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a b s t r a c t

The Fourier interpolation of 3D data-sets is a performance critical operation in many fields, including
certain forms of image processing and density functional theory (DFT) quantum chemistry codes based
on plane wave basis sets, to which this paper is targeted. In this paper we describe three different
algorithms for performing this operation built from standard discrete Fourier transform operations,
and derive theoretical operation counts. The algorithms compared consist of the most straightforward
implementation and two that exploit techniques such as phase-shifts and knowledge of zero padding
to reduce computational cost. Through a library implementation (tintl) we explore the performance
characteristics of these algorithms and the performance impact of different implementation choices on
actual hardware. We present comparisons within the linear-scaling DFT code ONETEP where we replace
the existing interpolation implementationwith our library implementation configured to choose themost
efficient algorithm. Within the ONETEP Fourier interpolation stages, we demonstrate speed-ups of over
1.55×.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Fourier interpolation of discretely sampled data has a wide va-
riety of uses across various domains—these include postprocess-
ing of magnetic resonance imaging data [1], quantum-mechanical
calculations using density functional theory [2] (DFT—not to be
confused with the discrete Fourier transform which we do not ab-
breviate in this paper) and imaging for synthetic aperture radar [3].

Many DFT codes are based upon plane-waves and, as a result,
depend on efficient FFTs and Fourier interpolation. A number of
developments have been implemented to improve the efficiency
of Fourier transform algorithms within plane-wave codes.

Inmany cases, entire rows or columns of the region being trans-
formed may be zero-valued; this can occur for many reasons in-
cluding the inputs representing highly localised functions [4], in
order to support certain boundary conditions [5] or the need to ex-
pand quantities in plane waves with a higher cutoff frequency [6].
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Since three-dimensional Fourier transforms can be expressed as
a sequence of one-dimensional ones, it is possible to omit some
transforms entirely when they operate only on zeros, enabling
higher performance.

When performing a three-dimensional transform of a grid con-
taining a sphere of non-zero values, PARATEC avoids transforms on
the zero-valued rectangular regions around a sphere of non-zeros
as it delocalises in each dimension [4]. The CPMD software package
uses this property for transforms of the local potential and charge
density between real and reciprocal space [6]. Dugan et al. [5] also
perform this optimisation for a three-dimensional Poisson solver
in the BigDFT package. This technique is used in ONETEP in the
existing Fourier interpolation implementation, and is the one we
compare against.

In some instances, parts of the Fourier transform output may
not be required. Goedecker et al. describe an algorithm for max-
imising the communication–computation overlap of a three-
dimensional Fast Fourier Transform in which the upper-half of
the frequency spectrum is discarded in all three dimensions [7].
The development of efficient parallel FFTs for use in DFT calcula-
tions have also been addressed elsewhere [8]. The nature of the
parallelism within ONETEP (1 core per FFT operation) contrasts
with those in plane-wave codes (many cores per FFT operation)
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meaning that the issue of communication of data between cores is
not relevant in this work.

Pruned FFTs [1,9] reduce computational cost by omitting
unnecessary calculation on zeros in the input and avoiding calcu-
lation of unused outputs. They are so-named since the unneces-
sary expressions are ‘‘pruned’’ from the butterfly graph of the FFT.
Pruned FFTs have been used to reduce the cost of interpolating im-
age data [1]. Pruned FFTs require a custom implementation that
can be specialised to the zero/non-zero pattern of the input data
and the pattern of needed output values. In order for pruned imple-
mentations to provide competitive performance, they must be op-
timised to a similar extent as available FFT libraries. Efficient code
generation for these transforms has been explored [9], achieving
modest speed-ups over vendor libraries.

The Fourier interpolation algorithm is necessary in many DFT
codes such as CASTEP [10], VASP [11], QUANTUM ESPRESSO [12]
CPMD [13] and ABINIT [14]. It is also used within the ONETEP [15]
(Order-N Electronic Total Energy Package) linear-scaling code for
quantum-mechanical calculations based on DFT, which we use as
a case study here.

