio molecular dynamics simulations are typically not
computationally feasible, and classical molecular dynamics

simulations with force fields are most commonly used. The
accuracy of the computed free energy will be affected if the
force field Hamiltonian does not reproduce well the
intermolecular interactions. For example, polarization of the
ligand by the environment (protein or solvent) and the back-
polarization of the environment by the ligand are not normally
considered explicitly as nonpolarisable force fields are used in
most studies. Even in the case of polarizable force field
approaches, the error can be significant due to imperfections in
the polarization model or the quality of the parametrization.6

Polarization of a solute by the solvent is often implicitly
considered by using solute charges derived by a method that
overestimates the solute gas-phase charges to some extent, for
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example, RESP 6-31G* charges in the case of the AMBER 94/
99/GAFF series of force fields.
The next step in the hierarchy of methods that explicitly

include polarization is to employ a hybrid quantum mechanical
(QM)−molecular mechanical (MM) or QM/MM approach,
where a small part of the system (typically comprised of the
ligand) is described by a QM Hamiltonian and the rest of the
system by a MM Hamiltonian, and the two descriptions are
coupled in a physically suitable way.7 However, even with QM/
MM, performing direct molecular dynamics or Monte Carlo
simulations for the lengths of configurational sampling required
for free-energy calculations can be prohibitively expensive. To
overcome this limitation, approaches have been developed that
use a fast and relatively inexpensive Hamiltonian to sample the
configurational space and then, on selected configurations,
evaluate the energy with the more costly but more accurate
QM/MM Hamiltonian.8−12 The reference Hamiltonian (often
a pure MM force field) is first used to estimate the free energy,
and this estimate is then corrected by calculating the free
energies necessary to change the reference MM Hamiltonian to
the QM/MM Hamiltonian. The free-energy change from the
MM to QM/MM Hamiltonian is computed via a single-step
FEP (Zwanzig equation), using only the structural ensemble
generated from the reference MM Hamiltonian. This approach
will converge quickly only if the configurational spaces from the
MM and QM/MM ensembles have good overlap. However, in
practice, this is not guaranteed, and it cannot be predicted. In
an effort to improve the overlap of configuration spaces,
Beierlein et al.13 proposed a simpler form of the Zwanzig
equation in which only the Coulomb energy is “mutated” from
a classical to a QM/MM description. Their approach was
formulated to take into account the polarization of the ligand
by the host but not the back-polarization of the host by the
ligand because only the ligand was described by a QM
Hamiltonian. The aim of their work was to obtain reproducible,
converged free energies, without the need for closely coupled
MM and QM programs. Relative binding free energies were
obtained using classical TI, and the Coulomb terms were
corrected using QM/MM single-point energy calculations on
the MM sampled phase space.
To improve the sampling of the QM/MM ensemble, Woods

et al.14 proposed an approach that uses a Metropolis−Hastings
criterion to ensure that the correct configurational distribution
is generated for the QM/MM ensemble by accepting only
suitable MM configurations. Provided that the simulations are
run long enough for sufficient QM/MM configuration space to
be sampled, this approach can be used in a FEP context to
compute exactly the change in free energy when going from the
MM to the QM/MM description.
With the availability of programs capable of performing large-

scale QM calculations,15−18 based mainly on linear scaling
density functional theory (DFT) approaches,19,20 schemes such
as the above for QM/MM corrections to free energies have the
potential of including in the QM description far larger portions
of the system or even the entire system (therefore, a full QM
rather than QM/MM description), thus fully taking account of
electronic polarization and dispensing with the ambiguities of
interfacing a small QM region with an MM region. Toward this
goal, we explore here such an approach, and we apply it to
calculate the relative free energies of hydration of small
aromatic ligands (presented in Figure 1). The water solvent is
treated explicitly, and a large number of the water molecules
surrounding each ligand is contained within our QM

description. The theoretical and methodological details as
well as the setup of the simulations are described in section 2.
Our results are presented and discussed in section 3, and we
finish with our conclusions in section 4.

