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Linear-scaling calculation of Hartree-Fock exchange energy
with non-orthogonal generalised Wannier functions
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(Received 24 April 2013; accepted 6 November 2013; published online 2 December 2013)

We present a method for the calculation of four-centre two-electron repulsion integrals in terms of
localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been imple-
mented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component
of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation
functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set
which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine cal-
culations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the
density matrix in systems with a band gap in order to compute the exchange energy with a compu-
tational effort that increases linearly with the number of atoms. We describe the implementation of
this approach in the ONETEP program for linear-scaling first principles quantum mechanical calcula-
tions. We present extensive numerical validation of all the steps in our method. Furthermore, we find
excellent agreement in energies and structures for a wide variety of molecules when comparing with
other codes. We use our method to perform calculations with the B3LYP exchange-correlation func-
tional for models of myoglobin systems bound with O2 and CO ligands and confirm that the same
qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U
approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our
method by performing calculations on polyethylene and polyacetylene chains of increasing length.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4832338]

I. INTRODUCTION

Density Functional Theory (DFT)1 as formulated by
Kohn and Sham2 is widely and routinely used for computa-
tional electronic structure simulations due to its favourable
balance between computational speed and accuracy. The
accuracy of DFT, however, depends on the choice of the
approximation for the exchange-correlation functional.
Within the hierarchy of approximations, often described as
the “Jacob’s ladder”3 of exchange-correlation functionals,
the so-called hybrid exchange-correlation functionals, which
include a fraction of Hartree-Fock exchange, are amongst the
most accurate, as they reduce the error due to self-interaction.
Hartree-Fock theory is often considered as the starting
point for the development of ab initio approximations based
on the wavefunction. The exchange energy component in
Hartree-Fock theory is

EHFx =−
NMO∑
i=1

NMO∑
j=1

zizj

∫∫
ψ∗

i (r)ψ∗
j (r′)

1

|r−r′|ψj (r)ψi(r′)drdr′,

(1)
where {ψ i} are the canonical molecular orbitals (MOs), zi are
their occupancies, and NMO is the total number of molecular
orbitals included in the calculation.
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A MO can be expanded in terms of a set of non-
orthogonal localised functions as follows:

ψi(r) = ϕα(r)Mα
i, (2)

where we have assumed a summation over repeated Greek
indices and we are using tensor notation, distinguishing
between contravariant (superscript indices) and covariant
quantities (subscript indices).4

By inserting (2) into (1), we obtain

EHFx = −
NMO∑
i=1

M
β

i ziM
†α
i

∫∫
ϕ∗

α(r)ϕ∗
γ(r

′)
1

|r−r′|ϕδ(r)ϕβ(r′)drdr′

×
NMO∑
j=1

Mδ
jzjM

†γ
j (3)

=−Kβα

∫∫
ϕ∗

α(r)ϕδ(r)
1

|r−r′|ϕβ(r′)ϕ∗
γ (r′)drdr′Kδγ . (4)

Therefore, the exchange energy is expressed as

EHFx = −Kβα(ϕαϕδ|ϕβϕγ )Kδγ = −KβαXαβ, (5)

where (ϕαϕδ|ϕβϕγ ) is a two-electron (four-centre) electron
repulsion integral (ERI) and

Xαβ = (ϕαϕδ|ϕβϕγ )Kδγ (6)

is the exchange matrix. The matrix K is the density kernel
and is the representation of the one-particle density matrix in
the duals of the {ϕα}. In the quantum chemistry literature, it
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is often simply referred to as the density matrix. The calcu-
lation of the exchange energy is computationally demanding
and this is clearly demonstrated by the form of Eq. (5). For-
mally, the number of ERIs that need to be evaluated scales
asymptotically as ∼ N4

at though in practice it can range be-
tween ∼ N2

at and ∼ N4
at depending on the level of localisation

of the {ϕα} functions. The presence of the Coulomb operator
in the ERIs means that these integrals are long-ranged, even
when the functions ϕα are highly localised, so the exchange
energy is fully non-local as a consequence of the non-locality
of the exchange operator in Hartree-Fock theory.

Sophisticated computational techniques have been
developed which aim to reduce the computational scaling,
as well as the prefactor, for the calculation of the exchange
energy. Often, these techniques aim to achieve linear-scaling
computational cost for systems with non-zero band gap, by
avoiding calculation of ERIs that are either zero or below
a certain threshold and by taking advantage of the locali-
sation of the density kernel. Such linear-scaling techniques
have been developed mainly for the case where the {ϕα} are
Gaussian basis functions, and include the ONX5 and LinK6

methods which are based on prescreening of the ERIs and
the density kernel. In more recent, state-of-the-art approaches,
it has been recognised that the requirement for rigorous up-
per bounds for neglecting integrals can be relaxed in favour
of more tight estimates of integral values which allow finer
control in the precision with which the exchange energy is
calculated.7 Novel ways of reducing memory usage by pre-
dicting or determining a priori the sparsity pattern of the
exchange matrix were recently proposed,8 with some of the
techniques optimised for general-purpose GPU processing.9

Another very interesting approach is that of using a truncated
Coulomb (TC) operator to evaluate the ERIs which can there-
fore be made very short-ranged, and then adding the long
range contribution as a correction with systematically improv-
able approximations.10 Such approaches naturally lend them-
selves to reduced- and linear-scaling schemes, given that the
bulk of the computational effort goes into the calculation of
the ERI tensor, which can be made very sparse via the TC
operator.

Mixed basis set approaches for the evaluation of ERIs
within the context of exchange energy calculations in a Gaus-
sian basis have also been presented. For example, in recent
work each product of contracted Gaussian basis functions is
expanded in a plane wave basis set (which plays the role of
an auxiliary basis set) and its electrostatic potential is nu-
merically integrated with the product of the Gaussians for
the second electron in the ERI.11 Related approaches have
been developed in codes where the {ϕα} are numerical atomic
orbitals (NAOs)12 using fitting functions (resolution of the
identity (RI) technique)13–15 and specially developed NAO
auxiliary (fitting) basis sets.

The use of fitting exclusively within a Gaussian
function context (both the “main” and the auxiliary basis
sets being Gaussian functions) is perhaps the most widely
explored approach for efficient calculation of exchange en-
ergies with several important developments over the years.
Notable developments in this area include the approach to
achieving reduced scaling and smaller prefactors by using

“half-transformed” ERIs by Polly et al.16 and the recently de-
veloped linear-scaling technique by Merlot et al.,17 which is
based on local fitting of either the bra or the ket side of the
ERI that are also combined with fitting of both sides via the
“robust fitting” formula of Dunlap18 that eliminates first or-
der errors. Such approaches have also been extended to wave-
function methods beyond Hartree-Fock such as the method
by Lorenz et al.19 who have developed an approach for con-
figuration interaction singles (CIS) calculations on crystalline
solids based on the calculation of exchange matrix-vector
product tensor in terms of Wannier functions expressed in a
Gaussian basis set.

