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We present the first graphical processing unit (GPU)

coprocessor-enabled version of the Order-N Electronic Total

Energy Package (ONETEP) code for linear-scaling first principles

quantum mechanical calculations on materials. This work

focuses on porting to the GPU the parts of the code that

involve atom-localized fast Fourier transform (FFT) operations.

These are among the most computationally intensive parts of

the code and are used in core algorithms such as the calcula-

tion of the charge density, the local potential integrals, the

kinetic energy integrals, and the nonorthogonal generalized

Wannier function gradient. We have found that direct porting

of the isolated FFT operations did not provide any benefit.

Instead, it was necessary to tailor the port to each of the

aforementioned algorithms to optimize data transfer to and

from the GPU. A detailed discussion of the methods used and

tests of the resulting performance are presented, which show

that individual steps in the relevant algorithms are accelerated

by a significant amount. However, the transfer of data

between the GPU and host machine is a significant bottleneck

in the reported version of the code. In addition, an initial

investigation into a dynamic precision scheme for the ONETEP

energy calculation has been performed to take advantage of

the enhanced single precision capabilities of GPUs. The meth-

ods used here result in no disruption to the existing code

base. Furthermore, as the developments reported here con-

cern the core algorithms, they will benefit the full range of

ONETEP functionality. Our use of a directive-based program-

ming model ensures portability to other forms of coprocessors

and will allow this work to form the basis of future develop-

ments to the code designed to support emerging high-

performance computing platforms. VC 2013 Wiley Periodicals,

Inc.
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Introduction

Current hardware trends show machines with heterogeneous

architectures are emerging as the computing platform of

choice within high-performance computing (HPC). Heterogene-

ous machines feature multiple distinct types of processors,

typically standard central processing units (CPUs) and copro-

cessor boards connected through the peripheral component

interconnect (PCI) express bus. Heterogeneous architectures

are particularly appealing as a typical software package will

contain a wide range of algorithms and they offer the oppor-

tunity to execute a given algorithm on the most suitable proc-

essing unit. For example, serial algorithms that can take

advantage of out-of-order operations are well-suited to CPUs

whereas the parallel, data intensive operations inherent to a

fast Fourier transform (FFT) are well-suited to a coprocessor

board with a highly parallel architecture. The coprocessor

boards most commonly used in heterogeneous machines are

based on graphical processing units (GPUs). As the name sug-

gests, GPUs process data to produce the graphical output

shown on a computer’s display. As a result of the independ-

ence of each pixel on a display, GPUs, a type of stream proces-

sor,[1] are highly parallel by design: often containing large

numbers (O(1000)) of relatively simple cores per socket. The

development of GPU technology has progressed very quickly,

initially driven by the insatiable demands of the computer

gaming industry. However, with the emergence of general pur-

pose computing on GPUs[2] (GPGPU), the utilization of GPUs

within computational tasks has increased dramatically. Indeed,

the recently deployed Titan supercomputer at the Oak Ridge

National Laboratory in the contains 18,688 AMD Opteron CPUs

and the same number of NVIDIA Kepler K20 GPUs, giving a

peak performance of over 20 petaflops and currently occupy-

ing the second position in the Top 500 list of the most power-

ful supercomputers in the world.

GPU accelerator boards are typically connected to a “host”

machine through the PCI express bus, a single board usually

contains a single-GPU processor, and several gigabytes of

global memory. NVIDIA GPUs are comprised of a number of

streaming multiprocessors, each divided into a collection of

relatively simple compute unified device architecture (CUDA)

cores. Each CUDA core has access to memory shared with

other cores within the same multiprocessor as well as the

global GPU memory. Further technical details of the parallel

structure of GPU-based coprocessors and the manner in which

code is executed on them are available elsewhere within the

computational chemistry literature.[3,4] In addition, a huge
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number of resources are available online.[2,5] Further, as one of

the strengths of the programming methods used in this article

is that these details are transparent to the developer, a

detailed discussion of these technicalities is not presented

here.

GPGPU reached its current level of popularity within the HPC

field due to the development of programming models specifi-

cally targeted at GPU architectures. The most well-known exam-

ple of such a language is the C-based CUDA[5] language

developed by NVIDIA. CUDA Fortran[6] is the Fortran counter-

part to standard CUDA, a significant difference between CUDA

and CUDA Fortran is that CUDA Fortran may interact with the

GPU indirectly through language constructs, whereas CUDA

only interacts directly through application programming inter-

face calls. Also available is the open computing language[7]

(OpenCL) from the Khronos Group which allows a single-code

base to be compiled for execution on multiple architectures

while, theoretically at least, maintaining performance. Before the

emergence of these models, developers of nongraphics soft-

ware hoping to utilize GPUs were forced to use graphics lan-

guages such as OpenGL[8] and interface them with their

codes.[9,10] CUDA and OpenCL represent the most commonly

used programming models for the development of GPU code.

However, for many researchers porting existing packages to

these models represents a significant investment of time and

can pose a considerable learning curve to developers unfamiliar

with the models. A further issue is the maintenance of a single-

code base when a given routine has versions written in multiple

languages. Alternative, less programming intensive approaches

are available in the form of PGI Accelerate[11] and OpenACC.[12]

These methods allow developers to write code using standard

Fortran or C while utilizing a pragma paradigm similar to

OpenMP[13] to label areas of the code that may be executed in

parallel. A particular advantage arising from the use of these

models is the compiler’s ability to generate a thread scheduling

scheme, removing the onus from the developer. Despite the

ease with which suitably parallel code may be adapted for exe-

cution on GPUs with these methods, it is typically necessary to

make structural changes to the code to achieve optimum per-

formance. In particular, care must be taken when considering

the communications expense resulting from the transfer of data

across the PCI express bus. Another significant advantage to

these models is the recently announced support for other cop-

rocessor technologies such as GPUs from AMD and the Xeon

Phi from Intel.[12] The development of GPU optimized code is

further enhanced by the availability of highly optimized mathe-

matical libraries. For example, CUBLAS[14] and CUFFT[15] for lin-

ear algebra and FFTs, respectively.