2. METHODS
2.1. ONETEP Program. The ONETEP16 program is a

linear scaling DFT code that has been developed for use on
parallel computers.21 ONETEP combines linear scaling with
accuracy comparable to conventional cubic scaling plane wave
methods, which provide an unbiased and systematically
improvable approach to DFT calculations. Its novel and highly
efficient algorithms allow calculations on systems containing
tens of thousands of atoms.22 ONETEP is based on a
reformulation of DFT in terms of the one-particle density
matrix. The density matrix in terms of Kohn−Sham orbitals is

∑ρ ψ ψ′ = * ′
=

∞

fr r r r( , ) ( ) ( )
n

n n n
0 (1)

where f n is the occupancy and ψn(r) are the Kohn−Sham
orbitals. In ONETEP, the density matrix is represented as

∑ ∑ρ ϕ ϕ′ = * ′
α β

α
αβ

βKr r r r( , ) ( ) ( )
(2)

where ϕα(r) are localized nonorthogonal generalized Wannier
functions23 (NGWFs) and Kαβ, which is called the density
kernel, is the representation of f n in the duals of these functions.
Linear scaling is achieved by truncation of the density matrix,
which decays exponentially for materials with a band gap, and
enforcing strict localization of the NGWFs onto atomic regions.
In ONETEP, as well as optimizing the density kernel, the
NGWFs are also optimized, subject to a localization constraint.
Optimizing the NGWFs in situ allows for a minimum number
of NGWFs to be used while still achieving plane wave accuracy.
The NGWFs are expanded in a basis set of periodic sinc
(psinc) functions,24 which are equivalent to a plane wave basis
as they are related by a unitary transformation. Using a plane
wave basis set allows the accuracy to be improved by changing a
single parameter, equivalent to the energy cutoff in conven-
tional plane wave DFT codes. The psinc basis set provides a
uniform description of space, meaning that ONETEP does not
suffer from basis set superposition error.25

2.2. MM Simulation Setup. We have performed
simulations of the small aromatic ligands shown in Figure 1
in water. For the setup of the MD simulations, we started from
a catechol molecule (generated in the MOE program26 and

Figure 1. Ligands used in this study.
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geometry optimized in the gas phase with the MMFF94x force
field27) and placed it in a water box containing 1545 explicit
waters in a cubic box with periodic boundary conditions in the
AMBER version 1028 package. The TIP3P model29 was used to
describe the water solvent, and the generalized AMBER force
field (GAFF)30 was used to describe the solutes.The AM1-BCC
method was used to obtain partial charges for the solutes with
the antechamber tool in the AMBER package.
To equilibrate the system, the positions of the hydrogens

were relaxed before heating the system from 100 to 300 K with
the NVT ensemble over 200 ps with positional restraints of
1000 kcal/mol Å2 on the catechol molecule. Then, we switched
to the NPT ensemble for 200 ps, keeping the positional
restraints on catechol. The system was then run for a further
200 ps with no restraints in the NVT ensemble and again
switched to NPT for 200 ps at 300 K in order to add a final
adjustment to the volume of the simulation cell and
consequently the density of the water. The simulation cell
was constrained to remain cubic, and its final volume had sides
of 36.222 Å.
At this point, it was confirmed that the water density, kinetic

energy, and potential energy had only small oscillations around
a constant value; therefore, the system was deemed to be
equilibrated. The catechol molecule was manually mutated in
the MOE program to the six other solutes in Figure 1.
Production MD simulations were started from the catechol and
these new structures (with randomly assigned initial velocities),
each containing a ligand in a water box, and run in the NVT
ensemble at 300 K for 20 ns. Snapshots were taken from the
last 18 ns of the trajectory, treating the first 2 ns as further
equilibration.
For thermodynamical consistency, we have ensured that the

same number of water molecules (1545) was used in all
simulations. Furthermore, a cubic simulation cell of length
36.222 Å was used in all simulations to ensure identical basis
sets for all subsequent ONETEP calculations. For our MD
simulations under the NVT ensemble, we used the Langevin
thermostat31 with a collision frequency of 3.0 ps−1, the particle
mesh Ewald (PME) algorithm for the long-range electrostatics,
a nonbonded cutoff of 8.0 Å, and a time step of 2 fs with the
SHAKE algorithm32 with a tolerance of 1.0 × 10−5 Å.
2.3. MM and DFT Single-Point Energy Calculation