The non-local nature of the exchange operator makes
it even more challenging to calculate the Hartree-Fock ex-
change energy when extended basis sets such as plane waves
are used. Methods for such calculations have nevertheless
been presented in codes involving plane wave basis sets,20, 21

particularly in the context of calculations on periodic crys-
talline solids. A related approach has been presented by Wu
et al.,22 which even though it has been implemented in a plane
wave basis set, is expected to be asymptotically linear-scaling
in computational cost as it employs Wannier functions, which
are highly localised in systems with a band gap, thus expres-
sion (5) is evaluated entirely in terms of Wannier functions.
ERIs are not explicitly evaluated, rather the action of the ex-
change potential due to products of Wannier functions is eval-
uated using a real-space solution of the Poisson equation in
regions of space which are smaller and independent of the
size of the simulation cell.23

One of the major advantages of being able to calculate
Hartree-Fock exchange energy is the ability to use it in hy-
brid exchange-correlation functionals. These provide superior
accuracy, justified in part by their derivation in terms of the
formally exact adiabatic connection formula and the fact that
they remove (at least part of) the self-interaction error which
is inherent in the available exchange density functionals. In
practice, hybrid functionals comprise of a mixture of Hartree-
Fock exchange and density functionals which are based on the
local density approximation (LDA) and the generalised gradi-
ent approximation (GGA). One of the most popular hybrid
functionals is the B3LYP functional,24 which combines GGA
functionals with Hartree-Fock exchange using an expression
with 3 adjustable parameters. More recent attempts to im-
prove the accuracy of such hybrid functionals use a screened
Hartree-Fock exchange25 term, which decays rapidly at long
range.

In this paper, we present our theoretical developments
in order to implement the calculation of the Hartree-Fock
exchange energy in the ONETEP program for first principles
quantum chemistry calculations with linear-scaling cost.
ONETEP belongs to a new generation of linear-scaling
methods, where the localised functions ϕα (r) are not fixed
basis functions but rather are optimised in situ as dictated by
their chemical environment, in order to achieve the accuracy
typical of very large atomic orbital or plane wave basis sets.
In Sec. II, we present an outline of the theory on which the
ONETEP code is based and the approach which we have
developed for the calculation of ERIs with a computational
cost which is independent of system size by employing an
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auxiliary basis set of spherical waves. The way the ERIs are
combined to build up the exchange energy with linear-scaling
cost is also discussed as well as the calculation of the gradient
of the energy with respect to the localised functions {ϕα},
which is needed for their in situ optimisation. In Sec. III,
we present extensive testing and validation of our method.
The accuracy of the method and the factors that control
it are investigated and compared against calculations with
other methods for the calculation of Hartree-Fock exchange.
We also compare with the DFT+U implementation in
ONETEP,26, 27 which is a method radically different from
Hartree-Fock exchange but it also aims to reduce the self-
interaction error. Finally, we demonstrate the linear-scaling
computational cost of our approach and investigate the
effect of employing an exchange cutoff on polyethylene and
polyacetylene chains of increasing length. We finish the paper
with conclusions and thoughts about future work in this area.

II. THEORY

A. ONETEP

ONETEP28 is based on a reformulation of Kohn-Sham
DFT with norm-conserving pseudopotentials in terms of the
single-particle density matrix, ρ(r, r′). The density matrix is
represented as

ρ(r, r′) = ϕα(r)Kαβϕ∗
β(r′), (7)

where the {ϕα} are Non-Orthogonal Generalised Wannier
Functions (NGWFs).29 The elements of the density kernel
Kαβ are nonzero only if |rα − rβ | < rK , with rα and rβ be-
ing the coordinates of the centres of the NGWFs α and β,
and rK a real-space cutoff length. Each NGWF is centred on a
nuclear coordinate and is strictly localised within a sphere of
radius Rα . Their overlap matrix is

Sαβ =
∫

ϕ∗
α(r)ϕβ(r) dr . (8)

The NGWFs are expanded as a linear combination of psinc
functions,30 Dm(r) = D(r − rm), as

ϕα(r) =
m∈LR(α)∑

m

D(r − rm)cmα, (9)

where the index m runs over the points of the real-space
Cartesian grid rm, which are the centres of the psinc func-
tions, inside the localization region of ϕα , LR(α). The psinc
functions form an orthogonal basis set of bandwidth-limited
delta functions related to plane-waves by a unitary transfor-
mation, and hence they share many of the desirable properties
of these, notably the independence on the nuclear coordinates
and the ability of the basis set to be systematically improved
by increasing a single parameter: the kinetic energy cutoff.
The total energy is minimised self-consistently with respect
to Kαβ and cmα in two nested loops,29, 31 so that the converged
solution satisfies

∂E

∂Kαβ
= 0 ∀ α, β, (10)

and

∂E

∂cmα

= 0 ∀ m,α. (11)

Therefore, the NGWFs are optimised in situ by finding the
set of coefficients cmα that minimise the total energy under
the constraints of idempotency of the density matrix and con-
servation of the number of electrons Ne. The condition in
Eq. (11) refers to the stationarity of the energy with respect
to the NGWFs expressed on the grid.

B. Two-electron integral “engine” for non-orthogonal
generalised Wannier functions

We aim to develop an “integral engine” for the generation
of batches of ERIs. A batch of ERIs in our case consists of all
the ERIs in a quartet of atoms. For example, for atoms A, B,
C, and D, a batch consists of all the ERIs (ϕαϕδ|ϕβϕγ ), where
the index α runs over all the NGWFs on atom A, the index β

over all the NGWFs on atom B, etc., as shown in Figure 1. We
follow a “direct-SCF” approach32 so that no ERIs are stored
on disk but rather they are contracted “on the fly,” as gener-
ated, with the corresponding elements of the density kernel in
order to build the exchange matrix, which is stored in memory
and used to construct the Kohn-Sham Hamiltonian matrix.

C. Straightforward calculation of ERIs

A relatively straightforward approach for the calculation
of the ERIs can be developed by modifying and using the ex-
isting machinery of ONETEP for molecular integrals with NG-
WFs based on Fast Fourier Transforms (FFTs) and the car-
dinality property of the psinc basis set, which ensures exact
calculation of integrals as discrete sums of values on the real
space grid.33 For example, to obtain (ϕαϕδ|ϕβϕγ ), the product
ϕβ(r)ϕ∗

γ (r) is first evaluated on the real space grid. Then its

FIG. 1. Atoms A, B, C, and D whose respective NGWFs (ϕα , ϕβ , ϕγ , ϕδ , not
shown) feature in each term of (5). The densities interacting via exchange are
indicated – the potential of the shaded density acts on the cross-hatched den-
sity. Terms where the localisation sphere of A is disjoint from the localisation
sphere of D vanish. Terms where the localisation sphere of B is disjoint from
the localisation sphere of C vanish. The non-local nature of Hartree-Fock ex-
change is reflected in the fact that terms where the localisation sphere of A is
disjoint from the localisation sphere of B do not necessarily vanish.
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electrostatic (Coulomb) potential is evaluated using FFTs,
employing the spherical cutoff-Coulomb operator34, 35 in or-
der to avoid introducing artificial periodicity. Finally, the
overlap of this electrostatic potential with the product of func-
tions ϕ∗

α(r)ϕδ(r) is computed in the real space psinc grid as a
dot product between the values of these two quantities on the
grid points. Due to the long-range nature of the Coulomb po-
tential this approach is computationally very costly as FFTs
over the entire simulation cell are required, in general. Thus,
contrary to the FFT box technique23 that is used in other parts
of ONETEP to ensure calculation of integrals with cost which
is small and independent of system size, in this case the cost
of single ERI scales proportionally with the system size (the
total number of atoms). We have therefore implemented this
approach not as a method that is viable for applications, but
simply as the “exact” benchmark against which we evaluate
the accuracy of our linear-scaling approach for the exchange
energy, which we present in this paper.

