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A new method for finite-temperature density functional theory calculations which significantly in-
creases the number of atoms that can be simulated in metallic systems is presented. A self-consistent,
direct minimization technique is used to obtain the Helmholtz free energy of the electronic system,
described in terms of a set of non-orthogonal, localized functions which are optimized in situ using
a periodic-sinc basis set, equivalent to plane waves. Most parts of the calculation, including the de-
manding operation of building the Hamiltonian matrix, have a computational cost that scales linearly
with the number of atoms in the system. Also, this approach ensures that the Hamiltonian matrix has
a minimal size, which reduces the computational overhead due to diagonalization, a cubic-scaling op-
eration that is still required. Large basis set accuracy is retained via the optimization of the localized
functions. This method allows accurate simulations of entire metallic nanostructures, demonstrated
with calculations on a supercell of bulk copper with 500 atoms and on gold nanoparticles with up to
2057 atoms. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817001]

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT)1, 2 is
broadly used for atomistic simulations in the quantum scale to
accurately predict the electronic, optical, structural, and other
properties of a wide range of molecules and materials. Plane-
waves3 are the natural choice of basis set functions to study
crystalline and periodic systems. Programs such as CASTEP,4

VASP,5 QUANTUM ESPRESSO,6 or ABINIT7 use plane-waves
and pseudopotentials for the core electrons, while programs
such as GPAW8 also use plane-waves and the all-electron pro-
jector augmented-wave method.9 Other choices of basis sets,
such as Gaussian functions,10–12 Slater-type orbitals,13 or nu-
merical orbitals,14–20 are also available for organic or metallic
materials. The cost of traditional KS-DFT scales as O

(
N3

)
with the number of atoms in the system, N, which typically
limits the range of systems that can be simulated. Never-
theless, linear-scaling KS-DFT approaches,21 in which the
cost scales as O (N ), have been developed for insulators and
semiconductors, based on the principle of nearsightedness
of the electronic matter.22, 23 Programs such as ONETEP,24

CONQUEST,25 SIESTA,26 OPENMX,27 or BIGDFT28 use this
approach to perform calculations on tens of thousands of
atoms. In spite of this, calculations on metallic systems re-
main limited by their cubic-scaling behavior, requiring either
a small number of atoms or large computational resources.
Some examples of recent KS-DFT studies on metallic com-
pounds are nanoparticles for catalytic processes,29–31 interac-
tions at metallic surfaces,32–34 and characterization of alloys
and amorphous materials.35–37

In practise, simulations on metals are more difficult than
on insulators or semiconductors. Self-consistent approaches
can suffer the phenomenon of level crossing5 due to the lack

a)Electronic mail: C.Skylaris@soton.ac.uk

of a band-gap in the vicinity of the Fermi level. Mermin’s ex-
tension of DFT to finite-temperature statistical ensembles,38

and the subsequent development of finite-temperature KS-
DFT,39 allowed calculations on metals to be performed effi-
ciently. Within this formalism, the KS states have occupan-
cies determined by a probability distribution regulated by a
constant electronic temperature. This nondeterministic view
of the occupancies results in an entropy term that must be
taken into account. The Helmholtz free energy combines the
KS energy and the entropy in a single functional that obeys the
variational principle. A process to find the KS ground state
by minimizing the free energy self-consistently can now be
envisaged, commonly using either density mixing5, 40, 41 or di-
rect minimization techniques.42–45

In this work, the new method for performing finite-
temperature KS-DFT calculations on large metallic systems
with the ONETEP program,24 using a direct free energy min-
imization technique, is presented. The algorithm follows the
two nested loop approach of Marzari et al.44 to minimize the
free energy functional with respect to the occupancies in a
non-diagonal representation and a set of non-canonical or-
bitals. However, for the inner loop, the present implementa-
tion follows the method of Freysoldt et al.45 based on a line-
search in the space of non-diagonal Hamiltonian matrices.
Most importantly, the implementation described in this work
uses localized non-orthogonal functions optimized in situ,
instead of non-canonical, delocalized orbitals.46–50 Within
the formalism of ONETEP, the KS orbitals are expanded
in terms of a minimal set of non-orthogonal generalized
Wannier functions (NGWFs)51 which are strictly localized
within spheres in real space and are variationally optimized
in terms of a basis set of periodic-sinc (psinc) functions.52

The psinc functions are equivalent to a plane-wave basis set,
and allow the core electrons to be efficiently described with
pseudopotentials.