The high computational requirements of the computational

chemistry field mean that accelerated computing is of great

relevance. A number of computational chemistry software

packages are available that may be executed on GPUs, these

are discussed in recent reviews.[16–18] Classical molecular

dynamics (MD) codes are highly compute intensive, there is a

constant demand for improved performance, be it to enable

calculations on larger systems, for longer periods of time or to

allow greater sampling of conformational space. Many of the

algorithms used within classical MD are well-suited to GPU

acceleration. A number of MD packages such as NAMD[19,20]

and AMBER[21,22] have ported these algorithms to GPUs. Other

packages such as HOOMD[23] and ACEMD[24,25] have been

designed from the ground up to use GPUs. Quantum chemis-

try packages are also computationally very demanding and a

number of codes such as GAMESS-UK,[4] GAMESS-US,[26,27] and

Terachem[3,28,29] contain sections of code that may be exe-

cuted on GPUs. Within these codes and others Hartree–Fock,

density functional theory (DFT) and even post Hartree–Fock

methods such as MP2[30] and coupled cluster[31–33] have been

adapted for execution on a GPU. The initial focus of these

codes has typically been the evaluation of the electron repul-

sion integrals (ERIs). However, the number of ERIs within Gaus-

sian basis set calculations scales formally to the fourth power

with chemical system size, and may reach the order of many

billions of integrals. However, when integral screening is

applied this number, and the scaling, may be reduced to lower

than the fourth power. This means that even with the per-

formance gains reported for these codes the cost of this analy-

sis becomes prohibitive, especially when a more accurate basis

set incorporating diffuse and polarization functions are to be

used. Another commonly used basis set is the plane-wave

basis which provides high accuracy and the ability to system-

atically improve accuracy. However, it is very demanding to

port to a coprocessor as it is uniform in space and has high-

memory demands. An example of a plane-wave code that has

been ported to GPUs is the Vienna ab initio simulation pack-

age.[34] Another example of a high-resolution basis set code

that has been ported to GPUs is the BigDFT code, which uses

a wavelet basis set.[35]

In this article, we present and discuss the first GPU-enabled

version of the Order-N Electronic Total Energy Package (ONE-

TEP) software package.[36] ONETEP is a quantum chemistry

package capable of simulating large numbers of atoms[37]

based on linear-scaling electronic structure theory.[38,39]. A

unique feature of this code is that it can achieve linear-scaling

while maintaining the high-basis set accuracy of conventional

plane-wave codes. In this initial implementation, we focus on

porting the so-called FFT box operations which take up a sig-

nificant fraction of the calculation time while maintaining the

current architecture of the code relating to communications

and load balancing. In typical GPGPU terminology, a section of

code that is executed on a GPU is referred to as a “kernel.”

However, this terminology conflicts with the term “density ker-

nel,” which is a critical feature of the methods used within

ONETEP. To prevent confusion, these terms will be referred to

as “GPU kernel” and “density kernel” accordingly.

The structure of this article is as follows; First, the ONETEP

linear-scaling quantum chemistry software package is briefly

discussed in the section titled, ONETEP. Technical Details, dis-

cusses the hardware and test systems used within this study.

Section, Profiling, illustrates the bottlenecks within the ONETEP

code and Methods and Results presents the theory, algorithms,

and technical details relating our developments and testing of

our GPU algorithms. This section also contains detailed results

showing the performance of the code on a variety of GPU-
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accelerated platforms. These are followed by a discussion of

the scaling of the ported code with both the size of the chem-

ical system and the number of compute nodes. We finish with

some conclusions.

ONETEP

ONETEP[36] is a linear-scaling quantum chemistry software

package for DFT calculations. The linear-scaling computational

cost with respect to the number of atoms within ONETEP is

achieved through the exploitation of the “nearsightedness of

electronic matter” principle.[40,41] The theoretical details of the

ONETEP methodology are discussed in detail elsewhere [36]

and are only summarized here: The ONETEP program is based

on a reformulation of DFT in terms of the one-particle density

matrix, qðr; r0Þ,

qðr; r0Þ5
XN

i51

fiwiðrÞwiðr0Þ; (1)

where N is the total number of Kohn–Sham molecular orbitals

f/iðrÞgN
i51 within the chosen basis and fi are their occupancies.

The one particle density matrix is the basis of many linear-

scaling DFT approaches[38] where the memory and processing

requirements increase linearly with N. This is achieved by tak-

ing advantage of the exponential decay of the density matrix

in systems with a band gap.

In ONETEP, the density matrix is expressed in the following

form:

qðr; r0Þ5
X

a

X
b

/aðrÞKab/bðr0Þ; (2)

where the “density kernel” K is the density matrix expressed

in the duals of the set of nonorthogonal generalized Wannier

functions (NGWFs)[42] f/aðrÞg. The NGWFs are constrained to

be strictly localized within spherical regions centered on

atoms and their shape is optimized self-consistently by

expressing them in a psinc basis set,[43] which is equivalent to

a plane-wave basis set. As a result ONETEP is able to achieve

linear-scaling computational cost while retaining the large

basis set accuracy characteristics of plane-wave codes. The cal-

culation of the electronic energy within ONETEP takes the

form of two nested loops, the density kernel, K, and NGWFs

f/aðrÞg are optimized within the inner and outer loops,

respectively. ONETEP also exhibits parallel scaling as the num-

ber of processors used to perform a calculation is increased

using the message passing interface (MPI) paradigm. Again,

the techniques used to achieve this are discussed in detail

elsewhere.[44,45]

Data abstractions

ONETEP is the only computational chemistry software package

that uses the psinc basis set.[46] Psinc functions are centered on

the points of a regular real-space grid and are related to a

plane-wave basis through Fourier transforms. The use of psinc

functions enables the strict localization of the NGWFs, which is

crucial to ONETEPs linear-scaling behavior. To perform operations

involving NGWFs, the FFT box technique is used. An FFT box is

a box of grid points centered on the atom associated with an

NGWF and large enough to contain any overlapping NGWF

localization spheres in their entirety. This representation permits

the use of plane-wave methodology to perform momentum

space operations with a computational cost that is independent

of the size of the simulation cell.

Load balancing within ONETEP is achieved through the dis-

tribution of the workloads associated with atomic data (oper-

ations performed on NGWFs), the simulation cell (simulation

cell FFTs) and sparse matrix data. The schemes used to

achieve a balanced load are discussed in detail elsewhere.[44]

Due to the fact that the different workloads are distributed

in this manner, it is necessary to perform communication

between compute nodes. To do this efficiently, it is necessary

to use a memory efficient data abstraction, the PPD (parallel-

piped) representation (bottom panel of Fig. 1). The size of

the PPDs in a calculation is constant and is chosen such that

the simulation cell is built from an integer number of

PPDs.[44] An important point when considering the GPU code

is that in the FFT box representation the data associated

with a single PPD is noncontiguous in memory while in the

PPD representation it is. This is illustrated using the psinc

functions x, y, and z highlighted in the lower two panels of

Figure 1.