D. Resolution of identity calculation of ERIs

A set of (in general) non-orthogonal functions {fa(r)}Nf
a=1

which are linearly independent can be used to define a Hilbert
space, provided there is also an inner product defined (with an
associated metric) which should be positive definite. Choices
for the metric that are commonly used in quantum chemistry
are the overlap integral,

Opq =
∫

f ∗
p (r)fq(r)dr = 〈fp|fq〉 (12)

and the electrostatic integral,

Vpq =
∫ ∫

f ∗
p (r)

1

|r − r′|fq(r′) dr dr′ = (fp|fq). (13)

We can define the following RI operators based on the above
metrics:

ÎO = |fp〉Opq〈fq | (14)

and

ÎV = |fp)V pq(fq |, (15)

where we assume implicit summation over the repeated p and
q indices. The Opq and V pq are elements of the inverse metric
matrices O−1 and V−1, respectively. Typically, such formulas
are used in DFT approaches in quantum chemistry to fit the
electronic density13–15, 36 in order to speed up the calculation
of the Hartree (Coulomb) energy by computing only 3-centre,
rather than 4-centre ERIs.

Here, we propose a method for the calculation of four-
centre ERIs of NGWFs via RI approaches in such a way that
the computational cost per ERI is small and independent of
the number of atoms. We will derive formulas for both the
overlap and electrostatic metrics. In the case of the overlap
metric, by including identity operators for each product of
NGWFs, we obtain the following for the exchange energy:

EHFx,O = −Kβα(ϕαϕδÎO |ÎOϕβϕγ )Kδγ

= −Kβα(〈ϕαϕδ|fp〉Opqfq |frO
rt 〈ft |ϕβϕγ 〉)Kδγ

= −Kβα〈ϕαϕδ|fp〉OpqVqrO
rt 〈ft |ϕβϕγ 〉Kδγ

= −Kβα〈ϕαϕδ|f q〉Vqr〈f r |ϕβϕγ 〉Kδγ . (16)

In a similar way, if we use the electrostatic metric, we have

EHFx,V = −Kβα(ϕαϕδÎV |ÎV ϕβϕγ )Kδγ

= −Kβα((ϕαϕδ|fp)V pqfq |frV
rt (ft |ϕβϕγ ))Kδγ

= −Kβα(ϕαϕδ|fp)V pqVqrV
rt (ft |ϕβϕγ )Kδγ

= −Kβα(ϕαϕδ|fp)V pq(fq |ϕβϕγ )Kδγ . (17)

If we compare the above equations, we observe that Eq. (16)
has certain numerical advantages, as the three centre overlap
integrals 〈ft|ϕβϕγ 〉 are non-zero only when ft overlaps with
the product ϕβϕ∗

γ , so only a small subset of the auxiliary

functions {fa(r)}Nf
a=1 participate in each three-centre overlap

integral, provided they are localised in space to a similar de-
gree as the NGWFs. In contrast, in each three-centre elec-
trostatic integral (fq|ϕβϕγ ) the entire set of auxiliary func-
tions {fa(r)}Nf

a=1 participates. In both cases, the entire matrix
V needs to be computed.

Our auxiliary basis needs to satisfy two important
requirements: (i) to retain the large basis set accuracy of
plane waves, as embodied in the psinc basis set, and (ii) to
avoid the costly FFTs required to compute the Coulomb
potential of products of NGWFs in the straightforward
calculation approach. To satisfy these requirements, we have
selected truncated spherical waves as our set of auxiliary
functions {fa(r)}Nf

a=1. Truncated spherical waves are solutions
to the Helmholtz equation with boundary conditions enforc-
ing localisation in a sphere of radius a (i.e., solutions of the
Schrödinger equation for the particle in a sphere) and they
are given by

f (r) =
{

jl (qr) Zlm (r̂) r < a,

0 r ≥ a,
(18)

where jl(qr) is a spherical Bessel function and Zlm (r̂) is a
real spherical harmonic. The value of q is chosen so that the
truncation does not introduce a discontinuity, i.e., jl(qa) = 0.
The spherical waves are eigenfunctions of the kinetic energy
operator within the localisation region, with eigenvalue
E = 1

2q2. Therefore, the same kinetic energy cutoff that
determines the plane wave basis can be used to restrict the
values of q and l in the spherical wave basis. Since plane
waves and spherical waves are solutions to the same equation
with different boundary conditions, a set of spherical waves
can be expected to be a suitable basis set to expand a quantity
expressed in plane waves, and already localised in spherical
regions,37 thus satisfying our first requirement. Our second
requirement is also satisfied as analytical expressions for the

potential of truncated spherical waves, uq (r) = ∫ fq(r′)
|r−r′| dr′,

can be derived.38

From now on we shall assume that the functions {fp} are
truncated spherical waves and NSW will be used in place of
Nf to denote the total number of auxiliary functions used in
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the expansion. Our truncated spherical waves, as defined in
Eq. (18), include only real spherical harmonics and are there-
fore real functions.

1. Calculation of the metric matrices

A prerequisite for calculating the ERIs with the RI
formalism is the construction of the electrostatic metric ma-
trix V (13), and, if in the overlap approach, we also need
to construct the overlap metric matrix O (12). The on-site
(i.e., same-centre) elements of both matrices can be calcu-
lated analytically.38 While there are analytical expressions for
the off-site elements of O,39 no suitable expressions exist for
the off-site elements of V. In our implementation, the off-site
elements of both V and O are calculated numerically.

Each off-site matrix element is a three-dimensional
integral of a product of two truncated spherical waves (in
the case of the O matrix) or a product of a truncated spher-
ical wave and the Coulomb potential due to another truncated
spherical wave (in the case of the V matrix), i.e.,

MAp,Bq =
RlocA∫

−RlocA

√
R2

locA−z2∫
−
√

R2
locA−z2

√
R2

locA−z2−y2∫
−
√

R2
locA−z2−y2

fp(r)

× gq(r − RAB)dx dy dz, (19)

where

gq(r) =
{

fq(r) for M = O,

uq(r) for M = V,
(20)

and p = 1, . . . , nSW, q = 1, . . . , nSW (nSW is the number of
spherical waves per atomic centre).

The first class of products vanishes when the two centres
do not overlap (thus making O sparse), the second class of
products never vanishes, making V dense in principle.

However, when certain pairs of auxiliary functions can
be guaranteed never to participate together in the same ex-
pansion, V can be made sparse. For example, if every expan-
sion only involves spherical waves centred on atoms whose
NGWFs overlap, V will have the same sparsity as the NGWF
overlap matrix S and the spherical wave overlap matrix O.40

This is not to say that exchange between atoms whose NG-
WFs do not overlap will vanish, only that certain elements of
the V matrix need never be calculated. Section II D 3 will de-
scribe in detail the choice of expansion centres proposed in
our approach.

The integrand is highly oscillatory, making direct
integration on a Cartesian grid impractical. Numerical inte-
gration on a radial grid converges with fewer integration steps,
but still remains very costly.38 Instead of these approaches, we
propose to expand each truncated spherical wave and the po-
tential thereof into Chebyshev polynomials, whose products,
by virtue of being polynomials themselves, are analytically
integrable.

First, we divide each localisation sphere of A into Ni seg-
ments (disks) parallel to the xy plane, each with a thickness of

z = 2RlocA/Ni (cf. Fig. 2(a)). No Chebyshev nodes are then
placed along the height of the interval 
z (cf. Fig. 2(b)). In

(a)

(b)

(d)

(c)

FIG. 2. Diagram showing how a single element of the metric matrix is com-
puted, here using four intervals (Ni = 4) and fifth-order Chebyshev polyno-
mials (No = 5). (a) The localisation sphere of atom A is divided into spher-
ical segments of height 
z. (b) Each segment is cross-sected at Chebyshev
nodes, yielding a set of circles. (c) Each circle is divided into segments of
height 
y, and each segment is cross-sected at Chebyshev nodes, yielding a
set of line segments. (d) Each line segment is divided into segments of length

x, on each of these the functions making up the integrand are sampled at
Chebyshev nodes, yielding their expansion into Chebyshev polynomials. The
product (integrand) is thus interpolated with a product of polynomials and an
integral over each segment is trivially obtained analytically.

this way, the localisation sphere is sampled with NiNo circular
cross-sections (disks) in total. Each of these is similarly sub-

divided into segments of thickness 
y = 2
√

R2
locA − z2/Ni,

with Chebyshev nodes positioned accordingly (cf. Fig. 2(c)).
In this way, we obtain a sampling with N2

i N2
o line segments.