0021-9606/2013/139(5)/054107/8/$30.00 © 2013 AIP Publishing LLC139, 054107-1
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The localization constraint ensures that the matrix repre-
sentation of operators such as the Hamiltonian is sparse, facil-
itating the use of efficient, highly parallel sparse algebra rou-
tines to achieve linear-scaling computational cost on most of
the parts of the algorithm.53 The exception is the diagonaliza-
tion of the Hamiltonian matrix, which remains cubic-scaling.
However, the idea behind this method, following the advances
by Fattebert and Bernholc,50 is that, with the use of strictly
localized functions, the dimensions of the Hamiltonian ma-
trix are reduced to the minimum, and as a result, the over-
head due to diagonalization of the Hamiltonian is also min-
imum. The immediate consequence of this approach is that
the largest computational effort is shifted towards the parts of
the algorithm that are linear-scaling, and chemical accuracy is
achieved with the in situ optimization of the NGWFs. As the
number of atoms in the system increases, the diagonalization
step starts to be more expensive, and eventually it will dom-
inate the calculation. Parallel eigensolvers such as those in-
cluded in the ScaLAPACK package50, 54 have the potential to
distribute the computational and memory requirements over a
large number of processors. The tests presented in this work
show that the crossover point is in the range of a few thou-
sand atoms on a relatively modest number of processors. This
is a favourable result that enables calculations on large metal-
lic systems of many thousands of atoms to be achieved, at a
computational cost that is significantly reduced with respect
to most traditional cubic-scaling KS-DFT approaches.

This work is structured as follows. In Sec. II, the prin-
ciples of finite temperature KS-DFT are outlined. Then, in
Sec. III, the approach based on the expansion of the KS or-
bitals in terms of NGWFs, and its implementation in the
ONETEP program, are described. Section IV offers a detailed
description of the algorithm for direct minimization of the
Helmholtz free energy functional, which employs two nested
loops to find the KS ground-state in an iterative, variational
manner. Section V includes the results. First, the performance
of the algorithm with increasing number of atoms in the sys-
tem is studied. Then, the results of validation tests are shown.
These include calculations on a small Pt nanoparticle and on
periodic bulk Cu with 500 atoms in the simulation cell, for
which very good agreement with the results obtained with
the CASTEP4 program is demonstrated. To conclude, a series
of calculations on Au cuboctahedral nanoparticles of up to
2057 atoms were successfully completed using the method
presented in this work.

II. FINITE-TEMPERATURE KS-DFT

At the ground state, a system of Ne interacting electrons
satisfies the KS equation

Ĥ |ψi〉 = εi |ψi〉 , (1)

where {|ψi〉} are orthonormal KS states, {εi} are the energy
eigenvalues, and Ĥ is the Hamiltonian operator given by

Ĥ = T̂ + V̂ext + V̂H [n] + V̂XC [n] . (2)

In this equation, T̂ is the kinetic energy operator, V̂ext

is the external potential operator, V̂H [n] is the Hartree op-
erator, and V̂XC [n] is the exchange-correlation operator, re-

spectively. The last two terms depend explicitly upon the elec-
tronic density, n(r), defined as

n (r) =
∑

i

fiψi (r) ψ∗
i (r) , (3)

where {fi} are the occupancies associated to {|ψi〉}. The val-
ues of {fi} are calculated as a function of {εi}, following the
aufbau principle, according to the Fermi-Dirac distribution

fi (εi) =
(

1 + exp

[
εi − μ

kBT

])−1

, (4)

where T is a finite electronic temperature, μ is the Fermi level,
and kB is the Boltzmann constant. The entropy associated to
this distribution depends entirely on {fi}:

S[{fi}] = −kB

∑
i

[fi ln fi + (1 − fi) ln (1 − fi)]. (5)

The Helmholtz free energy functional combines the KS
energy and the entropy in a single functional defined as

A [T; {εi} , {|ψi〉}] =
∑

i

fi 〈ψi |T̂ + V̂ext |ψi〉 + EH [n]

+ EXC [n] − TS[{fi}], (6)

where EH[n] and EXC[n] are the Hartree energy and the
exchange-correlation energies, respectively. Since the occu-
pancies {fi} are calculated as a function of {εi}, the Helmholtz
free energy, A [T; {εi} , {|ψi〉}], is considered to be a func-
tional of {εi} and {|ψi〉} only.