Setup. For the MM single-point energy calculations, the GAFF
force field was used again but with a nonbonded cutoff of 13.0
Å in a cubic periodic box of length 36.222 Å. Periodic boundary
conditions were used with the standard Ewald approach to
accurately calculate the electrostatic interactions.
To reduce the computational time for the DFT calculations,

we employed an electrostatic embedding (EE) approach for
part of the system as implemented in ONETEP.33 Each QM
region was defined as the ligand (solute) and the closest 200
waters (roughly equivalent to a 9.0 Å solvation shell). All of the
remaining water molecules were treated as classical embedding
charges, where each classical atom center is represented by a
tight Gaussian charge distribution. We will thus denote our
DFT calculations from now on as “quantum mechanical with
electrostatic embedding” (QM EE). The charge given to the
classical oxygens was −0.834 e, and that for the classical
hydrogens was 0.417 e, as in the TIP3P model. NGWF radii of
4.2 Å were used for all atoms, with four NGWFs on carbon,
oxygen, and nitrogen, nine NGWFs on sulfur, fluorine, and
chlorine, and one NGWF on hydrogen. A kinetic energy cutoff
of 800 eV was used along with the PBE exchange−correlation

functional.34 Commonly used Kohn−Sham DFT exchange
correlation functionals do not account for dispersion, which is
crucial for the correct description of the interactions. Within
ONETEP, an empirical correction utilizing a damped London
potential is used in a DFT+D approach.35−37 There is a
growing number of functionals that explicitly describe
dispersion, such as the vdW-DF functionals.38−40 Also, wave-
function-based approaches, such as MP2 or CCSD(T), account
for dispersion interactions. However, both approaches are
considerably more computationally expensive than the DFT+D
approach. We are confident that our calculation parameters
produce interaction energies that are very well converged with
respect to the basis set as we have previously validated these by
comparison to Gaussian basis set calculations with very large
basis sets.33 All simulation cells were cubic and had identical
sizes, with a length of 36.222 Å as in the MM calculations, and
again, periodic boundary conditions were used with the
standard Ewald approach for the electrostatic interactions.41

2.4. TI Calculations. TI calculations were performed with
the AMBER program. Ligand starting geometries were taken
from the starting geometries for the MD simulations.
Perturbations were in the direction phenol → new ligand. A
two-step method was used, first removing the charges before
mutating atoms using softcore potentials42 for the VdW and
then adding the new partial charges. Thirty-nine evenly spaced
λ windows were used (with a λ step of 0.025). Each λ step
involved the relaxation of the entire system over 100 steps, an
equilibration step during which the temperature increased
linearly from 100 to 300 K in the NVT ensemble over 50 ps,
and finally a 200 ps production step in the NPT ensemble at
300 K.
Convergence tests were performed using 9 λ windows, 19 λ

windowns, and then finally 39 λ windows. The difference in the
calculated ΔΔG using 9, 19, or 39 windows is very small. For
example, the difference between using 19 windows or 39
windows to calculate the ΔΔG for the phenol → catechol
mutation is 0.34 kcal/mol. The error between the forward and
reverse calculations reduces from 0.04 kcal/mol for 19 windows
to 0.01 kcal/mol when using 39 windows. The maximum
difference between 9 and 39 windows is for the phenol → 2-
methylphenol mutation with 0.66 kcal/mol, which is reduced to
0.09 kcal/mol when using 19 windows. We have chosen to use
39 windows to ensure tight convergence of the calculated
energies.

2.5. MM to QM FEP.We propose that instead of using total
energies or just correcting the Coulomb energies as in the
approach by Beierlein et al.,13 we use the interaction energies,
defined as

Δ = − −−E E E ES L S L (3)

where ES is the energy of the solvent, EL is the energy of the
ligand, and ES−L is the energy of solvent−ligand complex,
following the approach described in ref 33. The MM to QM
free-energy differences will now be calculated using

Δ = − ⟨ ⟩→
− Δ −ΔG k T ln e E E k T

MM QM B
( )/

MM
QM MM

B
(4)

where ΔEQM is the interaction energy in the quantum
description (which includes also the dispersion with the DFT
+D approach) and ΔEMM is the interaction energy in the force
field description. The notation ⟨···⟩MM denotes an ensemble
average over the structures obtained from the MD simulations
with the MM force field.
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While formally in eq 4 the total energies ES−L
QM and ES−L

MM

should be used, we have found that such approaches do not
work well in practice. One of the issues is that the difference
between ES−L