Figure 1. Data abstractions within ONETEP. a): represents the processes of

extracting and depositing FFT boxes from the simulation cell, (b) repre-

sents the interconversion of data between the FFT box and PPD represen-

tations as required for efficient communication of data between compute

nodes. In the simulation cell and FFT boxes, data points in the N1 direction

(x and y) are contiguous in memory. In the PPD representation, this is not

always the case (x and z). An FFT box is not forced to consist of an integer

number of PPDs. The simulation cell and FFT box are three-dimensional

(3D) arrays, whereas the PPD storage array is 1D. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Technical Details

Chemical systems

To illustrate the performance of the ported code, a series of

chemical systems were selected. As shown in Figure 2, these

structures are the “tennis ball” dimer with methane guest (181

atoms) and two cellulose fibril systems with 495 and 957

atoms, respectively. Data shown in Profiling are limited to the

“tennis ball” dimer whilst Methods and Results contains calcu-

lations performed with all three systems.

Calculation details

Calculations performed on the “tennis ball” dimer system

detailed in Profiling and on the cellulose systems in Methods

and Results are limited to single iterations of the inner and

outer loops of the ONETEP process. To maintain focus for this

initial study, the calculations discussed will solely employ the

Li–Nunes–Vanderbilt algorithm[47,48] method for the optimiza-

tion of the density kernel.

Hardware specifications

A variety of machines were used to perform the calculations

presented here,

� The GPU nodes of the Iridis 3 supercomputer (30 M2050

Tesla GPUs with 2.40-GHz quad-core Intel Xeon E5620

CPUs) at the University of Southampton,

� The Emerald GPU cluster (372 M2090 Tesla GPUs with

2.53-GHz hexa-core Intel Xeon E5649 CPUs) at Rutherford

Appleton Laboratory in Oxford, and

� The NVIDIA PSG cluster (A wide variety of GPUs running

on Sandy Bridge CPUs) at NVIDIA in Santa Clara. Calcula-

tions performed on the PSG cluster were limited to

nodes containing Kepler K20 GPUs.

All these machines utilize the PCIe 2 standard. Communica-

tions between host and GPU were observed to perform data

transfers at similar speeds. The profiling calculations performed

in the Profiling section were performed on a single node of

the Iridis3 machine, calculations on all machines were per-

formed using multiple GPUs as detailed in the relevant subsec-

tions of Methods and Results.

In all cases, the use of error correcting-code (ECC) memory

was enabled, as this is the standard setting on the Emerald

and Iridis3 nodes. Although disabling ECC would result in

enhanced performance, the timings presented here represent

those that would be experienced by a typical user executing

code on these machines. This choice also ensures the reliability

of the results obtained when executing the code on the GPUs.

A further GPU-specific modification to the code is the use of

page locked memory. This is a region of host memory that is

visible to the GPU as a part of its own memory space. To

move data from the host to the device, it is first necessary to

move it to this region. The consistent use of pinned memory

means that arrays containing data to be moved between the

host and GPU are specified to be within the page-locked

region of memory on initialization.

The Emerald compute nodes contain multiple CPU sockets.

Therefore, it is necessary to control the processor and GPU

affinity of the MPI threads to ensure that QuickPath intercon-

nects are not crossed and optimal performance is obtained.

This is achieved through the use of a script that ensures

threads are associated with CPU sockets and GPUs that are on

the same PCI express bus

Timings

Timings in the following sections are presented for the speci-

fied number of MPI threads. Each MPI thread is associated

with either a single-CPU core or a single GPU coupled with a

CPU core. We made this choice as it is the current execution

model used within ONETEP. A more reasonable comparison is

that of a CPU processor (all available cores) against a GPU

card, this comparison is presented in the subsection Multiple

GPU performance. It should be highlighted that the develop-

ments presented here are an initial step toward a truly hetero-

geneous code that is efficiently executed on both CPUs and

coprocessors simultaneously, thus utilizing hardware as effi-

ciently as possible. However, as highlighted by this work, a

number of developments are required before this goal can be

achieved.

Profiling

Optimization of both the NGWFs and the density kernel will ini-

tially be limited to a single iteration of each to produce

Figure 2. Chemical systems used in profiling and benchmarking calculations. a): 181 atom “tennis ball” dimer with methane guest, (b) 495 atom cellulose

fibril, and c) 957 atom cellulose fibril. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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representative data as this is the most widely used energy opti-

mization algorithm within the ONETEP code. To identify initial

targets for GPU acceleration calculations with a psinc basis set,

kinetic energy cutoff of 1200 eV was performed. This calculation

used the “tennis ball” dimer system shown in Figure 2, and the

timings are reported for a short calculation consisting of single

iterations of the inner and outer loops of the ONETEP scheme. A

breakdown of bottlenecks of the code that are suitable for GPU

acceleration is shown in Table 1.

FFTs on FFT boxes and the processes involved in the move-

ment and conversion of data between the abstractions intro-

duced above feature heavily within each of the FFT box

operations highlighted in Table 1. Together, these processes

represent 59.0 and 14.1% of the entire calculation run time,

respectively. Although not shown in Table 1, simulation cell

FFTs (distinct from FFT box FFTs) take up to 1.5% of the calcu-

lations run time. As detailed above, this calculation was per-

formed using a single iteration of the density kernel and

NGWF optimization loops. As a result, the relative cost of the

NGWF gradient is overstated in this example. The relative cost

of the NGWF gradient is heavily dependent on the actual cal-

culation but is typically around 5–10% of the total runtime,

justifying its inclusion here.

Method and Results

Fast Fourier transforms

FFTs performed on FFT boxes[49] contribute significantly to the

bottlenecks identified above, representing over half of the com-

putational runtime in the calculation profiled in Profiling. Initial

attempts at porting ONETEP to GPU-based accelerators simply

involved supplementing the calls to the CPU FFT libraries with

calls to a GPU-based equivalent: CUFFT.[15] However, porting the

FFTs alone to the GPU resulted in a performance gain of only

1.23 over the CPU implementation (1869 s on GPU compared

with 2180 s on the CPU). This result reflects the most common

problem faced when porting code to GPUs: the expense of

transferring data from the host to the GPU. To overcome this

issue, it is necessary to improve the ratio of operations to data

transfer. In the case of ONETEP, the ratio of data transfer to exe-

cution can be improved through porting additional code sur-

rounding the FFTs for GPU execution. In the following sections,

we describe how this is achieved.