III. IMPLEMENTATION IN ONETEP

In the implementation in ONETEP,24 a finite set of Nb

energy bands, {|ψi〉}, are expanded in terms of a set of Nb

linearly independent NGWFs,51 {|φα〉}, as

|ψi〉 = |φα〉 Mα
i, (7)

where {Mα
i} are the expansion coefficients. The Einstein sum-

mation convention over repeated Greek indices is assumed.
The elements of the overlap matrix corresponding to {|φα〉}
are calculated with the inner product

Sαβ = 〈φα|φβ〉 =
∫

dr φ∗
α (r) φβ (r) , (8)

while the elements of the inverse overlap matrix {Sαβ}
are obtained using an iterative technique.55 Left-multiplying
Eq. (7) with 〈φβ | and re-ordering terms, it follows:

Mα
i = Sαβ 〈φβ |ψi〉 . (9)

Equation (7) can be seen as a change of representation
from {|ψi〉}, in which the Hamiltonian Ĥ is diagonal, to
{|φα〉}, in which Ĥ is not diagonal. The transformation gener-
ated by {Mα

i} is not unitary as it transforms from an orthonor-
mal to a non-orthogonal representation. The KS equations are
written in the NGWF representation as

HαβMβ
i = SαβMβ

iεi, (10)
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where {Hαβ} are the elements of the Hamiltonian matrix, de-
fined as

Hαβ = 〈φα|Ĥ |φβ〉 = Sαγ

Nb∑
i

(
Mγ

iεiM
†δ
i

)
Sδβ. (11)

Equation (10) corresponds to a set of Nb eigenvalue problems
which are entirely defined if {Hαβ} and {|φα〉} are known.
The eigenvalues {εi} and the eigenvectors {Mα

i} can be ob-
tained simultaneously with an explicit diagonalization of the
Hamiltonian matrix. The occupancies {fi} are calculated as a
function of {εi} using Eq. (4). Therefore, the Helmholtz free
energy becomes a functional of {Hαβ} and {|φα〉}:

A[T; {Hαβ}, {|φα〉}] = Kαβ 〈φβ |T̂ + V̂ext |φα〉 + EH [n]

+ EXC[n] − TS[{fi}], (12)

where {Kαβ} are the elements of the density kernel matrix,
defined as

Kαβ =
Nb∑
i

Mα
ifiM

†β
i . (13)

The electronic density is written in the NGWF representation
as

n (r) = φα (r) Kαβφ∗
β (r) . (14)

The NGWFs {|φα〉} are represented in real space as a lin-
ear combination of Np psinc functions, {Dp(r)}, centered on
the points with coordinates {rp} of a uniform computational
grid:52

φα(r) =
Np∑
p=1

Dp (r) cpα, (15)

where {cpα} are the coefficients of the linear expansion. The
psinc functions are related to plane-waves via a unitary trans-
formation, and the basis set resolution can be systematically
controlled by varying the plane-wave kinetic energy cutoff.52

The core electrons are described with norm-conserving pseu-
dopotentials. The NGWFs {|φα〉} are constrained to be strictly
localized in real space within spheres of radii Rα centered on
the atomic nuclei.51 Strict localization is maintained by con-
straining the coefficients {cpα} to be zero outside the local-
ization spheres. This is a well-controlled approximation, in
the sense that the description of the problem with localized
NGWFs converges to the description with fully delocalized
orbitals in the limit of increasingly large radii.47, 48

The force acting on an atom I at the KS ground state is
the derivative of the free energy functional with respect to the
position vector of the nucleus of that atom, RI. The total force
is equal to the sum of the Hellmann-Feynman56–58 and Pulay
terms:59, 60

FI = 〈φα| ∂Ĥ

∂RI
|φβ〉 + 〈∂φα

∂RI
|Ĥ |φβ〉 + 〈φα|Ĥ |∂φβ

∂RI
〉. (16)

Many studies61–63 prove that there is no extra term due to the
fractional occupancies or the entropy term if the occupancies
follow the Fermi-Dirac distribution.