In this paper, we explore three algorithms for interpolating a
signal sampled over a regular three-dimensional grid, although
these techniques are also applicable to signals sampled over
different numbers of dimensions. All three algorithms make use
of existing Fast Fourier Transform (FFT) implementations, enabling
existing and future optimisations in these routines to be leveraged.
The algorithms we analyse have different operation counts.
We present derivations of these operation counts and stand-
alone benchmarks in order to analyse the relationship between
operation count and actual performance. Within each algorithm
choice, we also explore different implementation variations. These
variations do not change the operation count, but may result in
different performance characteristics over different problem sizes
and architectures.

To demonstrate the utility of our techniques, we benchmark
their effect within the ONETEP code. A central quantity in DFT is
the charge density. ONETEP performs Fourier interpolation during
construction of the charge density [2], which forms one of themost
performance critical operations during the DFT calculation [16].

In Section 2 we provide an outline of the ONETEP theory, fo-
cusing on the parts that use Fourier interpolation. In Section 3 we
discuss the Fourier interpolation algorithms and their implemen-
tation on different architectures and platforms. Section 4 contains
results and discussion of synthetic benchmarks whilst Section 5
contains the results obtained from our implementation of the al-
gorithms within ONETEP. Finally, we present our conclusions in
Section 6.

2. ONETEP

ONETEP [15] (Order-N Electronic Total Energy Package) is a
linear-scaling quantum chemistry software package for DFT calcu-
lations. The linear-scaling of computational costwith respect to the
number of atoms within ONETEP is achieved through the exploita-
tion of the ‘‘nearsightedness of electronicmatter’’ principle [17,18].
The theoretical details of theONETEPmethodology are discussed in
detail elsewhere [15] and are only summarised here. The ONETEP
program is based on a reformulation of DFT in terms of the one-
particle density matrix, ρ


r, r′


, which is the basis of many linear-

scaling DFT approaches [19] where the memory and processing
requirements increase linearly with N . This is achieved by taking
advantage of the exponential decay of the density matrix in sys-
tems with a band gap.

In ONETEP the density matrix is expressed in the following
form:

ρ

r, r′


=


α


β

φα (r) Kαβφβ


r′

, (1)
where the ‘‘density kernel’’ K is the densitymatrix expressed in the
duals of {φα (r)}, the set of non-orthogonal generalised Wannier
functions (NGWFs) [20]. The NGWFs are constrained to be strictly
localised within spherical regions centred on atoms and their
shape is optimised self-consistently by expressing them in a psinc
basis set [21,22].

Psinc functions are centred on the points of a regular real-
space grid and are related to a plane-wave basis through Fourier
transforms. As a result ONETEP is able to achieve linear-scaling
computational cost whilst retaining the large basis set accuracy
characteristics of plane-wave codes [23].

2.1. Rationale for Fourier interpolation in ONETEP

In order to maintain numerical stability it is important to only
perform operations that are compatible with the psinc basis set
which is connected to plane waves via a unitary transformation.
For example, we have shown in the past [24], that calculation
of the kinetic energy by using finite differences is equivalent
to an arbitrary switch to a different basis set (e.g. polynomials)
and limits the accuracy of the calculation [24]. The same applies
for the computation of the electronic density and local potential
integrals which we are examining in this work in terms of their
requirements for Fourier interpolation. Thus, quantities such as
the kinetic energy operator and the Hartree potential have to be
calculated in reciprocal space but the products of local orbitals for
building the electronic density and local potential matrix elements
have to be done with Fourier interpolation. In a technical context,
a significant difference between ONETEP and plane-wave codes is
the size of the datasets: The localisation of the NGWFs in ONETEP
means that FFT operations are performed over relatively small
datasets whilst FFT operations in plane wave codes are performed
over the entire simulation cell. This difference means that it is
feasible to perform atom-localised FFTs in ONETEP on a single core,
removing the overheads associated with parallel FFTs from these
operations. Parallel FFTs are also used within ONETEP, but only for
the calculation of theHartree potentialwhich is not discussed here.