Charge density

As shown in Table 1, a significant bottleneck (36% of the run-

time for the profiled calculation) within ONETEP is the calcula-

tion of the charge density, nðrÞ. The charge density is given by

the diagonal elements of the one-particle density matrix from

eq. (2) using nðrÞ5qðr; rÞ. As such, the porting of this section

of the code and the analysis of its performance will be dis-

cussed in detail. Many of the techniques used in the optimiza-

tion of this part of the code are also used in other areas of

the ported code and are discussed later. The charge density,

nðrÞ, may be represented as

nðrÞ5
X

a

nðr; aÞ5
X

a

/aðrÞ
X

b

Kab/bðrÞ; (3)

Therefore, the calculation of the charge density may be con-

sidered as the calculation of the series of nðr; aÞ components.

These are the product of the FFT box for /aðrÞand the FFT

box of the sum of all /bðrÞ’s with which /aðrÞ overlaps, includ-

ing itself. The following stages, as shown in Figure 3 are

required for the calculation of an NGWFs contribution to the

charge density:

1. Gather data

a. Extract the /aðrÞ NGWF from the PPD representation to

an FFT box.

b. Gather the sum of overlapping /b NGWFs
P

b Kab/bðrÞ
for NGWF /aðrÞ to an FFT box.

2. Populate the coarse grid FFT box with /aðrÞ andP
b Kab/bðrÞ.

3. Forward FFT of the /aðrÞ and
P

b Kab/bðrÞ coarse grid

FFT boxes to obtain their Fourier transforms ~/aðgÞ andP
b Kab ~/bðgÞ.

4. Up sample, the ~/aðgÞ and
P

b Kab ~/bðgÞ coarse grid FFT

boxes to a fine grid FFT box using zero padding.

5. Inverse FFT of the ~/aðgÞ and
P

b Kab ~/bðgÞ fine grid FFT

box into real space.

6. Calculate product of /aðrÞ and
P

b Kab/bðrÞ and sum

over a if required (This occurs if the current NGWF is on

the same atom (A) as the previous NGWF).

7. Deposit the charge density FFT box for the /aðrÞ NGWFs

on an atom (A;
P

a2A nðr; aÞ) into the simulation cell

(nðrÞ).

Stage 1, the extraction of data stored from the PPD repre-

sentation and conversion to an FFT box representation is cur-

rently performed on the host. As shown in Figure 3, the

calculation of the
P

b Kab/bðrÞFFT box is currently performed

on the CPU. Although a GPU equivalent of this section of the

code would be quicker, the data transfer associated with the

numerous /bðrÞ FFT boxes makes such implementation signifi-

cantly slower than the CPU implementation. Stage 2, the pop-

ulation of the coarse work array, includes the data transfer of

the FFT boxes from the host to the GPU and the construction

of the coarse grid FFT boxes. Stages 3–6 of Figure 3 have

been ported to be performed entirely on the GPU. Stage 7,

the deposition of the charge density in the simulation cell

includes the movement of data from the GPU to the host fol-

lowed by any necessary communication to transfer the charge

density FFT box to the nodes that store the relevant slices of

the simulation cell.

Table 1. Computational expense of FFT box and related operations

within a ONETEP calculation.

Property/process Time (%)

Charge density 36.0

Local potential integrals 20.2

Kinetic integrals 7.2

NGWF gradient 30.3

Values are given as a percentage of total run time.
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The code has been ported for execution on the GPU

through a combination of PGI accelerator pragmas to define

code which is executed on the GPU, calls to CUDA Fortran

functions for the management of data transfers and the CUFFT

library to perform FFTs. This approach was chosen as it

ensured clarity within the code and facilitated future develop-

ments. In some cases, this is a very straightforward process

requiring only the addition of the !$acc region and !$acc end

region pragmas. However, more complex changes are neces-

sary to control data movement to achieve the performance

benefits discussed below.

Table 2 shows the computational cost of each of the stages

outlined in Figure 3 for the “tennis ball” dimer system

described above. The complexity of the scheduling of GPU

Table 2. Timings for the stages of the calculation of the charge density.

Stage

CPU GPU

Xeon E5620 Tesla M2050 Tesla M2090 Kepler K20

s % s % Acc s % Acc s % Acc

1. Extract PPDs 4.5 0.4 17.0 3.1 0.3 4.6 1.5 1.0 3.9 1.7 1.1

2. Populate coarse 1.7 1.1 71.5 13.0 0.2 39.5 13.1 0.3 43.0 19.1 0.3

3. Forward coarse FFT 110.5 9.0 12.3 2.2 9.0 9.4 3.1 11.8 4.2 1.9 26.1

4. Populate fine 77.2 6.3 16.3 3.0 4.7 17.7 5.9 4.4 10.8 4.8 7.2

5. Inverse fine FFT 830.5 68.0 126.2 22.9 6.6 97.1 32.3 8.6 51.0 22.6 16.3

6. Calculate product 76.9 6.3 12.9 2.4 5.9 14.2 4.7 5.4 10.3 4.6 7.4

7. Deposit charge density 107.8 8.8 294.4 53.5 0.4 118.1 39.3 0.9 102.2 45.3 1.1

Blocked total 550.6 2.2 300.6 4.1 225.4 5.4

Unblocked total 1221.1 340.5 3.6 271.1 4.5 225.4 5.4

CPU and GPU calculations were performed on 1 CPU core and 1 CPU core with 1 GPU respectively. Percentage times are relative to the total time taken

for the calculation of the charge density. The stages are labeled as in Figure 3. Acc is the acceleration relative to the CPU timings.

Figure 3. Calculation of the charge density FFT box,
P

a2A nðr; aÞ, for the NGWFs (uaðrÞ) on atom A and the deposition of this FFT box data into the simu-

lation cell (nðrÞ). Real space data are denoted by the ðrÞ variable and reciprocal space data by the ðgÞ variable. Host to GPU data transfers are highlighted

with the DATA label.
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kernels means that it is difficult to separate the costs of the

individual stages in Figure 3. To show the cost of these stages

individually, it is necessary to include calls to blocking CUDA

functions that force these operations to occur in serial and

thus permit each stage to be timed accurately. It must be

stressed that these blocking functions may significantly reduce

the performance of the code. As such, Table 2 shows both

detailed timings for calculations in which the code is forced to

run in serial due to the blocking routines and the total time

for the calculation of the charge density when these functions

are removed.