IV. DIRECT FREE ENERGY MINIMIZATION

The approach to minimize the Helmholtz free energy
functional presented in this work consists of two nested loops,
following the Ensemble-DFT method developed by Marzari
et al.44 First, the inner loop minimizes A[T; {Hαβ}, {|φα〉}]
with respect to {Hαβ}, for a constant set of {|φα〉}.45 Once
the inner loop is finished, an outer loop minimizes a projected
functional

A′ [T; {|φα〉}] = min{Hαβ}
A[T; {Hαβ}, {|φα〉}] (17)

with respect to {|φα〉}. Both the inner and outer loop use a
self-consistent direct minimization approach that ensures con-
vergence towards the KS ground-state at every step and com-
pletely removes charge sloshing effects.64

A. Inner loop

For the inner loop, the method developed by Freysoldt
et al.,45 based on a line-search algorithm in the space of non-
diagonal Hamiltonian elements, {Hαβ} was found to offer sig-
nificant numerical benefits. An approach of this type ensures
that only the Hamiltonian matrix has to be diagonalized. The
eigenspectra of {Hαβ} (the set of energy eigenvalues {εi})
is not compressed within a particular range of real values,
and degenerate states appear in few subgroups which are or-
thonormal to each other. Reorthonormalizing each subgroup
independently does not require extensive computational re-
sources and makes the process suitable for large calculations
with parallel eigensolvers. Also, such an algorithm allows the
occupancies to be calculated from the energy eigenvalues,
and not the other way around. Therefore, the aufbau princi-
ple holds at all times.

At iteration m of the inner loop, the Hamiltonian matrix
is first diagonalized as

H
(m)
αβ Mβ (m)

i = SαβMβ (m)
i ε

(m)
i , (18)

after which degenerate eigenstates are orthonormalized with
the Löwdin symmetric orthonormalization method.65 The oc-
cupancies {f (m)

i } are calculated using Eq. (4), and the entropy
term S(m) is calculated from {f (m)

i } using Eq. (5). The new
density kernel is built as

Kαβ(m) =
Nb∑
i

Mα (m)
i f

(m)
i M

†β(m)
i , (19)

and the electronic density n(m) (r) is updated as

n(m) (r) = φα (r) Kαβ(m)φ∗
β (r) . (20)

The density-dependent components of the Hamiltonian
V̂H [n(m)] and V̂XC[n(m)] are updated and the Helmholtz free
energy functional A(m) is evaluated. A new Hamiltonian ma-
trix of elements {H̃ (m)

αβ } is constructed as

H̃
(m)
αβ = 〈φα|T̂ + V̂ext + V̂H [n(m)] + V̂XC[n(m)]|φβ〉 . (21)

The values of {H̃ (m)
αβ } are used to define a search direc-

tion {
(m)
αβ } in the multidimensional space of non-diagonal
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Hamiltonian matrix elements as



(m)
αβ = H̃

(m)
αβ − H

(m)
αβ . (22)

The Hamiltonian matrix H
(m)
αβ is updated as

H
(m+1)
αβ = H

(m)
αβ + λ


(m)
αβ . (23)

The choice of this search direction is similar to the choice
of search directions in the algorithms by Marzari et al.44

and Freysoldt et al.45 The above equation can be recast into
H

(m+1)
αβ = (1 − λ)H (m)

αβ + λH̃
(m)
αβ , where λ acts as an optimal

damping parameter that has been chosen with the purpose of
minimizing the free energy functional. The parameter λ is cal-
culated using a second-order polynomial fitting of the free en-
ergy functional after evaluating A[T; {Hαβ}, {|φα〉}] along the
search direction 


(m)
αβ at λ = 0 and at two trial steps in the

range [0, 1]. Occasionally, in the very first iterations, a third-
order polynomial fitting may be required. Rarely, a fourth-
order polynomial can be necessary. The algorithm quickly
falls into the parabolic regime. The minimum is reached
when the commutator [H (m+1)

αβ ,Kαβ(m)], which is zero at self-
consistency, falls below the pre-selected tolerance threshold.
Typically, 3–5 inner loop iterations are required per outer loop
iteration.