2.2. Use of Fourier interpolation in ONETEP

The form of the electronic energy in ONETEP is:

E =


αβ

Kαβ

⟨φβ |T̂ |φα⟩ + ⟨φβ |V̂ps,loc|φα⟩

+ ⟨φβ |V̂ps,nonloc|φα⟩


+ EH[n] + Exc[n] (2)

where the first three terms contain the kinetic integrals, local
pseudopotential integrals and non-local pseudopotential integrals
respectively, and the next two terms are the Hartree and ex-
change–correlation energy functionals respectively [20]. We can
clearly see the explicit dependence of the electronic energy on the
density kernel, K , and NGWFs {φα (r)} and, most importantly, the
electronic density n(r). The calculation of the electronic energy
within ONETEP takes the form of two nested loops: the density
kernel, and NGWFs are optimised within the inner and outer loops
respectively [25].

In order to perform operations involving NGWFs, the FFT box
technique is used [24]. An FFT box is a box of grid points centred
on the atom associated with an NGWF and large enough to contain
any overlapping NGWF localisation spheres in their entirety. This
representation permits the use of plane-wavemethodology to per-
form momentum space operations with a computational cost that
is independent of the size of the simulation cell (i.e. the number
of FFT box operations performed in a calculation is proportional to
the number of NGWFs, the exact value being determined by the
sparsity of the density kernel).
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Fig. 1. Operations performed for the calculation of the charge density in ONETEP. FFT box sizes roughly correspond to data-sizes rather than physical relationships. We use
the expressions rc , rf , gc and gf to denote vectors on the coarse-real, fine-real, coarse-reciprocal and fine-reciprocal grids, respectively. Step (1) combines both real-valued FFT
boxes into a complex one; this eases implementation but has no mathematical impact. Steps (2)–(4) correspond to the ‘‘padding-aware’’ technique of Fourier interpolation
(Section 3.1.2). Step (5) computes the product


β Kαβφβ (r)φα(r) which due to the interpolation, avoids aliasing. Step (6) accumulates the α-specific contribution into the

charge density (which is distributed across nodes). The steps are repeated for each α to construct the full charge density.
The FFT box operations [24] that utilise the Fourier interpola-
tion algorithm are used in the calculation of quantities such as the
charge density and local potential. The calculation of these quan-
tities contribute significantly to the bottlenecks within ONETEP;
the exact fraction of runtime depends upon the method used and
the scale of the calculation and can range from 60% to 90%.

The charge density n (r), the central quantity in DFT, is given by
the diagonal elements of the density matrix

n (r) = ρ (r, r) =


αβ

φα (r) Kαβφβ (r) . (3)

The local pseudopotential contribution to the energy, is calculated
in terms of local potential integrals ⟨φα|V̂ps,loc|φβ⟩ which, due to
the orthogonality and cardinality of the psinc basis are simply
the dot product of psinc functions common to both φα (r) and
V̂ps,locφβ (r). The computational algorithms used to calculate the
charge density and local potential integrals are illustrated in Figs. 1
and 2, respectively, and are discussed in detail in reference [16].

Typically, an algorithm performing operations upon FFT boxes
contains these steps:

1. The real-space FFT box is transformed to reciprocal space.
2. The reciprocal space FFT box is ‘‘upsampled’’ to a fine grid. This

doubles the number of points in each dimension of the box. In
reciprocal space this corresponds to adding new zero-valued
components.

3. An operator may be applied to the fine grid.
4. A second FFT is performed to return the FFT box to a real space

representation. By construction, most values on the reciprocal
space fine grid are zero. The techniques discussed in this paper
exploit this to reduce computational cost.

The case where no operator is applied corresponds to an
‘‘upsampling’’ of the real-space FFT box to a finer representation.
This operation is used in the construction of the electronic density,
which is a computationally intensive part of ONETEP. The process
is necessary as ONETEP performs point-wise multiplications
between FFT boxes during all calculations and the interpolation
process serves to prevent aliasing errors [2].