These results show that the CPU bottlenecks, the coarse and

fine grid FFTs, are performed up to 263 faster on the GPU.

The other compute intensive operations such as the popula-

tion of the fine grid and the calculation of the product of the

charge density for each atom also benefit from a 6–93 speed-

up when executed on the GPU. The cost of the stages contain-

ing data transfers represents the majority (55–65%) of the

computational cost of the GPU port of the code, this is a sig-

nificant shift in the performance bottleneck when compared

to the CPU implementation of the algorithm.

The observation that the copy on of the data has a larger

effect on performance relative to the CPU code than the copy

off (approximately 0.33 for the copy on and 0.4–0.93 for the

copy off ) may be explained by the fact that the copy on is

performed for every single call to the GPU version of the code

while the copy off is not. This is a result of the summation of

the charge density for NGWFs that belong to the same atom.

Indeed, an early version of the code did not perform this sum-

mation on the GPU resulting in particularly poor performance.

The performance benefit of the Kepler architecture is seen

to be significant, particularly for the FFTs in stages 3 and 5

and the data transfer in stage 7 which are seen to take less

than half the time of the same operations on the other GPU

models shown here. The FFTs benefit significantly as the algo-

rithms are able to utilize the increased amount of parallelism

afforded by the increased number of streaming multiproces-

sors in the Kepler chipset. The observed variation for stage 7,

the deposition of the charge density, is thought to be a result

of the hardware configuration.

Local potential integrals

The local potential integrals are needed to construct the Ham-

iltonian matrix (the representation of the Hamiltonian operator

in the set of NGWFs) and have the form shown in eq. (4).

Where V̂ locðrÞ is the sum of the local pseudo potential

V̂ ps;locðrÞ, the Hartree potential V̂ HðrÞ, and the exchange-

correlation potential V̂ XCðrÞ.

Vab5

ð
/�aðrÞV̂ locðrÞ/bðrÞdr (4)

The calculation of the local potential integrals proceeds

through the following stages, which are also noted in Figure 4:

1. The /bðrÞ NGWF is extracted from the PPD representa-

tion and stored in a coarse grid FFT box.

2. The /bðrÞ FFT box is moved to the coarse grid FFT box.

3. The /bðrÞ FFT box is transformed to reciprocal space

with a forward FFT to obtain ~/bðgÞ.
4. The reciprocal space ~/bðgÞ FFT box is up sampled to

the fine grid.

5. The fine grid, reciprocal space ~/bðgÞ FFT box is trans-

formed to real space with an inverse FFT.

6. The region of the local potential coinciding with the

/bðrÞ FFT box is extracted from its simulation cell

representation.

7. The local potential is applied to the fine grid /bðrÞ
work array FFT box through a multiplication of the FFT

boxes, giving the V̂ locðrÞ/bðrÞ FFT box on a fine grid.

8. The V̂ locðrÞ/bðrÞ FFT box is transformed to reciprocal

space with a forward FFT to give gV̂ loc/bðgÞ.
9. The gV̂ loc/bðgÞ FFT box is down sampled to a coarse

grid FFT box.

10. The gV̂ loc/bðgÞ FFT box is transformed to real space with

an inverse FFT.

11. PPDs from V̂ locðrÞ/bðrÞ that overlap with /aðrÞ are

extracted in their entirety from the FFT box and stored

in the PPD representation.

12. PPDs containing points from /aðrÞ that overlap with

/bðrÞ are extracted in their entirety from the PPD

representation.

Figure 4. Calculation of local potential integrals
Ð

u�aðrÞV̂ locðrÞubðrÞdr. Real

space data are denoted by the ðrÞ variable and reciprocal space data by

the ðgÞ variable. Host to GPU data transfers are highlighted with the DATA

label.
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13. The
Ð

/�aðrÞV̂ locðrÞ/bðrÞdr integral is calculated as the

dot product over grid points of the common PPDs

between /aðrÞ and /bðrÞ.

Stages 1, 12, and 13 are performed on the CPU in all cases

and stages 2, 6, and 13 involve the transfer of data across the

PCIe bus. Table 3 shows the cost of each of the stages out-

lined in Figure 4 using the “tennis ball” dimer calculation

described in the section Chemical system. These results show

that the FFTs and most of the compute intensive stages are

performed between six and 26 times faster when executed on

the GPU. Similar to the charge density code, the most signifi-

cant bottlenecks in the GPU port of the code are stages that

involve data transfers.

The acceleration of stage 7, the application of the potential

(V̂ locðrÞ/bðrÞ), which is the multiplication of V̂ locðrÞ with /bðrÞ
has a speedup of 2.4–4.93. This is notably lower than that

observed for stage 6 in the calculation of the charge density

(5.4–7.43), despite these stages representing mathematically

equivalent operations. Although the FFT boxes are on the fine

grid in both cases, there are subtle differences in the execu-

tion of these algorithms arising from the relative locations of

the data; in the charge density version, the two factors are

adjacent in memory, within the real and imaginary compo-

nents of a complex array. In contrast, the factors for the local

potential version are located in completely different arrays.

This results in more efficient reads from global memory in the

case of the charge density version.

The cost of the stages containing data transfers make up a

large percentage of the total cost (66–75%), higher than

observed for the calculation of the charge density. This is due

to the fact that there are more data transfers in this process.

The performance benefits observed for the K20 GPU are

even more significant here, the entire process takes half the

time of the same code executed on a M2050 GPU. This is a

result of the increased number of operations that are per-

formed on the fine grid which, as aforementioned, benefit sig-

nificantly from the increased hardware parallelism of the

Kepler architecture. Also significant is the reduction in the cost

of the data transfer in stage 6, the population of the potential

V̂ loc FFT box on a fine grid.