QM and ES−L
MM is huge, making the direct calculation of

the exponentials in eq 4 impossible, but we can overcome this
with suitable numerical techniques.43 However, the biggest
issue is that using total energies does not produce converged
results to the level in which we are interested, and there is large
variation in the obtained free energies within the number of
snapshots that we can realistically sample with QM calculations.
On the other hand, using interaction energies produces
meaningful results as it is more suitable for the problem in
question (changes in binding). Interaction energies reduce
systematic errors (such as, for example, mismatches between
the intramolecular structure between the MM and QM
descriptions) and are also very close between the two
descriptions (on the order of a few kcal/mol), indicating a
better overlap between the MM and QM “interaction phase
spaces”. The extended thermodynamic cycles needed for the
QM-corrected calculation of relative hydration free energies are
shown in Figure 2. Because interaction energies are being used
and not total energies, changes in internal energies in going
from the MM to the QM description for the solutes in vacuum
will be taken to be zero; therefore, the ΔGL1,MM→QM,vac and
ΔGL2,MM→QM,vac terms are not included in our calculations. The
use of interaction energies, instead of total energies, is often the
preferred approach;10,13,44−46 however, it does introduce
several approximations. These are the neglect of changes in
the solute’s and solvent’s internal free energy between the MM
and QM descriptions. Effectively, this introduces the
assumption that the change in internal free energy of a solute
in going from MM to QM would be the same in both the
vacuum and solvent and would thus cancel each other when
calculating relative hydration free energies. We can assume that
this is a reasonable approximation, although the degree at
which it holds is system-dependent (for example, we would
expect a molecule such as catechol to undergo conformational
changes upon solvation, which would introduce errors in this
assumption). To quantify the error that is introduced by using
interaction energies, we would need to see how the obtained
free energies differ from the converged free energies obtained
using the total energies approach, but this is not computation-
ally feasible.

Shaw et al.47 examined the compatibility of water models
between MM and QM/MM simulations and found that TIP3P
and TIP4P both perform well while TIP5P is not at all suitable.
For efficient sampling, the overlap of the “phase space” is
crucial. In this study, we have used the well-established general
AMBER force field (GAFF). Previous work has indicated that
there is good conformational overlap between structures
generated with GAFF and ONETEP.48 The assumption of
good overlap in this work is probably an acceptable
approximation due to the small size and rigidity of the
molecules involved.
A one-step FEP based on the Zwanzig formula shown in eq 4

was used to calculate the free-energy change from the MM
thermodynamic state of the system to the QM EE state.
Snapshots were taken at equidistant time intervals from the last
18 ns of the production trajectories, and the interaction
energies were computed with MM and QM EE. In addition to
using eq 4, histograms of the interaction energy differences
were fitted to different functional forms in order to try to
minimize the errors due to finite sampling. We do not know a
priori the functional form of these distributions, but we have
attempted to use the “guesses” suggested by Nanda et al.49 One
of these choices is a Gaussian form, the results of which we
include in this paper. An example of the histogram of the
interaction energy differences for phenol is given in Figure 3
along with the fitted Gaussian to the data.

2.6. Calculation Workflow. To perform the calculations
needed for the extended thermodynamic cycle scheme of
Figure 2 with the above-mentioned techniques, the workflow of
calculations shown in Figure 4 was followed. All calculations
started from a MD equilibration of a single molecule L1
(“Equilibration” in the figure), out of which the final snapshot
was extracted and mutated into the other molecules (“Snap-
shot” in the figure). From each of these snapshots, TI
calculations were run between the solutes (“TI” in the figure)
and also separate MD simulations (“MD” in the figure) because
the dual topology TI in AMBER does not explicitly simulate
the λ = 0 and 1 points. Finally, snapshots were extracted from
the MD simulations, and their interaction energies were
computed with the MM and QM EE approaches.

Figure 2. MM → QM-corrected solute hydration free-energy cycle. Going from L1 to L2, both are described by QM via a MM alchemical mutation
from left to right. The top line depicts the molecule in the solvent (L)aq, and the bottom line depicts the molecule in vacuum (L)vac.
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3. RESULTS AND DISCUSSION
The calculated relative hydration free energies are presented in
Table 1. All calculated hydration free energies in the table are
presented with respect to the phenol molecule whose hydration
free energy has been set equal to the experimental value of