These are once again subdivided into Ni intervals, each
containing No Chebyshev nodes (cf. Fig. 2(d)).

In each of the resultant N3
i N2

o intervals, the functions
fp (r) and gq (r − RAB) are sampled at No Chebyshev nodes,
yielding the coefficients of expansion of each function into
Chebyshev polynomials. The obtained interpolations, f̃p (r)
and g̃q (r − RAB), are polynomials in x, and thus their prod-
uct (itself a polynomial) is trivial to integrate analytically
over x in each interval. Each of the cross-sections along x in
Fig. 2(d) is piecewise-analytically integrated over in this fash-
ion, yielding a single value, obtained at a y-Chebyshev node,
for subsequent integration over y (cf. Fig. 2(c)). The integral
over z is obtained in the same manner (cf. Fig. 2(b)). Only the
innermost integration (over x) involves products of functions.
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FIG. 3. Chebyshev fits of an example cross-section through the diameter of a localisation sphere. The integrand fitted here is the product of a truncated
spherical wave with l = 2, m = 0, and q = 3.122 a−1

0 and a potential of a truncated spherical wave with l = 3, m = 2, and q = 2.418 a−1
0 , originating on a centre

displaced by [0.5, −0.5, 2.0] a0. The panels demonstrate the convergence of the integrand when Chebyshev-fitted with: (a) 5 intervals, 4th order polynomials;
(b) 5 intervals, 8th order polynomials; (c) 9 intervals, 4th order polynomials; (d) 9 intervals, 8th order polynomials.

The resultant procedure, although cubic in Ni and No,
offers superior performance compared to sampling on a
Cartesian or radial grid, and is easily parallelisable. We
note that the expansions f̃p (r) do not depend on B and
only need to be evaluated once for every atom A. Further
improvement in computational efficiency is obtained by
exploiting the fact that for every matrix block where A and B
are constant and p = 1, . . . , nSW, q = 1, . . . , nSW only nSW

evaluations of fp (r) and corresponding expansions must be
performed. With a similar cost for gq (r − RAB), we obtain a
procedure where the calculation of a matrix block with n2

SW
elements only involves 2nSW expensive operations (evalua-
tions, expansions) and n2

SW extremely cheap multiplications
of Chebyshev coefficients with pre-calculated integrals of
products of Chebyshev polynomials.

We find excellent convergence of the fit with increasing
number of intervals Ni and polynomial order (cf. Fig. 3). In-
terpolation with 12th order Chebyshev polynomials over 12
intervals is already sufficiently accurate, thus (12 × 12)3, or
about 3 × 106, coefficients are needed in practice for every
representation. For fixed ionic positions, the metric matrices
only need to be calculated once, as they do not depend on the
electronic degrees of freedom. If all pairs of centres A and B
are considered, this calculation is quadratically scaling. How-
ever, if the V matrix is made sparse, as described above, the
computational effort of calculating this matrix scales linearly.

2. Calculation of exchange energy

Here, we explain how the calculation of the exchange
energy according to the RI formulas (16) and (17) is carried

out. We first note that in the case of the overlap metric, the
final expression in (16) is not directly used, since it involves
the duals {fr} of the spherical waves, and these are not
localised. Rather, we use the penultimate expression of (16),
which involves the spherical waves {ft} themselves.

The Chebyshev interpolation that was used in construct-
ing the metric matrices is not used in this stage. The products
ϕβ(r)ϕ∗

γ (r) that appear in the kets of (16) and (17) are instead
evaluated on the Cartesian grid on which ONETEP represents
NGWFs, i.e., they are expanded in the psinc basis set. The
spherical waves {ft} (in the case of the overlap metric) or the
potentials thereof (in the case of the electrostatic metric), for
both of which analytical expressions are available, are also
represented in the psinc basis set. Having expanded all quan-
tities ϕβ(r)ϕ∗

γ (r), ft (r), and
∫

ft (r′)/|r − r′|dr′ in terms of the
psinc basis, the desired integrals 〈 ft|ϕβϕγ 〉 and (fq|ϕβϕγ ), are
obtained straightforwardly as dot products over the psinc grid
points, and apart from the fact that the integrands need ob-
viously to be bandwidth limited up to the same plane wave
kinetic energy cutoffs as the psinc functions, they are calcu-
lated exactly using the properties of the psinc basis set.29, 41

The integration regions are localised on NGWF localisation
spheres, which makes the computational effort of evaluating
a single integral independent of the number of atoms.

For the next stage, we need to compute the right-hand
sides of Eqs. (16) and (17). To perform this calculation
more efficiently, we can recognise that, for example, in the
case of the electrostatic metric the quantity obtained so
far, contracted with the relevant blocks of the V matrix,
{V pq(fq |ϕβϕγ )}p=1...NSW is none other but a set of expan-
sion coefficients {cp

βγ }p=1...NSW for the product ϕ∗
α(r)ϕδ(r) in

terms of the truncated spherical waves. The NSW = NcnSW
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is the number of spherical waves in the expansion (Nc is the
number of centres generating the spherical waves). Therefore,
we obtain these expansion coefficients by solving the system
of linear equations {Vqp c

p

βγ = (fq |ϕβϕγ )}q=1...NSW in order to
avoid inverting the V matrix blocks.

When the overlap metric is used, we instead invert blocks
of the O matrix and perform two matrix multiplications to ob-
tain a matrix block Wpt = OpqVqrO

rt , which we then mul-
tiply by a vector of integrals 〈 ft|ϕβϕγ 〉 to obtain the coef-
ficients of expansion. We found that in typical calculations
where nSW is in the order of 200, the matrix inversions are
somewhat ill-conditioned (with condition numbers in the or-
der of 2 × 1010), but this did not pose numerical problems as
typical matrix inversion library routines can easily cope with
such cases.

Subsequently, the expanded potential, contracted for
efficiency with the density kernel over the index γ , with the
following form for the electrostatic metric:(∫

fp(r′)
|r − r′|dr′

)
c
p

βγ Kδγ (21)

and this form for the overlap metric

fp(r) c
p

βγ Kδγ (22)

is acted on the product ϕ∗
α(r)ϕδ(r) that appears in the bras

of (16) and (17). The final step, for both metrics, con-
sists in multiplying this result by −Kβα , yielding a compo-
nent of the exchange energy due to the density ϕβϕ∗

γ acting
on ϕ∗

αϕδ .
The cost of the calculation described above is asymp-

totically constant (independent of system size) for a single
pair (α, β). Thus, the proposed approach is linear-scaling, if
and only if the number of pairs (α, β) increases linearly with
the size of the system. For this to be possible, the exchange
interaction needs to be truncated somehow, which is stan-
dard practice in linear-scaling methods.42 In this approach,
we propose to use a distance-based cutoff, rX, where the con-
tributions from pairs (α, β) whose centres that are further
away than a prescribed distance (e.g., rX = 20 a0) are ne-
glected, effectively making X sparse. This is similar to the
density kernel truncation that can be employed for calculating
the remaining energy terms in ONETEP with a linear-scaling
cost.