The ONETEP subroutine fourier_interpolate performs
the interpolation of an FFT box (actually two due to implemen-
tation details) and is used during the calculation of quantities
such as the local potential integrals. In the computation of the
charge density, two interpolated FFT boxes are immediately sub-
ject to a point-wise multiply. The ONETEP routine fourier_
interpolate_product implements this operation.

We only explore techniques for the ‘‘upsampling’’ of a real-
space representation since these can be easily isolated from the
rest of the ONETEP code and represent a significant portion of
ONETEP’s execution time. However, all techniques we explore still
involve computing a reciprocal-space representation of the FFT box
and therefore could be used to apply operators in reciprocal space.
For the ‘‘phase-shift’’ approach,wewould require that the operator
is applicable point-wise to the grid and is linearly separable. This
is the case for all operators used in ONETEP.

3. Adaptation to hardware

ONETEP is capable of running on a number of different architec-
tures and platforms. Obviously, different platforms have different
performance characteristics which means code optimised for one
platformmaywork sub-optimally on another. In addition, ONETEP
makes use of libraries for linear algebra and Fourier transform op-
erations that may have different performance characteristics.

Here, we explore the factors that affect how the FFT box
operations in ONETEP perform on different platforms and develop
a mechanism whereby ONETEP can adapt the implementations it
uses for improved performance across multiple platforms.

We have focused our analysis on the ‘‘upsampling’’ operation
(Fourier interpolation) described previously. This operation takes
a signal discretised on a regular three-dimensional grid and using
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Fig. 2. Operations performed for the calculation of local potential integrals in ONETEP. FFT box sizes roughly correspond to data-sizes rather than physical relationships.
We use the expressions rc , rf , gc and gf to denote vectors on the coarse-real, fine-real, coarse-reciprocal and fine-reciprocal grids, respectively. Steps (1)–(3) correspond to
the ‘‘padding-aware’’ technique of Fourier interpolation (Section 3.1.2). Step (4) applies the local potential operator to φβ (rf ) through a product with local potential operator
in the form of an FFT box. Steps (5)–(7) transfer this result back to the coarse-grid by discarding higher-frequency components. Steps (8) and (9) extract the subpart of the
result which overlaps with φ∗

α(rc) and use it to compute the final integral.
Fourier interpolation, doubles the number of sample points in all
three dimensions.

In a manner similar to the ‘‘plan’’ step used by many FFT li-
braries, we adapt to different hardware through the evaluation of
different implementation techniques at runtime. This allows us to
choose the best-performing implementation for a particular target.

The implementation choices we explore for the upsampling
operation fall into two different categories:

Algorithmic These consist of variations to the algorithm choice
we use to perform the upsampling. The different algo-
rithms we explore have different operation counts. Since
operation count is not a direct predictor of performance,
the best choice of algorithm may vary across platforms.

Platform-dependent These consist of implementation variations
that do not change the underlying algorithm. They may
exploit different performance properties of the underly-
ing hardware and libraries, but do not change the number
of operations that need to be performed.

We now describe three algorithms that can be used to perform
the upsampling operation. All produce the same result, but employ
Fourier transforms in different ways. Each have different operation
counts but due to platform-specific factors, these do not directly
correlate with performance.

3.1. Upsampling algorithms

The trigonometric interpolation of a signal is often referred to as
‘‘discrete sinc interpolation’’ in the literature [26,27]. This is due to
the fact that interpolation of a signal via convolution with the sinc
function is equivalent to interpolation via the Fourier series [26].

We have evaluated three different algorithmic choices for im-
plementing upsampling in ONETEP. The first is themost commonly
used approach to trigonometric interpolation, the other two re-
duce computation cost by omitting calculations on values known
to be zero.

Although it is possible to interpolate a signal of size n to any size
m ≥ n, our requirements for standardONETEP calculations are that
m = 2n, so our operation count derivations and benchmark results
are for this case. We also note that the ‘‘phase-shift’’ approach
(Section 3.1.3) can only generalise to the casewherem is an integer
multiple of n whereas the other two techniques are applicable to
any case wherem ≥ n.