B. Outer loop

The outer loop optimizes {|φα〉},47–51 with fixed {Hαβ} by
minimizing the projected free energy functional A′[T; {|φα〉}].
At iteration l of the outer loop, the derivative of A′(l) with
respect to 〈φ(l)

β | is

|�β(l)〉 = δA′(l)

δ
〈
φ

(l)
β

∣∣ = Ĥ (l)
∣∣φ(l)

γ

〉
Kγβ. (24)

Orthonormality of the KS states {ψ i}, as described by the
NGWFs, can be imposed to first order by projecting out the
components of |�β(l)〉 that are parallel to all |φ(l)

γ 〉, resulting in
the expression3, 66

|�̃β(l)〉 = Ĥ (l)
∣∣φ(l)

γ

〉
Kγβ − ∣∣φ(l)

γ

〉
KγδH

(l)
δν Sνβ(l). (25)

The covariant tensorial nature of the NGWFs67 is taken into
account by right-multiplying Eq. (25) with S

(l)
βα , leading to

|�̃(l)
α 〉 = Ĥ (l)

∣∣φ(l)
γ

〉
KγβS

(l)
βα − ∣∣φ(l)

γ

〉
KγδH

(l)
δα . (26)

Occupancy44 and kinetic energy preconditioning68 can be ap-
plied to |�(l)

α 〉, resulting in∣∣
̃(l)
α

〉 = −P̂
[
Ĥ (l)

∣∣φ(l)
α

〉 − ∣∣φ(l)
β

〉
Sβγ (l)H (l)

γα

]
, (27)

where P̂ is a generic kinetic energy preconditioning operator3

and the leading minus is a consequence of the “downhill” up-
date of the steepest descent method. The vector |
̃(l)

α 〉 does
not yet account for the localization constraint of the NGWFs.
|
̃(l)

α 〉 is represented in the psinc basis set as


̃(l)
α (r) =

Np∑
p=1

Dp (r) d̃ (l)
pα, (28)

where
{
d̃ (l)

pα

}
are the expansion coefficients. The non-zero el-

ements corresponding to grid points outside the localization
sphere are projected out as

d (l)
pα =

{
d̃ (l)

pα, | Rα − rp |< Rα

0, | Rα − rp |≥ Rα.
(29)

The resulting vectors |
(l)
α 〉 are the steepest descent search di-

rections, represented in terms of the psinc basis set as


(l)
α (r) =

Np∑
p=1

Dp (r) d (l)
pα. (30)

The conjugate gradients search direction |χ (l)
α 〉 is obtained by

conjugating |
(l)
α 〉 to |χ (l−1)

α 〉:
∣∣χ (l)

α

〉 = ∣∣
(l)
α

〉 + 〈�̃β(l)
∣∣
(l)

β

〉
〈�̃γ (l−1)

∣∣χ (l−1)
γ

〉 ∣∣χ (l−1)
α

〉
. (31)

Convergence of the outer loop is judged by monitoring the
slope along the search direction 〈�̃α(l)|χ (l)

α 〉, which is zero at
self-consistency, indicating that the minimum along the tra-
jectory in the free energy surface compatible with the con-
straint of localization of {|φα〉} has been reached. If self-
consistency is not yet achieved, the NGWFs are updated as

∣∣φ(l+1)
α

〉 = ∣∣φ(l)
α

〉 + η
∣∣χ (l)

α

〉
, (32)

where η is the optimal step-length obtained using a second-
order polynomial fitting of A′[T; {|φα〉}] along the search
direction |χ (l)

α 〉 (a third-order polynomial fitting is rarely
needed). The algorithm continues by updating the overlap and
inverse overlap matrices {S(l+1)

αβ } and {Sαβ(l+1)}, respectively.
The transformation {Mα

i} must be represented in terms of the
new NGWFs, {|φ(l+1)

α 〉}, for consistency. Combining the clo-
sure relation

Î = ∣∣φ(l+1)
α

〉
Sαβ(l+1)

〈
φ

(l+1)
β

∣∣ (33)

and the expansion of the KS states in terms of the previous
NGWF representation

|ψi〉 = ∣∣φ(l)
α

〉
Mα

i, (34)

it is obtained that

M̃α
i = Sαβ(l+1)

〈
φ

(l+1)
β

∣∣φ(l)
γ

〉
Mγ

i. (35)

The density kernel is rebuilt as

K̃αβ =
Nb∑
i

M̃α
ifiM̃

†α
i , (36)

followed by the update of the electronic density:

n(l+1) (r) = φ(l+1)
α (r) K̃αβφ

∗(l+1)
β (r) , (37)

and the density-dependent terms V̂H [n(l+1)] and V̂XC[n(l+1)].
The projected functional A′(l+1) is evaluated, following the
update of the Hamiltonian before re-entering the inner
loop. The two-nested-loop approach is repeated to self-
consistency until convergence to the desired tolerance thresh-
old is achieved.
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V. RESULTS AND DISCUSSION