3. Choice of centres for the auxiliary basis set

The auxiliary basis set does not need to be complete in
the sense of spanning the full space of square integrable func-
tions on R3. Clearly, it is sufficient that the NGWF products
ϕβϕ∗

γ and ϕ∗
αϕδ and the auxiliary basis span the same sub-

space. Our auxiliary set (18) converges to a complete basis
set within its spherical localisation region in the limit of in-
cluding all its (infinite) functions, which are eigenfunctions
of a Hermitian operator. We thus employ a local “two-centre”
(2c) fitting approach for the products of NGWFs, where we
either fit the bra or the ket side of each ERI.17 For example,
for the electrostatic metric based approach, the formula that

we use to compute the exchange energy is the following:

EHFx,V ,2c = −1

2
Kβα[(ϕαϕδÎV,αδ|ϕβϕγ )

+ (ϕαϕδ|ÎV ,βγ ϕβϕγ )]Kδγ (23)

= −1

2
Kβα[(ϕαϕδ|fp,αδ)V pq(fq,αδ|ϕβϕγ )

+ (ϕαϕδ|fp,βγ )V pq(fq,βγ |ϕβϕγ )]Kδγ , (24)

where ÎV ,αδ is the projection operator consisting only of
spherical waves centred on centres of NGWFs φα and φδ , and
accordingly fp, αδ denotes spherical waves centred on the same
centres.

An important advantage of this two-centre approach is
that the expansion always includes spherical waves centred
only on atoms whose NGWFs overlap, thus making the V ma-
trix sparse. This is a necessary, but not sufficient, condition for
the approach to be linear-scaling.

If spherical wave fitting functions on all four centres were
used, the exchange energy would be evaluated by the follow-
ing four-centre formula:

EHFx,V ,4c = −Kβα(ϕαϕδ|fp,αδβγ )V pq(fq,αδβγ |ϕβϕγ )Kδγ ,

(25)

but this choice is computationally very inefficient, and thus
we have only used it as a means of numerically benchmarking
the 2-centre approach.

It is worth noting that, in contrast to codes with, e.g.,
Gaussian atomic orbitals, where the auxiliary basis set fitting
is used to reduce the total number of functions, in our case
the number of functions is significantly increased when the
auxiliary basis is introduced. For example, a carbon atom is
typically described by 4 NGWFs, but for the same atom our
spherical wave fitting basis set may have l of up to 4 and with
10 distinct values for q for each l (for which we shall subse-
quently use the notation lmax = 4, qmax = 10), for a total of
(1 + 3 + 5 + 7 + 9) × 10 = 250 spherical waves. Thus,
for the two-centre expansion of Eq. (24) we may typically use
250 × 2 = 500 spherical waves to fit each of the 4 × 4 = 16
NGWF products.

4. Gradients for energy optimisation

As we are using direct energy minimisation approaches
based on the conjugate gradients technique in order to op-
timise the energy and reach self-consistency, we need the
derivatives of the exchange energy with respect to the den-
sity kernel and the NGWFs. By differentiation with respect to
the kernel, we obtain

∂EHFx,O,2c

∂Kηθ
= −Kβα

[〈
ϕαϕη|fp,αη

〉
OpqVqrO

rt
〈
ft,αη|ϕβϕθ

〉
+ 〈

ϕαϕη|fp,βθ

〉
Opq VqrO

rt
〈
ft,βθ |ϕβϕθ

〉]
= −(Xθη + Xηθ ) (26)



214103-8 Dziedzic, Hill, and Skylaris J. Chem. Phys. 139, 214103 (2013)

for the overlap metric and

∂EHFx,V,2c

∂Kηθ
= −Kβα[(ϕαϕη|fp,αη)V pq(fq,αη|ϕβϕθ )

+ (ϕαϕη|fp,βθ )V pq(fq,βθ |ϕβϕθ )]

= −(Xθη + Xηθ ) (27)

for the electrostatic metric. It is understood that the exchange
matrices in the above expressions are obtained with different
approximations (expansion in an auxiliary basis set with the
overlap and electrostatic metric, respectively). We point out
that the values of Xθη and Xηθ are strictly identical only in
the limit of an infinite auxiliary basis set that spans the same
subspace as the NGWF product it is used to fit.

In a typical ONETEP calculation, the NGWFs are also
optimised29 and thus the gradient of the exchange energy with
respect to NGWFs needs to be calculated. Formally, the gra-
dient Gε of the exchange energy with respect to an NGWF ϕε

is

Gε(r) = δ

δϕ∗
ε

[−Kβα(ϕαϕδ|ϕβϕγ )Kδγ ]

= δ

δϕ∗
ε

[−KβαXαβ]

= −2Kβεϕδ|ϕβϕγ )Kδγ

= −2Kβεϕδ(r)

(∫
ϕβ(r′)ϕ∗

γ (r′)

|r − r′| dr′
)

Kδγ , (28)

where a functional derivative has been used since we differen-
tiate with respect to a function. Under the density fitting ap-
proximation (assuming the electrostatic metric is used), this
becomes

Gε = δ

δϕ∗
ε

[
−1

2
Kβα[(ϕαϕδ|fp,αδ)V pq(fq,αδ|ϕβϕγ )

+ (ϕαϕδ|fp,βγ )V pq(fq,βγ |ϕβϕγ )]Kδγ

]

= δ

δϕ∗
ε

[
−1

2
Kβα

(
Xαβ + Xβα

)]
, (29)

where we have omitted the dependence of the NGWFs and
the gradient on r for the sake of brevity.

However, as explained in Sec. II D 3, in the 2-centre ap-
proach we fit either the bra or the ket side of each ERI (but
never both), and, consequently, for finite auxiliary basis sets,
the above is not strictly equal to

Gε �= −2Kβε[ϕδ(r)|fp,βγ )V pq(fq,βγ |ϕβϕγ )]Kδγ , (30)

but rather

Gε = −[Kβεϕδ(r)|fp,βγ )V pq(fq,βγ |ϕβϕγ )Kδγ

+Kβα(ϕαϕδ|fp,βε)V pq(fq,βε|ϕβ(r)Kδε]

= −[Kβεϕδ(r)|fp,βγ )V pq(fq,βγ |ϕβϕγ )Kδγ

+Kδεϕβ(r)|fq,βε)V qp(fp,βε|ϕδϕα)Kβα]

= −[Kβεϕδ(r)|fp,βγ )V pq(fq,βγ |ϕβϕγ )Kδγ

+Kβεϕδ(r)|fq,δε)V qp(fp,δε|ϕβϕα)Kδα]

= −Kβε[ϕδ(r)|fp,βγ )V pq(fq,βγ |ϕβϕγ )

+ϕδ(r)|fq,δε)V qp(fp,δε|ϕβϕγ )]Kδγ , (31)

which is a direct consequence of using the 2-centre fitting.
An analogous expression can be derived for the expan-

sion using the overlap metric. The first term in the final square
bracket corresponds to the potential due to the density of the
product of ϕβ and ϕ∗

γ , expanded in spherical waves centred on
β and γ , acting on ϕδ , which must overlap with the NGWF
with respect to which we differentiate, ϕ∗

ε . Here, the implicit
summation involves all NGWFs ϕβ within a cut-off distance
of ϕ∗

ε , all NGWFs ϕ∗
γ that overlap with ϕβ and all NGWFs ϕδ

that overlap with ϕ∗
ε . The second term is the potential due to

the same density ϕβϕ∗
γ , acting on the same ϕδ , but now the

expansion basis involves only the spherical waves centred on
NGWFs ϕδ and ϕ∗

ε .
While the first term is straightforward to compute,

evaluating the second term in the form above is computation-
ally intensive, since the product ϕβϕ∗

γ needs to be re-expanded
every time δ or ε changes. Below we show how a simple re-
ordering of summations and of the expansion operation can
be used to work around this problem.