The algorithms we present make use of the discrete Fourier
transforms as a building block, enabling implementations to
exploit the extensive performance optimisation that both vendor-
supplied and third party libraries have been subject to.

This work shares the commonality that it avoids unneces-
sary computation on input or production of output from a multi-
dimensional FFT by decomposing into one-dimensional FFTs and
discarding unnecessary work and/or data. However, it is often not
possible to apply these savings in every dimension, as to do so
would require a customised Fourier transform implementation.
We examine how it is possible to perform a Fourier interpolation
operation with the computation and production of no redundant
datawhatsoever using only standard Fourier transform implemen-
tations. In doing so, we hope to bridge the gap towards achieving
maximum possible hardware performance.

3.1.1. Naïve interpolation
This technique relies on zero-padding in the frequency domain

to add new zero-amplitude higher frequency components. Such a
strategy is described by Yaroslavsky [27] as the ‘‘commonly used
method’’. We describe the steps for a 1D input signal of n samples:

1. Perform a Fourier transform to convert the input signal to its
frequency domain representation.
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Fig. 3. Application of 2× upsampling to a 1D input signal with an odd number of samples. The even case is similar, but requires special handling of the coefficient fn/2
(Nyquist frequency component).
2. Zeros are inserted into the frequency representation to add new
zero-amplitude high frequency components. A Discrete Fourier
Transform produces both positive and negative frequencies
which must both be augmented. For 2× upsampling, the
frequency domain representation now has 2n components. The
addition of these zeros is typically called ‘‘padding’’.

3. An inverse Fourier transform is applied to the padded signal,
giving an output signal of 2n samples.

We illustrate this algorithm for odd numbers of samples in
Fig. 3. The frequency components fn/2 to fn−1 of the transform are
in fact the negative frequencies produced by the Fourier transform
arranged in reverse order. Consequently, the padding step which
augments both positive and negative frequencies with zeros
corresponds to inserting zeros into the middle of the frequency
representation.

In the case when n is even, a single coefficient (fn/2) represents
both the positive and negative Nyquist frequency. In this case, the
padding step duplicates this componentwith half itsmagnitude on
either side of the zero padding. Understanding of this detail is not
necessary for comprehension of these techniques, but we include
it for completeness.

The one-dimensional algorithm generalises to the multidimen-
sional case as is illustrated for the 3D case in Fig. 4.

In the three-dimensional case, the inverse FFT step operates on
input data that contains 87.5% zeros due to the introduced padding.
The next two techniques aim to improve efficiency by avoiding
numerical operations performed on the padding values.

3.1.2. Padding-aware interpolation
The interpolation technique we call ‘‘padding-aware’’ is the

currently employed method for performing three-dimensional
interpolation in ONETEP. A similar strategy has been explored
by Dugan et al. [5] for three-dimensional Poisson solvers. Like
the ‘‘naïve’’ approach it relies on zero-padding in the frequency
domain. However the computation cost is reduced through the
following two observations:

1. The multi-dimensional Fourier transform (and its inverse) is
separable (i.e. a multi-dimensional Fourier transform can be ex-
pressed in terms of a number of one-dimensional transforms).

Specifically, a discrete Fourier transformmust be performed
for each one-dimensional slice through the dataset in each di-
mension. For a three-dimensional dataset of dimensions n ×

n × n, n2 one-dimensional transforms (the area of a face)
Fig. 4. Transforms and data movement for the naïve approach (Section 3.1.1) to
Fourier interpolation in the three-dimensional case. Transparent regions denote
zero-valued coefficients. The input data-set is transformed to the frequencydomain,
padded with zero-magnitude frequency components, then transformed back using
a single three-dimensional inverse Fourier Transform. The input to the inverse
transform contains 87.5% zeros.

must be applied over three faces. This corresponds to 3n2 one-
dimensional Fourier transforms of size n to implement the
three-dimensional one.