−6.62 kcal/mol. Two sets of results are presented, calculations
using the set of 90 “odd” snapshots as described in Figure 6 and
calculations using the full set of 180 snapshots. Relative
hydration free energies (“TI” in Figure 2) as obtained directly
from TI with the MM potential are shown in the column
“AMBER-TI”. The QM-corrected free energies (“ΔΔGhyd,QM”
in Figure 2) computed with the Zwanzig formula in eq 4 are
shown in the column “Zwanzig”. We also present the QM-
corrected free energies, which have been obtained from the
Gaussian fits to the probability distributions (as in Figure 3)
instead of using eq 4, in the column “Gauss”. In Table 1, we
also show the relative hydration free energies obtained by direct
calculation of the difference ΔGhyd2,QM − ΔGhyd1,QM in Figure 2
using the minimal parameter implicit solvation model of
ONETEP,50 shown in column “ONETEP IS”. These implicit
solvent calculations were performed only on the set of 90 odd
snapshots as the obtained hydration free energies are simple
averages of the solvent model hydration free energy for each
snapshot and converge rather rapidly and predictably (the
convergence error in these values is less than 0.1 kcal/mol). As
reference values “SMD (exp)”, we use the hydration free energy
obtained from implicit solvation calculations with the SMD
model.51 These calculations were performed with the
Gaussian0952 program at the M052x/6-31G(d) SCRF-
(IEFPCM,Solvent=Water,SMD) level on a single geometry-
optimized structure. Experimentally determined hydration free
energies are available for phenol,53 toluene,53 thiophenol,53

catechol,54 2-methylphenol,55 and 3-chlorophenol56 and are
included in brackets, while for 2-fluoroaniline, we do not have
experimental data available. The errors for these calculations are
estimated in Table 2 and discussed later.
For small mutations in the solutes, as with the molecules in

this study, the standard TI approach predicts the relative
hydration free energies well and has a very good correlation
with experiment, with an R2 value of 0.98. The largest error
seen for the MM TI results is 1.4 kcal/mol (for toluene) with a
mean unsigned error of 0.9 kcal/mol and a rms error of 0.9
kcal/mol. As TI is among the most theoretically rigorous free-
energy approaches for including the entropic component of the
free-energy change, the good results in Table 1 (under the
assumption that entropy changes are captured correctly by the
TI) would imply that the enthalpic component is well described
for these molecules, or in other words, for these cases, the force
field describes the solute−solvent interactions well.
For the 90 and 180 snapshots results with the Zwanzig

equation, the trend that we observe is that when the AMBER
TI values deviate by more than ∼kBT (about 0.6 kcal/mol)
from the experimental value, QM offers an improvement, while

Figure 3. Histogram of interaction energy differences for phenol from
the calculation using 180 snapshots. The Gaussian function fitted to
the histogram is also shown.

Figure 4. Workflow of calculations. All calculations started from a MD
equilibration of a single solute L1, out of which the final snapshot was
extracted and mutated into the other solutes. From each of these
snapshots, TI calculations were run between the solutes and also
separate MD simulations. Finally, snapshots were extracted from the
MD simulations, and their interaction energies were computed with
the MM and QM EE approaches.

Table 1. Hydration Free Energies Relative to the Phenol Experimental Hydration Energy Using 90 and 180 Snapshots in the
MM to QM FEPa

ligand Zwanzig-90 Zwanzig-180 Gauss-90 Gauss-180 AMBER-TI ONETEP ISb SMD (exp)

catechol −9.34 ± 1.26 −9.63 ± 0.62 −12.66 −11.60 −8.66 −9.73 −9.3 (−9.4)
toluene −0.84 ± 1.05 −0.97 ± 0.55 −1.45 −0.68 −2.29 −1.46 −1.3 (−0.9)
3-chlorophenol −6.59 ± 1.03 −7.32 ± 0.69 −8.00 −7.25 −6.77 −6.53 −6.7 (−6.6)
2-fluoroaniline −5.05 ± 1.05 −5.10 ± 0.58 −4.84 −4.66 −5.83 −6.04 −4.5 (--)
2-methylphenol −6.50 ± 1.06 −6.81 ± 0.57 −9.00 −7.80 −6.52 −6.04 −6.3 (−5.9)
thiophenol −4.86 ± 1.45 −4.75 ± 1.02 −11.34 −6.12 −3.39 −2.84 −2.3 (−2.6)
phenol (ref) −6.62 ± 0.67 −6.62 ± 0.36 −6.62 −6.62 −6.62 −6.62 −6.6 (−6.6)