Kinetic integrals

The kinetic energy, Ekin, is calculated through the evaluation of

the kinetic integrals using eq. (5).[49]

Ekin5
X
ab

Kba
ð

/�aðrÞT̂ ðrÞ/bðrÞdr (5)

Where T̂ is the kinetic energy operator T̂ 52ð1=2Þr2. The

calculation of
Ð

/�aðrÞT̂ ðrÞ/bðrÞdr follows a process similar to

that used for the local potential integrals, with stages 1–3 and

stages similar to 10–13 performed in the same manner as

detailed in Figure 4. The significant differences are that the

application of the kinetic operator is performed on the coarse

grid. The nature of the kinetic operator further simplifies mat-

ters as, unlike the local potential operator, it is not necessary

to extract data representing the kinetic operator from the sim-

ulation cell and the same data may be reused for eachÐ
/�aðrÞT̂ ðrÞ/bðrÞdr.

The timings for the kinetic integrals shown in Table 4 show

that once again the bottlenecks within this section of the GPU

port of the code are the transfer of data between the GPU

and host and the conversions between the PPD and FFT box

representations. These stages take up over 90% of the run-

time. The application of the kinetic integral operator shows a

higher level of acceleration (9.1–14.53) than that of the local

Table 3. Timings for the stages of the calculation of the local potential integrals.

Stage

CPU GPUs

Xeon E5620 Tesla M2050 Tesla M2090 Kepler K20

s % s % Acc s % Acc s % Acc

1. Extract 2.8 0.3 8.5 1.5 0.3 2.5 0.7 1.1 1.8 0.8 1.5

2. Populate 30.2 3.5 25.4 4.5 1.2 15.4 4.4 2 11.5 5.3 2.6

3. Forward Coarse FFT 27.7 3.2 3.1 0.5 9 2.4 0.7 11.8 1.1 0.5 25.9

4. Populate fine 19.4 2.3 4.1 0.7 4.8 4.5 1.3 4.3 2.7 1.2 7.2

5. Forward fine FFT 207.1 24 31.6 5.6 6.6 24.3 7 8.5 12.8 5.8 16.2

6. Populate potential 59 6.9 226.9 40.3 0.3 90.7 26.1 0.7 54.8 25 1.1

7. Apply potential 25 2.9 10.4 1.8 2.4 5.4 1.5 4.7 5.1 2.3 4.9

8. Forward fine FFT 206.9 24 31.6 5.6 6.6 24.3 7 8.5 12.8 5.8 16.2

9. Populate coarse 4.9 0.6 0.7 0.1 6.9 1.3 0.4 3.7 0.8 0.4 6.4

10. Inverse coarse FFT 27.2 3.2 3.1 0.5 8.9 2.3 0.7 11.7 1.1 0.5 25.7

11. Separate 6.3 0.7 0.8 0.1 8.3 1.4 0.4 4.6 0.6 0.3 11.1

12. Extract alpha 141.7 16.5 160.5 28.5 0.9 150.6 43.3 0.9 72 32.9 2

13. Integrate 103.1 12 57.1 10.1 1.8 22.8 6.5 4.5 42.2 19.3 2.4

Blocked total 563.6 1.5 347.9 2.5 219.1 3.9

Unblocked total 861.3 301.2 2.9 242.2 3.6 219.1 3.9

CPU and GPU calculations were performed on 1 CPU core and 1 CPU core with 1 GPU, respectively. Percentage times are relative to the time taken for

the total time taken for the calculation of the local potential integrals. The stages are labeled as in Figure 4. Acc is the acceleration relative to the CPU

timings.
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potential operator (2.4–4.83). Presumably as this operation is

applied on a coarse grid, in this case which permits more effi-

cient data accesses. The performance of the nonaccelerated

sections of the code (stages 1, 5, and 6 in Fig. 4) result in a

slower total time for the Kepler card then for either Fermi

card. However, as the performance of the isolated FFTs is sig-

nificantly improved on the K20 card (293 vs. 10–203), this is

purely a result of the areas of the code executed on the CPU

and results from the different models of CPU installed in the

respective machines. The issues seen in the performance of

the kinetic integrals code are of relatively low priority as they

take up typically only 5–10% of the total calculation time.

NGWF gradient

As described in detail elsewhere,[43] the gradient of the energy

with respect to the NGWF expansion coefficients is calculated

using:

dE

d/a

����
r

5
X

b

½Ĥ/b�ðrÞAb1
X

c

/cðrÞBc: (6)

Where the method being used to evaluate the gradient con-

trols the nature of matrices A and B. The gradient is built up

of contributions from the kinetic, local potential, and nonlocal

potential operators before being subjected to kinetic energy

preconditioning.[43] Finally, the gradient is extracted from the

FFT box representation in the PPD format and “pruned” such

that any points within the PPDs of the gradient that fall out-

side of the NGWF localization region are set to zero.

Currently, only the kinetic and local potential sections of the

NGWF gradient code have been ported to GPUs as these closely

follow the processes detailed in the section Local potential inte-

grals. However, as these sections contribute around 60% of the

runtime for the NGWF gradient calculation, the effect of the

port of these stages is expected to be beneficial. The mecha-

nism by which the local potential is applied is algorithmically

identical to that described for stages 1–9 for the calculation of

the local potential integrals in Figure 4. The algorithm for the

kinetic operator differs in that the stages relating to the genera-

tion of the fine grid FFT box are excluded in the same manner

as described for the kinetic integrals.

Table 5 shows the timings for the NGWF gradient calcula-

tion. The overall acceleration of the NGWF gradient code is

low (1.6–2.23) compared to that of the other ported regions

(2.9–5.43). This is a result of the relatively high expense of

unaccelerated code in stages 4–7 that make up over 25% of

the run time for this section of the code. The application of

Table 4. Timings for the stages of the calculation of the kinetic integrals.

CPU GPUs

Xeon E5620 Tesla M2050 Tesla M2090 Kepler K20

s % s % Acc s % Acc s % Acc

1. Populate 5.3 2 47.2 16.9 0.1 12.9 11.1 0.4 17.5 13.4 0.3

2. Forward coarse FFT 63.4 23.6 6.1 2.2 10.4 3.1 2.6 20.7 2.1 1.6 29.8

3. Apply operator 14.4 5.4 1.6 0.6 9.1 1 0.8 14.5 1.4 1 10.5

4. Inverse coarse FFT 59.7 22.2 6.1 2.2 9.9 3.1 2.6 19.6 2.1 1.6 28.6

5. Deposit 9.6 3.6 30.9 11 0.3 9.2 7.9 1 14.3 10.9 0.7

6. Extract and integrate 116.5 43.3 188.3 67.2 0.6 87.6 75 1.3 93.6 71.5 1.2

Blocked total 280.1 1 116.9 2.3 131 2.1

Unblocked total 268.9 127 2.1 112.4 2.4 131 2.1

CPU and GPU calculations were performed on 1 CPU core and 1 CPU core with 1 GPU, respectively. Percentage times are relative to the time taken for

the total time taken for the calculation of the kinetic integrals. Acc is the acceleration relative to the CPU timings.