2. When the three-dimensional inverse-FFT of the naïve approach
is expressed in terms of one-dimensional inverse-Fourier trans-
forms, many of these transforms operate on inputs which are
entirely zero. As the output of such a transform is also entirely
zero, there is no need to perform these transforms.

The ‘‘padding-aware’’ approach performs the interpolation in
the same manner as the ‘‘naïve’’ approach except for the final in-
verse three-dimensional Fourier transform. This step is performed
using one-dimensional inverse Fourier transforms, applied in a
per-dimension manner. We illustrate this technique in Fig. 5.

The inverse transform is applied to a dataset of dimensions
2n × 2n × 2n. Inverting an arbitrary input would require 4n2 one-
dimensional transforms of size 2n in each dimension, resulting in
12n2 transforms in total.

However, exploiting knowledge of padding, the number of
transforms that need to be performed in each dimension becomes



F.P. Russell et al. / Computer Physics Communications 187 (2015) 8–19 13
Fig. 5. Transforms and data movement for ‘‘padding-aware’’ interpolation
(Section 3.1.2). Transparent regions denote zero-valued coefficients. The ‘‘padding-
aware’’ algorithm transforms input data to the frequency domain and pads it in
the same manner as the ‘‘naïve’’ algorithm. We show only the backward transform
in which the three-dimensional inverse Fourier transform is implemented using
one-dimensional inverse Fourier transforms, applied in a per-dimension manner.
Transforms on entirely zero one-dimensional slices through the dataset can be
omitted entirely. The remaining one-dimensional transforms operate on inputs
containing 50% zeros.

different:

1. In the z dimension, only 1/4 of the 4n2 slices through the z face
contain non-zero values. The slices containing non-zero values
are located on square shaped regions of area n2/4 at the corner
of each face. Hence, the inverse transform in this dimension
only requires n2 one-dimensional inverse FFTs to compute.

2. In the y dimension, 1/2 of the 4n2 slices through the y face
contain non-zero values. The slices containing non-zero values
are located on two rectangular shaped regions of area n2 at the
highest and lowest values of x. The inverse transform in this
dimension requires 2n2 one-dimensional inverse FFTs.

3. In the x dimension, all the 4n2 slices through the face contain
non-zero values. The inverse transform in this dimension
requires 4n2 one-dimensional inverse FFTs and so no saving is
made by exploiting sparsity.

This technique can be considered as a form of pruning (Sec-
tion 3.1) that does not require a pruned FFT implementation. How-
ever, it cannot reduce operation costs in the one-dimensional case
nor reduce costswhen the underlying one-dimensional transforms
operate on a mixture of zero and non-zero values.

To implement the inverse transform, the ‘‘padding-aware’’
approach requires 7n2 one-dimensional inverse Fourier transforms
in total as opposed to the 12n2 that would be required without
exploiting padding.

This approach only exploits padding applied in different dimen-
sions to the one being transformed. Consequently, this scheme
cannot exploit padding in the one-dimensional case. Each one-
dimensional transform still operates on 50% zeros, so it is apparent
that it is possible to reduce computation further.

3.1.3. Phase-shift interpolation
The final algorithm we explored uses Fourier transforms in

such a way as to avoid ever operating on zeros introduced by
padding. The algorithm for efficient sinc interpolation described
by Yaroslavsky [27] closely resembles our ‘‘phase-shift’’ approach.
Yaroslavsky’s method uses shifted discrete Fourier transforms
which can be parameterised by shifts in both the time and fre-
quency domains. Yaroslavsky describes the algorithm in a more
abstract sense whereas we explore concerns that affect efficient
implementation and analyse and compare performance for con-
crete implementations of these algorithms on a real-world appli-
cation.

We describe our technique for the one-dimensional case first,
then generalise to the multi-dimensional one. In Fig. 3 we can see
that the inverse discrete Fourier transform step produces a signal
whose odd numbered samples are identical to the original input.
Since we possess the original input, there is no need to recalculate
these values. We only need to calculate the values of the new
interpolated samples.