First, let us denote with P̂κλ the projection operator that
expands a potential |ϕηϕθ ) due to a density ϕηϕ

∗
θ into spheri-

cal waves centred on atoms to which NGWFs κ and λ belong,
i.e.,

P̂κλ = |fq,κλ)V qp(fp,κλ|. (32)

Using this notation we can rewrite (31) as

Gε = Kβεϕδ(r)[P̂βγ |ϕβϕγ ) + P̂εδ|ϕβϕγ )]Kδγ . (33)

We note that P̂βγ |ϕβϕγ ) and P̂εδ|ϕβϕγ ) both tend to
|ϕβϕγ ) as the quality of the auxiliary basis set is improved,
but for a finite auxiliary basis these three quantities are not
strictly interchangeable, which is the reason that the two terms
in the final square bracket of (31) are not identical.

We now rewrite (31) again using real-valued NGWFs,
and explicitly denoting the summations to indicate the order
in which they can be performed efficiently

Gε = 2
∑

δ

ϕδ (r)
∑

β

Kβε
∑

γ

Kδγ P̂βγ |ϕβϕγ )

+ 2
∑

δ

ϕδ (r) P̂εδ

⎛
⎝∑

β

Kβε
∑

γ

Kδγ |ϕβϕγ )

⎞
⎠, (34)

where the factor of 2 is due to the fact that the NGWFs are
now real-valued.

For the calculation of the first term in (33), each potential
|ϕβϕγ ) only needs to have its generating density expanded in
terms of spherical waves originating on the same centres that
generate the density. For the calculation of the second term,
we observe that the quantities summed over β and γ are all
connected with the same ε and δ. We can therefore sum them
over β and γ and then expand them in one go. Furthermore,
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the sums over γ do not depend on ε, which makes it possible
to store and re-use their values, further improving efficiency.

III. RESULTS AND DISCUSSION

A. Validation and tests

1. Accuracy of the metric matrix

Our first validation test focused on assessing how the ac-
curacy of the metric matrix V obtained through Chebyshev
interpolation (cf. Sec. II D 1) depends on the number of in-
tervals and the order of the Chebyshev polynomials used. We
chose an isolated chlorosilane molecule in a (45 a0)3 cubic
box as our test case. The psinc kinetic energy cutoff was
827 eV. The quality of the auxiliary basis set was kept at
lmax = 3, qmax = 10 for a total of 160 spherical waves per
centre, yielding a dense 1280 × 1280 matrix V (cf. Fig. 4).
13.2% of the elements were zero, owing to the orthogonality
of same-site spherical waves with different angular momenta.
Out of the remaining elements, 96.7% were larger in magni-
tude than 0.0001 and 22.8% were larger in magnitude than
0.1. We found that obtaining the elements of V to an accuracy
of the sixth decimal was sufficient for stable calculations.

Figure 5 shows the resulting accuracy of the matrix
elements as a function of the order of the Chebyshev polyno-
mials and the number of intervals used. Since the exact values
were not available for comparison, we used an extremely
accurate calculation (No = 16th-order polynomials on
Ni = 16 intervals) as reference. The results demonstrate
that, e.g., interpolation with 10th-order polynomials over
10 intervals is already sufficiently accurate. We propose No

= 12, Ni = 12 as the default setting.

FIG. 4. Structure of the metric matrix V for chlorosilane. Values larger than
0.1 are drawn in black, values between 0.0001 and 0.1 are drawn in dark grey,
non-zero values below 0.0001 are drawn in light grey, values of exactly zero
are shown in white.
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FIG. 5. Number of correct decimals in the V matrix: (a) average, (b) for the
element with the maximum error, for various values of the interpolation order
(No) and number of intervals (Ni).

2. Stability, accuracy of the exchange matrix
and exchange energy

Our next test was aimed at assessing the minimum
quality of the auxiliary basis set sufficient for obtaining
chemically accurate results. Furthermore, we wanted to
ensure that the two-centre expansion remains stable when
auxiliary basis sets of reasonable quality are used. Our initial
tests indicated that, for instance, with extremely inaccurate
auxiliary basis sets, e.g., with only 24 spherical waves per
centre (lmax = 1, qmax = 6, yielding NSW = 48), the obtained
exchange matrix was accurate to only 3.2 decimals (we
explain below how this was calculated), which was not
enough to recover the broken bra-ket symmetry by simple
symmetrisation. Thus, unlike with the four-centre expansion,
which remains stable even for extremely poor qualities of
the auxiliary basis set (only becoming inaccurate), here it
becomes crucial to demonstrate that the calculation remains
stable at least for moderately accurate auxiliary basis sets.
Again, we chose an isolated chlorosilane molecule as a test
case. A cubic box (42.0 a0)3 in size was used, with the psinc
kinetic energy cutoff set at 1292 eV. This slightly higher value
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(corresponding to a psinc spacing of 0.4 a0) was chosen,
because it allows spherical waves of up to qmax = 20 (for
lmax ≤ 4) to be represented on the psinc grid without aliasing.
The metric matrix was calculated to a higher-than-default
accuracy (No = 14, Ni = 14) to ensure that the Chebyshev
interpolation would not introduce any significant further error.

Our results confirm that the calculation becomes unsta-
ble only when the quality of the auxiliary basis set is very
poor, i.e., when either the maximum angular momentum lmax

or the number of Bessels functions qmax used is insufficient
to adequately represent the fitted charge densities. This insta-
bility manifests itself as inaccuracies in the NGWF gradient,
causing the NGWF optimisation to stall about half an order
of magnitude above the default threshold. For example, with
only qmax = 4 Bessel functions it was not possible to converge
the calculation regardless of how big lmax was. As more Bessel
functions were added, the noise in the gradient quickly dimin-
ished to a level that allowed convergence to default thresholds.
Fig. 6 demonstrates this for lmax = 3. Similarly, when lmax

was too small, e.g., when spherical waves with only s and p
symmetry (lmax = 1) were used, convergence was not reached
regardless of the number of Bessel functions used in the
expansion.

Fig. 7 makes it clear that the underlying reason for
impaired convergence is that the exchange matrix X becomes
less accurate as the quality of the auxiliary basis set is made
worse. We find that the average number of correct decimals

in X, calculated as c(X) = 1
N2

SW

NSW∑
i=1

NSW∑
j=1

log10 |(X − XT )ij | is a

useful metric of how adequate the quality of the auxiliary ba-
sis is, and an excellent predictor of the stability of the calcu-
lations. None of the calculations with c(X) < 3.8 converged,
while all calculations with c(X) > 3.8 did. The above gives
us confidence that the number of spherical waves needed for
a stable operation of the proposed approach is not excessive
and is easily achievable on standard psinc grids (with corre-
sponding kinetic energy cutoffs in the range of 800–1200 eV).
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Having ensured that our calculations are stable, we now
show how the accuracy of the calculated energies depends on
the quality of the auxiliary basis set. Our metric of accuracy is
the fraction of exchange energy correctly recovered (with the
direct O(N2) approach as reference) and we show the results
in Fig. 8. For our test case, the auxiliary basis sets that were
barely sufficient for stable operation already recover 96%
of exchange energy, while using the high-quality basis sets
(lmax = 4, qmax ≥ 12) allowed us to recover more than 99.8%.