A. Scaling with the system size

A key feature of the approach presented in this work is
the use of NGWFs. As a consequence of the strict spherical
localization constraints imposed on {|φα〉}, most of the over-
lap {Sαβ} and Hamiltonian {Hαβ} matrix elements are zero.
Therefore, both matrices are sparse, allowing the custom-
built, highly parallel, optimized sparse algebra routines in-
cluded in the ONETEP program53 to be utilized. The cost of al-
gebraic operations with sparse matrices scales as O (N ) with
the number of the atoms in the system, N. Additionally, the
cost of fast Fourier transforms (FFTs) also scales as O (N )
with the use of the FFT-box technique.52, 69 As a result, many
essential steps of the algorithm such as updating the electronic
density on a grid, updating the Hamiltonian elements, or cal-
culating the NGWF gradient can be performed at O (N ) cost
(linear-scaling).

However, the computational cost and memory require-
ments to diagonalize the Hamiltonian is O

(
N3

)
. Therefore,

the overall scaling of the algorithm is also O
(
N3

)
(cubic-

scaling). The strategy followed in this work is not of avoiding
the diagonalization step, but rather of reducing its impact on
performance. The NGWFs are essential to this goal. The set of
{|φα〉} contains a minimal number of functions which are used
to represent the Hamiltonian operator. Hence, the Hamilto-
nian matrix to be diagonalized is reduced to have the smallest
possible dimensions, which reduces the prefactor associated
to diagonalization and its impact on the total runtime of the
algorithm. Chemical accuracy is achieved by means of opti-
mizing the NGWFs in the psinc basis set during the outer loop
at O (N ) cost. The memory requirements are often a stronger
limiting factor than the computational time. This is due to
the fact that {Mα

i}, {Kαβ}, and other temporary matrices are
dense, amounting for (Nb × N)2 non-zero elements per ma-
trix that must be stored. In order to be able to simulate large
systems with thousand of atoms, memory storage of matrix
elements has to be shared over multiple cores. To address this
difficulty, the ScaLAPACK PDSYGVX parallel eigensolver54

was used, not only to accelerate the diagonalization step with
parallel algebra techniques, but more importantly, to divide
and distribute the matrix elements over the memory of a large
number of cores in an efficient way.50

To demonstrate the computational demands of some of
the most relevant parts of the algorithm, a set of benchmark
calculations on Au cuboctahedral nanoparticles of increasing
size, ranging between 309 and 2057 atoms, was performed.
All the calculations were run on 120 cores distributed over
20 6-core 2.4 GHz Intel Westmere processors and 3.6 GB
of memory per core. The calculations use a NGWF radii
of Rα = 5.0 Å, a kinetic energy cut-off of 700 eV, an
electronic smearing of kBT = 0.1 eV, the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional,70 and a
norm-conserving pseudopotential with 11 valence electrons
per atom. Figure 1 shows the time per one outer loop iteration
with five inner loop iterations compared to the system size,
given by the number of atoms. The inset plot shows the
number of non-zero matrix elements {Sαβ} and {Hαβ} in
each calculation. The number of non-zero {Sαβ} and {Hαβ}

FIG. 1. Time taken to complete one outer loop iteration with five inner
loop iterations, in calculations on Au nanoparticles of increasing size. The
plot shows the time taken by different parts of the algorithm. “Hamiltonian
DD” and “Hamiltonian DI” must be interpreted as the density-dependent and
density-independent terms of the Hamiltonian, respectively.

matrix elements scales linearly with the number of atoms,
and both matrices remain sparse regardless of the size of the
system. The fact that the Hamiltonian matrix is less sparse
compared to the overlap matrix is due to the non-local part of
the norm-conserving pseudopotential.69 Algebraic operations
that involve these two matrices can be carried out at a
linear-scaling cost using parallel sparse algebra methods.53

The time to execute critical steps of the algorithm such as
building the density-independent and density-dependent
terms of the Hamiltonian matrix (including updating the
electronic density) and calculating the NGWF gradient
scale linearly with the number of atoms. For small systems,
building the density-dependent terms of the Hamiltonian is
the most computationally demanding part of the calculation.
As the number of atoms increases, diagonalization becomes
more costly, and rapidly claims most of the computational
effort at every iteration. In calculations of 1500 atoms and
above, diagonalizing the Hamiltonian is the most expensive
part of the calculation. Eventually, the cost of diagonalization
will limit the size of systems that can be simulated.