Table 5. Timings for the stages of the calculation of the NGWF gradient.

Stage

CPU GPUs

Xeon E5620 Tesla M2050 Tesla M2090 Kepler K20

s % s % Acc s % Acc s % Acc

1 Setup 124.7 11.1 156.4 22.1 0.8 120.8 23.4 1 121.4 23.8 1

2 Kinetic operator 77 6.9 10.5 1.5 7.3 6.1 1.2 12.6 4.3 0.9 17.7

3 Local potential 604.2 53.9 177.2 25 3.4 149.7 29.1 4 130.1 25.6 4.6

4 Non-local potential 275.6 24.6 309.8 43.8 0.9 210.2 40.8 1.3 223.8 44 1.2

5 Extract PPDs 0.3 0 0.6 0.1 0.5 0.3 0.1 1.1 0.3 0.1 1.1

6 Shave PPDs 4.8 0.4 4.8 0.7 1 3.8 0.7 1.3 4 0.8 1.2

7 Preconditioning 34.2 3.1 48.6 6.9 0.7 24.2 4.7 1.4 25.2 5 1.4

Blocked total 707.9 1.6 515.1 2.2 509.1 2.2

Unblocked total 1120.8 636.1 1.8 521.5 2.1 509.1 2.2

CPU and GPU calculations were performed on 1 CPU core and 1 CPU core with 1 GPU respectively. Percentage times are relative to the time taken for

the total time taken for the calculation of the NGWF gradient. Acc is the acceleration relative to the CPU timings.
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the local potential to the gradient is observed to have a signif-

icantly lower level of acceleration than the application of the

kinetic operator due to the current use of a sequential data

transfer to move the local potential to the GPU. Surprisingly, it

can be seen that the blocked code is faster than the

unblocked code in the case of the M2090 timings. This was

also found to be the case in additional tests.

Further improvements are possible through porting stages

4–7 of the NGWF gradient code. However, these stages are

fundamentally different from the types of operations we have

been concerned with in the work reported here.

Precision

Table 6 shows the numerical precision achieved by the GPU

port of the code for the total energy of the “tennis ball” dimer

in atomic units (Eh). This is the total energy that results from

combining all the stages described so far and calculated

according to the theory utilized in the ONETEP code.[50]

We observe that the ported code achieves greater than lEh

levels of accuracy in all cases. This is within the norm of the

precision achieved by parallel quantum chemistry codes and

significantly better than the m Eh limit of the chemical proc-

esses that we expect to be simulated in such codes to reach

the level of “chemical accuracy.”

Although GPUs are capable of performing calculations at

double precision (DP), the nature of the hardware means that

there can be a significant disparity in the performance of GPU

kernels executed at single precision (SP) and DP. This is a result

of the higher number of SP cores compared to DP cores. A

further advantage of performing calculations at the SP level is

the reduced cost of the data transfer resulting from the

reduced number of bytes required to store the data. It would

be advantageous if we could exploit the increased perform-

ance available when using SP operations. This has been imple-

mented in other GPU-accelerated quantum chemistry

packages such as GAMESS-UK and Terachem,[51] which contain

techniques aimed at utilizing the higher SP performance dur-

ing the evaluation of the ERIs. These techniques involve per-

forming the evaluation of the angular components of the

integrals that provide a relatively small contribution to the

Fock matrix at SP (“thresholding”) or performing early itera-

tions of the self consistent field (SCF) process at the SP level

of accuracy and then switching to the DP level once certain

convergence criterion have been reached (“switching”). This

switching point is carefully chosen so as to prevent an

increase in the number of SCF iterations.

As an initial investigation toward such approaches, we have

implemented a dynamic precision calculation within the

charge density code using a switching scheme analogous to

the one described above. The switch between SP and DP is

triggered once a certain convergence criterion has been

reached. Currently, the energy difference between the results

of the two previous inner loop iterations of the ONETEP

scheme is used as the convergence criterion. The implementa-

tion of this scheme is relatively simple: two additional CPU

stages are added to the scheme shown in Figure 3. These are

a simple conversion of the /aðrÞand
P

b Kab/bðrÞ FFT boxes

from DP to SP after stage 1 and the reverse for theP
a2A nðr; aÞ FFT box during stage 7 of this process (once the

data transfer from the GPU to the host has completed). In this

way, stages 2–6 of Figure 3, including the data transfers to

and from the GPU, take place entirely in SP.

Initial results are shown in Figure 5 and Table 7. Figure 5

shows that the effect of using this technique on the final

Table 6. Effect of the hardware on the accuracy of the electronic energy

obtained from a ONETEP calculation on the “tennis ball” dimer using a

kinetic energy cutoff of 1200 eV.

Hardware Energy (Eh)

E5620, 1 core 2807.777563121909

E5620, 4 cores 2807.777563127638

1 M2050 2807.777563134168

4 M2050 2807.777563132823

1 M2090 2807.777563134166

4 M2090 2807.777563127636

1 K20 2807.777563110516

4 K20 2807.777563127598

Decimal places that vary depending on hardware are highlighted for

clarity.

Figure 5. Difference in energy relative to the converged total energy of a reference calculation performed at full double precision on eight CPUs. The

thresholds at which accuracy switches from SP to DP are shown in the legend. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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energy is dependent on the value of the switching criterion

used:

� A value of 131027 Eh or lower results in convergence to

an erroneous energy that differs in the fourth decimal

place. This is a consequence of the fact that the entire

calculation is performed with the charge density calcu-

lated in SP.

� A value of 131026 Eh results in the correct energy but

takes an additional iteration to reach convergence with a

resulting increase in computational time of 4 s relative to

the calculation using a value of 531026 Eh.

� Switches at higher energy differences all converge to the

same result as the full DP GPU code but with differing

numbers of operations performed at SP as detailed in

Table 7.