Subsequently, we set out to demonstrate that for reason-
able qualities of the auxiliary basis set, the 2-centre expansion
that we propose does not introduce significant errors com-
pared to the more straightforward (but impractically expen-
sive) 4-centre expansion, both when the exchange-interacting
NGWFs overlap and when they do not (in the latter case the
approaches are strictly equivalent). Our test case, which nec-
essarily needed to be small, in order to permit calculations
with the 4-centre approach, was a hydrogen-bonded water
dimer, on which we ran calculations for varying lengths of the
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FIG. 8. Fraction of the exchange energy recovered, depending on the quality
of the auxiliary basis set. The points represent results of calculations, the lines
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FIG. 9. Inter-molecular exchange energy between two hydrogen-bonded wa-
ter molecules, as a function of hydrogen bond length.

hydrogen bond. In contrast to the remaining validation tests,
we chose an auxiliary basis set of only moderate quality, by
setting lmax = 3, qmax = 10. In order to make our presentation
clearer, we only show the exchange interaction between the
H2O molecules, i.e., we subtract the intra-molecular exchange
of each H2O molecule with itself in each case. Fig. 9 shows
that the energies obtained with the 2-centre expansion are ex-
tremely close to those obtained with the 4-centre expansion
and to the results of the reference FFT-based approach. As
the inter-molecular exchange decays very rapidly, to gain bet-
ter insight into the magnitude of the error, we show the rela-
tive error of the two approaches, with the FFT-based approach
as reference, with a separate plot, Fig. 10. This plot clearly
demonstrates that the inaccuracy of both approaches (which
is an expected consequence of density fitting) is very similar
and does not exceed 6% even when the inter-molecular ex-
change energy decays to as little as 10−6 kcal/mol. The error
in the total exchange energy was in the order of 0.7% for both
approaches, regardless of the hydrogen bond length, which
we believe is very good for this quality of the auxiliary basis
set.

Finally, we demonstrate how the accuracy of the 2-centre
expansion is similar to that of the 4-centre expansion regard-
less of the quality of the auxiliary basis set. Since the latter

FIG. 10. Relative error in the inter-molecular exchange energy between two
hydrogen-bonded water molecules, as a function of hydrogen bond length.
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approaches, because they use 2 and 4 centres, respectively. Calculations with
lmax = 0 did not converge and are not shown. Calculations with lmax = 1
did not converge with the 2-centre approach and their results (denoted with
crosses) are only shown for completeness.

approach is very computationally expensive, we chose a small
system (chlorosilane) as our test case. In Fig. 11, we show
the percentage of exchange energy recovered by the two ap-
proaches, with the O(N2) FFT approach as reference. Even
with only 5 Bessel functions per centre, both approaches eas-
ily recover over 99% of exchange energy. With the default
setting of 10 Bessel functions per centre, both approaches are
able to recover over 99.9% of exchange energy. For a fixed
total number of spherical waves in the expansion, the 2-centre
expansion performs better, although, as expected, for poor
qualities of the auxiliary basis set (at lmax ≤ 1) it is not accu-
rate enough for the calculation to converge. Neither approach
converges when only s spherical waves are used (i.e., for
lmax = 0).

The accuracy of relative energies is demonstrated in
Fig. 12, on the example of a bond-stretch of the same chlorosi-
lane molecule. With a high-quality auxiliary basis set (lmax

= 4, qmax = 10), the bond-stretch energy of 6.309 kcal/mol
was calculated with an error < 0.02 kcal/mol with both the
proposed 2-centre approach and the 4-centre approach.

B. Bond-stretch curve for ethene

We subsequently compared the bond-stretch curves
obtained with ONETEP with those obtained from CASTEP
and NWCHEM for three functionals: PBE, HF, and B3LYP.
For the non-local functionals, the ONETEP calculations were
performed with the approach put forward in this work and
with the direct O(N2) approach as reference. A kinetic en-
ergy cutoff of 827 eV was used in ONETEP and CASTEP,
and NWCHEM used a cc-pVQZ basis set. The agreement (cf.
Fig. 13) between ONETEP and CASTEP is excellent (given
that the same norm-conserving pseudopotentials were used),
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and these results agree remarkably well with NWCHEM, con-
sidering that the first two approaches use plane waves and
pseudopotentials, while NWCHEM uses Gaussian basis sets
and performs an all-electron calculation.

Similar bond-stretch curves were produced for four
additional qualities of the auxiliary basis set. As it would be
difficult to present them on a single plot, we instead show
(cf. Fig. 14) how the predicted equilibrium bondlength varied
depending on the quality of the auxiliary basis set, for the cal-
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FFTs to obtain the potential when calculating exchange (cf. Sec. II C).
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culation with a pure Hartree-Fock approach, which was the
most sensitive. We find good convergence of the equilibrium
bondlength with increasing number of spherical waves used
in the expansion. Already with 250 spherical waves the result
was no further than 0.003 a0 from the reference ONETEP re-
sult and the CASTEP result, and no further than 0.007 a0 from
what NWCHEM predicted.

C. Demonstration of accuracy: Geometry
optimisation of small molecules

Here, we demonstrate the accuracy of the proposed
approach by using its implementation in ONETEP to per-
form geometry optimisation for eight molecules from the
T-96R test set43 using the B3LYP functional. Two local
functionals (LDA, PBE) were used for comparison. Results
(equilibrium bondlengths obtained from full geometry opti-
misation) were compared against ONETEP’s direct O(N2) ref-
erence implementation and against CASTEP. Each molecule
was geometry-optimised in a (30 a0)3 cubic box, with a plane-
wave kinetic energy cutoff of 1292 eV. The cutoff-Coulomb
technique34 was used to ensure that the periodic images of
the molecules did not interact. A high-quality auxiliary basis
set was used (lmax = 4, qmax = 12), for a total of NSW = 600
spherical waves used in the expansion.

Fig. 15 shows the deviation from the experimental44

bondlengths, which are given at the top of each panel. Our
aim was not to compare how well each functional reproduces
experimental bondlengths, but rather to demonstrate that our
predictions with B3LYP agree with CASTEP to a similar de-
gree as for PBE or LDA calculations. Table I summarises the
findings, which show that this is indeed the case.

D. Comparison against DFT+U

DFT+U is a computationally inexpensive and well-
established approach for including a self-interaction correc-
tion in DFT calculations, at least for certain atomic sites
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(such as transition metals) for which this correction is crucial.
Here, we aim to compare results obtained with standard DFT
calculations with the B3LYP hybrid exchange-correlation
functional (employing the approach put forward in this
work) against those of the DFT+U implementation26, 27

available in ONETEP. Given that the two approaches set out to
include the same physical effect, albeit in a radically different
manner, the results they produce should be consistent, at least
qualitatively. By using the two techniques as implemented
within the same code (ONETEP), we minimise the potential

TABLE I. Mean absolute deviation (MAD) between the equilibrium
bondlength obtained with ONETEP with respect to CASTEP. SW denotes
the approach put forward in this work, FFT denotes the reference O(N2) ap-
proach. The MAD between the SW and FFT approaches was 0.0016 a0.

XC functional Mean absolute deviation (a0)

LDA 0.0064
PBE 0.0057
B3LYP-SW 0.0075
B3LYP-FFT 0.0074

FIG. 16. The truncated myoglobin models used in our calculations (a) with
CO bound, and (b) with O2 bound.

sources of differences related to the code and the underlying
numerical framework (such as differences due to basis sets or
pseudopotentials).