aThe errors in the “Zwanzig-90” and “Zwanzig-180” columns are calculated from bootstrapping the data. Comparisons are made to hydration
energies from Gaussian SMD calculations and experimental values where available. Energies are given in kcal/mol. bUsing only 90 snapshots.
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when the MM TI result is already very good, the QM
correction does not make it worse (we should note that for 3-
chlorophenol and 2-methylphenol, the QM-corrected results
appear worse than the MM TI, but they are within the
estimated error of the experimental result). There is a notable
exception to this trend for the case of thiophenol, whose value
is made much worse when the QM correction is applied. The
source of this error is hard to pinpoint; it could be due to an
inadequate description of the interactions of thiophenol with
the chosen exchange−correlation functional or the inadequate
configurational sampling, which is discussed later. However,
even with this exception, it is remarkable that we get a notable
improvement for the rest of the solutes, which should be due to
the fact that the QM EE approach includes the full electronic
charge transfer and polarization, which cannot be described
explicitly with the force field. The results from the Zwanzig
equation using 180 snapshots agree less with the experimental
values; however, the trends that we noticed with the 90
snapshots remain, and the less good agreement has to be
attributed to the errors in the convergence of the exponential
averaging in the Zwanzig equation, which implies that at 90
snapshots, the Zwanzig equation has not converged. This is
supported by the fact the bootstrap errors are almost twice as
large as those for 180 snapshots. The reduced error for 180 is
promising, but we see that it is still not converged. Given more
computational resources, a greater number of snapshots could
be obtained to investigate convergence more thoroughly.
The Gaussian fit values show no improvement over standard

TI using 90 or 180 snapshots, simply indicating that a Gaussian
function is not suitable for representing these distributions. The
ONETEP implicit solvation results appear to be surprisingly
accurate and substantially better for thiophenol, reducing its
error by an order of magnitude to 0.2 kcal/mol. This better
result can be attributed to the fact that in the ONETEP IS
calculation, we consider the averaged interaction of the
molecule with the continuum describing the solvent. In this
case, the interaction terms (electrostatic, dispersion, and
entropic) have less direct dependence on the exchange−
correlation functional than those in the Zwanzig interaction
energy approach, which is based on the interaction energies
with explicit water molecules.
The convergence of the MM to QM correction of eq 4 as a

function of increasing the number of snapshots in the average is
an important point that we need to consider, as shown in
Figure 5. We observe the well-known “sawtooth”57 behavior
due to the fact that certain snapshots can have a significant
influence on the free-energy value. Even though the energy
appears to be converging, with a variation of less than 0.5 kcal/
mol during the last 10 snapshots, we have no guarantee that
there is not going to be another large drop if we are able to

increase our sampling to a larger number of snapshots. This is a
consequence of the exponential form of the Zwanzig equation,
where the tails of the energy distribution dominate the average
and produce unpredictable convergence behavior.
To obtain estimates of the degree of convergence of our MM

→ QM free-energy corrections (eq 4), the standard deviation
for each solute was calculated by three different approaches, as
presented in Table 2. The first approach consists of splitting up
the 180 snapshots into four sets of 90 snapshots, as shown in
Figure 6. The second approach selects 50, 66, or 90% of the
snapshots 10 times and calculates the standard deviation from
the ΔGMM→QM values obtained. Finally, we have also performed
resampling by bootstrapping the data.58 This approach takes
180 snapshots with replacements (i.e., a particular snapshot can
occur more than once in each resampled set of 180) and
calculates the standard deviation of 100 such resamples. For the
Gaussian fits, only the first approach was used.
For results obtained using eq 4, we observe that the standard

deviation is ∼0.4 kcal/mol or less for each molecule, except
thiophenol. This suggests that our free-energy results for
thiophenol are more likely to contain larger errors than the rest
of the solutes, and more extensive sampling would ideally be
needed for this molecule. The values in Table 2 can give us an
indication of the sensitivity of the free-energy corrections to the
selection and number of snapshots. Although they cannot
guarantee that there will not be any more abrupt jumps in the
free energies as in Figure 5 were we to increase our sample size
to more than 180 snapshots, they do give us an indication of
the variability of free energies calculated for sizes of samples of
the order that we have used here. For example, we have
observed that the hydration free energies that are obtained by