B. Validation tests

A number of validation calculations were completed in
order to test the accuracy of the method. In all the calcu-
lations shown hereafter the RMS commutator [Hαβ , Kαβ]
was converged within a tolerance of at least 1 × 10−4 eV,
while the RMS of the slope of the NGWF gradient along
the search direction, 〈�̃α|χα〉, was converged to at least
5 × 10−5 eV. With these settings, the free energy functional is
converged below 10−6 eV/atom in all cases. First, Broyden-
Fletcher-Goldfarb-Shanno (BFGS) geometry optimization
calculations71 on a Pt13 cuboctahedral nanoparticle were
performed. The results were compared to those obtained
with the finite-temperature KS-DFT direct minimization
method included in CASTEP,4 which uses fully delocalized
orbitals and a plane-waves basis set. The calculations with
the two programs use the same settings: a kinetic energy
cut-off of 1000 eV, an electronic smearing of kBT = 0.1 eV,
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TABLE I. BFGS geometry optimization of Pt13 with ONETEP and CASTEP.
The table shows the optimized value of the distance to the nearest-neighbour
Pt atom.

Distance (Å)

ONETEP (Rα = 3.0 Å) 2.64
ONETEP (Rα = 3.5 Å) 2.66
ONETEP (Rα = 4.0 Å) 2.69
ONETEP (Rα = 4.5 Å) 2.69
ONETEP (Rα = 5.0 Å) 2.69
ONETEP (Rα = 5.5 Å) 2.70
ONETEP (Rα = 6.0 Å) 2.70
CASTEP 2.70

the PBE exchange-correlation functional,70 the same set of
norm-conserving pseudopotentials with 10 valence electrons
per atom, and a total of 117 energy bands. In the calculations
with ONETEP, 9 NGWFs are assigned per atom. The opti-
mized structures obtained with NGWF radii in the range 3.0
Å–6.0 Å were compared. Table I shows the final value of the
distance to the nearest-neighbour Pt atom. Convergence of
the optimized geometry to a single structure is achieved as Rα

increases. The structures obtained with ONETEP match the
result obtained with CASTEP within 0.01 Å tolerance for Rα

= 4.0 Å and above. The density of states (DOS) of the opti-
mized structures, calculated with a Gaussian smearing of 0.1
eV, is shown in Fig. 2. The DOS obtained with ONETEP also
matches the CASTEP results for Rα = 4.0 Å and above, in the
region of energies below and in the vicinity of the Fermi level
μ. The ONETEP DOS is known to be inaccurate to describe
the higher-energy, near-empty bands above the Fermi level,
unless the conduction bands are optimized further.72

The next validation test involved calculations on face-
centered cubic (fcc) bulk Cu. The free energy potential
associated with variations in the lattice parameter was
obtained with ONETEP and compared against the potential
obtained with CASTEP. The ONETEP calculations include
only the �-point. In order to imitate the behavior of the
k-point grid, at least to some extent, the four-atom fcc cell
of bulk Cu was replicated five times in each lattice vector

FIG. 2. Density of states of Pt13 obtained with ONETEP and CASTEP. Agree-
ment is achieved for NGWF radii of 4.0 Å and above.

FIG. 3. Lattice parameter stretching of bulk Cu. There are 4 atoms in the
CASTEP simulation cell and 500 atoms in the ONETEP simulation cell, form-
ing a 5 × 5 × 5 supercell.