As shown in Table 7, the benefit of the SP code is small but

consistent, with speedups relative to the CPU code ranging

from 3.73 to 4.13 compared to 3.23 for the full-DP calcula-

tion on the GPU. However, these initial tests use a relatively

small molecule and tests with larger systems are required. It

would appear that fine tuning of the switch value is unlikely

to give a major advantage but rather a conservative value

should be used to avoid the danger of converging to an erro-

neous final energy. It should be emphasized, however, that

with the exception of the extreme case of the 131027 Eh

switch threshold, all other thresholds produce energies of the

same precision as the full-DP code.

Multiple GPU performance

Figures 6a–6c show the results for calculations performed on

the 181 atom “tennis ball” dimer, 495 atom cellulose, and 954

atom cellulose systems, respectively. Calculations are per-

formed using 1, 2, and 4 GPUs of various types, except for the

CPU timings where all available cores were used.

These results show that the GPU-enabled port of the code

is consistently faster than the CPU implementation when the

equivalent number of CPU cores and GPUs are used. As would

be expected, the performance of the ported code on different

GPUs follows a trend associated with the number of CUDA

cores and clock speed of the hardware. It can be seen that an

increase in the number of GPUs does result in an increased

level of performance and this is consistent for calculations of

different sizes, with a single GPU outperforming four CPU

cores in some cases.

Figure 7 shows that the strong scaling performance of the

GPU port of the code is excellent at GPU counts up to 4, the

largest number to which we have access across all types of

GPU tested. As a CPU code ONETEP achieves good scaling on

100’s of cores, scaling to such numbers of GPUs will need to

be explored in the future. Currently, these tests cannot be per-

formed within a reasonable timescale as they require a signifi-

cant amount of the total resources on the available machines

and are limited by the queuing rate of these machines.

Initial investigations have shown that load balancing is com-

plicated by factors such as the cost of the data transfer across

threads. This may vary significantly between MPI processes

depending on variables such as the use of the summation in

stage 6 of the calculation of the charge density (Fig. 3), which

depends on the atomic environment of the NGWFs. Other

issues relating to hardware configuration have also been iden-

tified but require further investigation.

Conclusions

We have presented the first version of the ONETEP code for

GPU-based coprocessors. Our work has focused on porting to

the GPU the parts that involve FFT box-based operations

which are among the most computationally intensive parts of

the code. The performance of some stages of the code is

observed to be accelerated by a factor of up to 303. However,

the transfer of data between the GPU and host machine is a

significant bottleneck in the reported version of the code. As

such, the performance of the ported code on a single GPU is

similar to that of standard ONETEP on a single multicore CPU.

For further performance improvement, extension of the exist-

ing port will be required, such as the development of GPU-

specific algorithms for the interconversion between the FFT

Table 7. Effect of the value used for the dynamic precision switch on the timings for the calculation of the charge density.

Switch

Times

Charge density Total Iterations Total energy

(s) (%) (s) energy (Eh)

CPU reference 2808.461427178460

CPU, full DP 1197 33 3610 23 2808.461427179391

GPU, full DP 378 21 1787 23 2808.461427174129

1 3 1023 322 19 1736 23 (9) 2808.461427174149

1 3 1024 322 18 1748 23 (9) 2808.461427174149

1 3 1025 291 17 1725 23 (14) 2808.461427174090

5 3 1026 285 17 1723 23 (15) 2808.461427174096

1 3 1026 289 16 1777 24 (17) 2808.461427174128

1 3 1027 228 14 1626 23 (23) 2808.461167046019

Decimal places in the total energy that vary from the reference value obtained using CPU cores are highlighted as bold text. Numbers in parenthesis

show the number of iterations performed at single precision.
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box and PPD data structures. This will reduce the current data-

transfer bottlenecks in the GPU code, as will the explicit use of

asynchronous data transfers. Other possibilities lie in refactor-

ing the code to exploit the currently untouched layer of paral-

lelism available through the simultaneous execution of

multiple GPU kernels. A related development would be the

use of batched FFTs, when permitted by the memory require-

ments of the algorithms. This is not currently possible within

the ported ONETEP code as the requisite changes involve

code relating to the communication between MPI threads. A

significant number of processes within ONETEP are not yet

ported to GPUs. These include the simulation cell FFTs, the cal-

culation of the XC energy, and calls to sparse and dense matrix

algebra subroutines. The utilization of both CPU cores and

GPUs simultaneously represents a further challenge, currently

the CPU cores simply pass the computationally intensive oper-

ations to the GPU and then stand idle until the computation is

complete.

The development of the ported code using the PGI accelera-

tor model has resulted in minimal disruption to the existing

Figure 6. Scaling performance of the GPU-enabled version of the ONETEP code. Panels (a), (b), and (c) show the results for calculations performed on the

“tennis ball” dimer, 495 atom cellulose, and 954 atom cellulose systems, respectively. From left to right, the bars denote the timing for the calculation of

the charge density, the local potential integrals, kinetic integrals, NGWF gradient, and unaccelerated code, respectively. An equal number of GPUs and CPU

cores are used in all cases. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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ONETEP code base. As this model will soon support accelera-

tor platforms such as the Intel Xeon Phi and GPUs from AMD,

it will be possible to compile the current code base for execu-

tion on these architectures with minimal effort. Also, the con-

version of this code to OpenACC should be a straightforward

process which will allow compilation of the code using prod-

ucts from other vendors.

The initial investigation into a dynamic precision scheme for

the ONETEP energy calculation has shown it is possible to take

advantage of the enhanced SP capabilities of GPUs. Further

investigations into this issue are justified as it is shown that

many operations may be performed at SP. It is also worth not-

ing that execution of SP operations on a CPU will also result in

a performance benefit. Accordingly, more extensive validation

of the dynamic precision approach and other techniques such

as thresholding are planned.

The developments reported here should be applicable to

more extensive refactoring of the core algorithms of the code

toward emerging massively parallel HPC platforms with many

hundreds of thousands of CPU cores and coprocessors. In that

context, our current MPI-based code will need to be extended

to mixed-mode OpenMP-MPI parallelism and work flow models

of communication should be utilized to improve load balancing.

In summary, the GPU port of ONETEP presented here enables

ONETEP users to utilize the many GPU-enabled machines cur-

rently available. Although the version of the code described here

does not provide a significant performance advantage relative to

a multicore CPUs, it is clear that forthcoming developments will

enhance the performance of the code through the removal of

the current data-transfer bottleneck and allow simulations to be

performed in less time than possible on CPU-only platforms.
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