Table 2. Standard Deviation (in kcal/mol) of the MM → QM Correction (eq 4) for Each Solute, Calculated in Three Waysa

catechol 3-chlorophenol 2-fluoroaniline 2-methylphenol phenol thiophenol toluene

Gaussian fit 0.64 0.35 0.17 0.69 0.36 2.72 0.20
Zwanzig 0.11 0.28 0.24 0.02 0.39 1.70 0.22
50% 0.15 0.44 0.31 0.15 0.41 0.92 0.23
66% 0.21 0.14 0.18 0.18 0.37 0.47 0.11
90% 0.08 0.16 0.05 0.05 0.19 0.04 0.02
bootstrapping 0.26 0.33 0.22 0.21 0.36 0.66 0.19

a(1) Generated from four sets of 90 snapshots (50% of data points), as shown in Figure 6. This was done using the Zwanzig equation and the
Gaussian fit. (2) Data generated by taking a random 50, 66, or 90% of the original 180 snapshots, 10 times, on only the Zwanzig data. (3)
Bootstrapping, taking 180 snapshots with replacements from the original 180 snapshots, 100 times, on only the Zwanzig data.

Figure 5. Convergence of the MM → QM free-energy change as a
function of the number of snapshots included in the average.
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using the averages of the resampling approaches 2 or 3 differ
from those of the “Zwanzig-180” column of Table 1 by less
than 0.1 kcal/mol, which is encouraging. With the Gaussian fit
approach, generally larger deviations are observed in Table 2
for the solutes, being up to 0.7 kcal/mol, except again for
thiophenol, which has a much larger error of 2.7 kcal/mol.

4. CONCLUSIONS
In this study, we have used an extended free-energy cycle with
the aim of obtaining relative hydration free energies from large-
scale DFT calculations (with more than 600 atoms) within a
theoretical framework (one-step FEP) that at least in principle
fully accounts for the entropic contributions to free energy. Our
aim with this approach was to add a correction to the relative
free energies obtained from a standard TI procedure with a
classical force field in such a way as to obtain the free energies
that would have been obtained if the TI simulations had been
performed throughout by DFT calculations. Using DFT has the
obvious advantage that the electronic degrees of freedom are
explicitly included in the calculation and thus fully account for
the energetic contribution of the electronic charge transfer and
polarization that takes place in molecular association events.
Although an improvement of free energies calculated with

our approach toward the experimentally measured values would
be ideal, this may not always be possible. The results from the
Zwanzig equation converge, in the limit of a large number of
snapshots, to the QM hydration free energy. Even if no other
sources of error are encountered, the obtained relative free
energies would be subject to errors in the description provided
by DFT, such as the quality of the exchange−correlation
functional, the pseudopotential, and the basis set (although, in
this case, we are fairly confident that we have used a large, very
accurate basis set). We have applied our approach to calculate
the relative hydration free energies of small aromatic molecules,
and we have found that in most cases, we obtain improvements
over the values produced with the classical force field. However,
the improvements are not universal, as in the case of
thiophenol, and our analysis shows a much larger deviation.
This indicates that the number of snapshots sampled is not

enough or that there is poor overlap between the MM and QM
EE Hamiltonians. A future extension to this work would be to
explore the compatibility of the QM and MM description, with
modifications of the force field to improve the overlap between
the descriptions.
The free-energy calculations reported here rely on the use of

the Zwanzig equation, which, due to the exponential averaging,
is notoriously difficult to converge and can be heavily affected
by rare configurations. Even though we see a degree of
convergence to well within chemical accuracy (less than 0.5
kcal/mol) with respect to the number of snapshots sampled for
our largest sets of 180 configurations, there is no guarantee that
additional sampling may not yet access a new rare configuration
that could cause a substantial change in the calculated free
energies. We should also keep in mind that we have used here
rather rigid molecules; therefore, for larger and more flexible
species, the number of configurations that will need to be
included in the sampling process will need to be larger.
On the other hand, this process is “trivially parallel”;

therefore, given sufficient computational resources, a signifi-
cantly larger number of configurations would be possible to
sample with DFT calculations. Our DFT calculations were
performed with the ONETEP code, which is already capable of
doing large-scale DFT calculations on entire protein ligand
complexes; however, for this method to be used for the
computation of relative protein−ligand free energies of binding,
more research is needed. The next step would be to apply this
approach to model binding sites and to explore both the effect
of significantly increasing the number of configurations
evaluated with the DFT approach as well as investigating the
compatibility of the exchange−correlation functional with the
classical potential used. We are currently investigating such
model systems toward developing large-scale DFT calculation
methods that can be used for the final stages of refinement in
computational drug optimization.
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