We have used the two methods to investigate the rel-
ative binding energies of CO and O2 to a truncated myo-
globin model, similar to the model of Oláh and Harvey.45

Larger models, which also included portions of the protein,
were used previously by Cole et al.46 to study ligand (CO and
O2) discrimination in myoglobin with the DFT+U approach
in ONETEP. The truncation we applied was dictated by rea-
sons of computational efficiency – as our implementation of
Hartree-Fock exchange is not yet parallel-ready, calculations
on the larger models would take an impractically long time.
The chosen models are shown in Fig. 16. The psinc kinetic
energy cutoff was 827 eV and the NGWF localisation radius
was taken as 9 a0.

The choice of the correct ground state for the unligated
system was not obvious, as the triplet and quintet states
lie very close in energy. Pure DFT calculations with the
PBE exchange-correlation functional predicted the triplet to
be more favourable (by 8.8 kcal/mol), while the result of
DFT+U varied depending on the choice of U. As U was
increased, the triplet ground state became progressively less
favourable and at higher values of U it was the quintet that
was favoured, with a cross-over at about U = 2.5 eV. With
B3LYP the triplet state was always preferred, regardless of
the quality of the auxiliary basis set (although the energy dif-
ference varied by as much as 1.5 kcal/mol). The ground state
of the complex with O2 was also carefully chosen, and with
all approaches we found that an open shell singlet (a singlet
diradical) is more favourable than a closed-shell singlet, in
agreement with the observations by Cole et al.46 on the larger
myoglobin models. Magnetic symmetry was artificially bro-
ken to obtain the singlet diradical state through the application
of effective magnetic fields of opposite sign to the Fe 3d and
O2 manifolds, following the approach outlined in Ref. 46.

Fig. 17 shows the binding energy of both ligands. CO is
seen to be always preferred, at least for the range of values of
U studied, and both ligands are predicted to be binders, ex-
cept at the highest U. The binding energies from the B3LYP
calculations are very close to the DFT+U values when
U ≈ 2 eV.

Fig. 18 shows the relative binding energy of the lig-
ands (with positive values indicating preference for CO). We
compare the results obtained with DFT+U for our truncated
model, the DFT+U results of Cole et al.46 obtained for larger
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models, and the results obtained with B3LYP, employing the
technique proposed in this work (for the truncated model).
The figure demonstrates that as the size of the auxiliary ba-
sis set is increased, the results converge rapidly. Our B3LYP
relative binding energy coincides with the DFT+U value ob-
tained when U is set to about 3 eV. The similar shape of the
dependence of DFT+U predictions on U between our trun-
cated model and the three models of Cole et al.46 demon-
strate that our model, although drastically truncated, remains
physically sound.

It is pleasing to be able to demonstrate that the two
approaches give near-quantitative agreement for certain val-
ues of U, as would be expected.
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E. Linear scaling and effect of truncation

Finally, to demonstrate that the proposed approach is
indeed linear-scaling, we benchmarked the code on two hy-
drocarbon polymers of increasing length: a chain of polyethy-
lene, which is an example of an insulating material, and
a chain of polyacetylene, which is an example of a small-
bandgap system (“model conductor”). The calculations em-
ployed an NGWF radius of 7 a0. Exchange interactions were
truncated beyond rX = 15 a0, 20 a0, 25 a0, and infinity (no
truncation). Spherical waves up to lmax = 4, qmax = 10 were
used in the expansion. 10th-order polynomials over 10 inter-
vals were used in the Chebyshev interpolation to calculate the
metric matrix, V. The density kernel was not truncated. The
quadratically scaling FFT-based approach (cf. Sec. II C) was
used as reference.

In Fig. 19, we show the relative error in exchange energy,
with respect to the reference calculation. We note that the total
error for both systems remains below 0.2% and is due to the
finite size of the auxiliary basis set. The additional error in-
curred by truncating exchange interactions beyond a distance-
based cutoff is very small in comparison – below 0.1% for the
model conductor and below 10−5% for the model insulator,
which makes the curves for the latter overlap so that they are
indistinguishable on the plot.

The limited system sizes tractable with the current se-
rial implementation make it difficult to determine the asymp-
totic behaviour of the error. Only in the case of the conducting
system and only for the crudest approximation (rX = 15 a0),
the relative error increases monotonically, and even then it is
expected to be modest, even for systems with thousands of
atoms, to the best that can be inferred with a limited num-
ber of data points. Further investigation is needed to demon-
strate with certainty that the error committed by truncating ex-
change at reasonable cutoffs (say, rX = 20 a0) is well-behaved
for the largest systems of interest in DFT calculations. We
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acetylene) is linear-scaling when a finite cutoff for exchange is assumed, and
is already faster than the reference calculation for the smallest system studied,
C4H6.

plan to demonstrate this once the implementation of our ap-
proach is parallel-ready.

Fig. 20 shows how the total time of the calculation
depends on system size and exchange truncation cutoff. As
expected, the proposed approach is linear-scaling when a
finite exchange interaction cutoff is employed. Calculations
with no exchange truncation scale quadratically; however,
in this size regime the quadratic-scaling term does not yet
dominate the calculation time.

IV. CONCLUSIONS

We have presented a method for the calculation of four-
centre two-electron repulsion integrals in terms of NGWFs.
We have developed this method within the ONETEP program
where the NGWFs are expressed in terms of a basis set of
psinc functions, which is equivalent to a plane wave basis set
and systematically improvable. We have used our ERI method
to implement the calculation of Hartree-Fock exchange en-
ergy in the context of pure Hartree-Fock calculations and
DFT calculations with hybrid exchange-correlation function-
als. During these calculations, the NGWFs are optimised

in situ, as influenced by their chemical environment. This ap-
proach allows calculations to be performed with the accuracy
of large, high-quality basis sets, as we have confirmed by tests
on a wide variety of molecules in which we have compared
with results obtained with codes which use plane-wave and
Gaussian basis sets. In these tests, we obtain excellent agree-
ment with the plane wave calculations or the Gaussian basis
set calculations, provided a large, high-quality Gaussian basis
set has been used.

We have also investigated in depth the dependence of the
accuracy of our ERI algorithm on numerical calculation pa-
rameters, related to the spherical waves which are used as an
auxiliary basis set, in order to choose default values suitable
for high-accuracy calculations.

The DFT+U approach, which is also available in the
ONETEP code, aims to introduce the same physical effects
as hybrid functionals but via a completely different method-
ology. We have performed calculations on small myoglobin
models using both our approach (B3LYP functional) and
DFT+U, with identical calculation parameters, and have con-
firmed that the two methods have strong qualitative agree-
ment. Quantitative agreement can be obtained for the appro-
priate value of the Hubbard U parameter, or in other words
our implementation of hybrid exchange-correlation function-
als could be used to parameterise the U on small model sys-
tems in order to obtain the most physically suitable U values
for calculations on larger systems.

Even though our ERI code is so far serial, we were
also able to perform calculations on large enough numbers
of atoms to demonstrate linear-scaling of the computational
effort with respect to the number of atoms, taking advan-
tage of the strict localisation of the NGWFs. We have per-
formed single-point energy calculations on polyethylene and
polyacetylene chains of increasing length, up to C30H62 and
C30H32. With the future parallelisation and optimisation of
the ERI code, we expect to be able to run Hartree-Fock and
hybrid DFT calculations on several thousand atoms.

The methods we have presented in this paper are the
foundation for many important future developments within
the ONETEP program which depend on the availability of
ERIs. These will include methods for ground-state proper-
ties such as the more recent screened-exchange functionals,
wavefunction-based approaches such as Møller-Plesset and
Random Phase Approximation (RPA) perturbation theories,
as well as methods for electron addition or removal ener-
gies such as GW perturbation theory and methods for excited
states such as various levels of configuration interaction.
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