direction, resulting in a 5 × 5 × 5 supercell containing
500 atoms. The procedure described in Ref. 73 to vary the
lattice parameter while maintaining the kinetic energy cut-off
constant in the ONETEP calculations was used. The settings
in both programs are the same: a kinetic energy cut-off of
898.2 eV, an electronic smearing of kBT = 0.1 eV, the revised
Perdew-Burke-Ernzerhof exchange-correlation functional,74

and the same norm-conserving pseudopotentials with 11
valence electrons per atom. In ONETEP, each Cu atom was
assigned 9 NGWFs of radii Rα = 4.0 Å, amounting for a
total of 4500 energy bands in the system. The CASTEP cal-
culations include one four-atom fcc cell, a Monkhorst-Pack
k-point grid75 of 5 points in each direction, and a total of
27 energy bands in the system. The results are shown in
Fig. 3. The bulk modulus B and the equilibrium lattice
parameter L0 were calculated by fitting a curve determined
by the third-order Birch-Murnaghan equation76 to the results.
These are shown in Table II. The calculations with CASTEP

and ONETEP agree very well in their predictions of L0 (within
0.01 Å) and B (within 0.06 GPa). These results on bulk Cu
confirm that a similar level of accuracy in the description of
crystalline systems can be achieved compared to standard
KS-DFT methods. More importantly, these calculations ex-
emplify how calculations on periodic systems with hundreds
of atoms in the simulation cell can be performed with the
algorithm presented in this work. This capability can be used
to study complicated periodic structures formed by many
atoms in one, two, or three dimensions, or with many lattice
defects. Amorphous systems could also be studied in closer
detail by allowing more atoms in the simulation cell.35, 36

TABLE II. Bulk modulus, B, and equilibrium lattice parameter, L0, of bulk
Cu, calculated with CASTEP and ONETEP. The value of χ2 corresponding to
the fitting of the results to the third-order Birch-Murnaghan equation is also
shown.

B (GPa) L0 (Å) χ2

CASTEP 93.57 3.79 6 × 10−5

ONETEP 93.51 3.79 6 × 10−4
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FIG. 4. Convergence of the Helmholtz free energy functional with the num-
ber of outer loop (NGWF optimization) iterations, for a set of Au cuboctahe-
dral nanoparticles of increasing sizes. The structures of Au13 and Au2057 are
also shown in the plot.

The last set of tests aims to provide an insight into the
capabilities of the algorithm to successfully complete calcu-
lations on metallic systems that can be of practical use on
industrial processes. A series of calculations on isolated Au
cuboctahedral nanoparticles of different sizes, from 0.4 to
3.4 nm wide, in the range of 13–2057 atoms, were performed.
These kind of nanoparticles are of interest for the devel-
opment of novel catalysts, but their large sizes make com-
putational studies with KS-DFT expensive. Recent studies
have reported that 32 768 cores were required to perform
calculations on Au1415 using standard plane-waves KS-DFT
methods.29

The calculations with ONETEP use the same configura-
tion as in the calculations shown in Fig. 1. Convergence is
achieved when the change in the free energy per atom is less
than 10−6 eV and the RMS gradient along the NGWF search
direction falls below 2 × 10−5 eV. All the calculations con-
verged within these tolerance thresholds. Figure 4 shows the
convergence rate with number of outer loop iterations using
ONETEP. To some extent, the number of iterations required
is system-dependent and increases with the number of atoms.
The largest of the Au nanoparticles, containing 2057 atoms,
converged within 240 h using 300 cores distributed across 25
12-core 2.4 GHz Intel Westmere processors with 1.8 GB of
memory per core. Provided there are enough computational
resources, the method presented in this work could enable cal-
culations to study even larger industrial catalysts which typi-
cally consist of thousands of metallic atoms.31

VI. CONCLUSIONS

In this work, an approach for finite-temperature KS-DFT
on large metallic systems, based on direct minimization of the
Helmholtz free energy functional, was presented. In its imple-
mentation within the ONETEP program, the cost of most parts
of the calculation is reduced to the linear-scaling regime. This
is due to the use of localized orbitals which are optimized
in situ in terms of a periodic-sinc basis set. The impact of
Hamiltonian diagonalization, which remains cubic-scaling, is
reduced to the minimum. Parallel eigensolvers are used to dis-

tribute the memory requirements over many cores in an effi-
cient manner.

This approach was validated by comparing the results of
calculations on a small Pt nanoparticle and in bulk Cu with
those obtained with the CASTEP code, which uses delocal-
ized orbitals and plane-waves. In both cases, a very good
agreement of the electronic and structural properties was
shown. Further calculations carried on to completion on Au
nanoparticles with up to 2057 atoms demonstrate that this
approach is able to perform calculations on metallic systems
with thousands of atoms. Such capability has the potential to
expand the range of metallic compounds that can be studied
with finite-temperature Kohn-Sham DFT and to allow simu-
lations of larger nanoparticles or alloys with direct industrial
relevance.
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