In order to calculate the interpolated samples, we construct a
new signal which consists of the original signal shifted in space by
half a sample. The points at which this new signal is sampled are
themidpoints between samples of the original signal. By interleav-
ing the samples of these two signals, we produce the interpolated
signal.

We illustrate this technique for the one-dimensional case in
Fig. 6. The steps of interpolating a one-dimensional signal are as
follows:
1. Perform a Discrete Fourier transform on the input signal.
2. Multiply each coefficient in the momentum representation by

a pre-calculated phase shift. The multiplication applies a phase
shift that shifts each frequency component by 1/2 the sampling
interval.

For a signal with n samples, the phase shift for frequency f
can be computed as eifπ/n.

As before, the case where the input signal has an even num-
ber of samples requires special handling. Shifting the Nyquist
frequency by half the sampling interval causes it to become zero
at all sample points. Consequently, this coefficient is always set
to zero.

3. An inverse Discrete Fourier transform is applied to themodified
Fourier coefficients. The result corresponds to the values at the
midpoints between the sample points of the original signal.

4. The original input signal and the midpoint values are inter-
leaved to produce the interpolated signal.

As with the ‘‘naïve’’ approach, we can generalise by repeating
the process in multiple dimensions. We illustrate this in Fig. 7.
Interpolation in eachdimensiondoubles the number of data points,
until we have 8× the number of original samples. We choose to
interpolate in the least cache-efficient dimension first so that the
most executed interpolations are more cache efficient.

3.1.4. Operation count analysis
We provide an analysis of the operation count of the three

presented algorithms. We consider the relative operation counts
for each when applied to a 3D grid with n points along each
dimension. Forward andbackward (inverse) Fourier transforms are
assumed to have the same operation count.

We consider the cost of a one-dimensional Fourier transform of
n points to have a cost of n log n operations. Our derived operation
counts will have constant factors relative to the cost of single
transforms.

A multi-dimensional Fourier transform can be expressed in
terms of a set of 1D transforms applied to each pencil-shaped slice
through the data-set in each dimension.

For a grid of size n × n × n, we perform n2 transforms in each
dimension, each having an operation count of n log n. This gives an
operation count of:

3n2n log n (4)

= 3n3 log n. (5)
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Fig. 6. The interpolation of a one-dimensional signal via the application of a phase shift (Section 3.1.3). The original signal is transformed via a correlation in the frequency
domain to produce sample values at the midpoints of the original sampling locations. These are interleaved with the original signal to produce the interpolated signal. Zero
padding is not required during any step.
We derive operation counts for each algorithm as follows:

Naïve Interpolation. This technique (Section 3.1.1) requires one
forward three-dimensional Fourier transform of size n and one
backward three-dimensional transform of size 2n. This is shown
for the one-dimensional case in Fig. 3 and the generalisation to
the three-dimensional case in Fig. 4. The operation count can be
derived as:

3n3 log n + 24n3 log 2n (6)

= 27n3 log n + 24n3 log 2. (7)

Padding-Aware Interpolation. This technique (Section 3.1.2) per-
forms a 3D forward transform of size n. It then performs 1D back-
ward transforms of size 2n in each dimension with counts of n2,
2n2 and 4n2. The effect of the application of each set of transforms
is shown in Fig. 5. The operation count can be derived as:

3n3 log n + (n2
+ 2n2

+ 4n2)(2n log 2n) (8)

= 3n3 log n + 14n3 log 2n (9)

= 17n3 log n + 14n3 log 2. (10)

Phase-Shift Interpolation. This technique (Section 3.1.3) performs
seven interpolations, each requiring n2 1D convolutions. Each con-
volution consists of a forward and backward transform of size n,
and a point-wise multiplication of size n. Fig. 6 illustrates applica-
tion of the convolution to calculate the ‘‘midpoint values’’. Fig. 7
illustrates why seven interpolations are necessary for the three-
dimensional case.

The convolutions incur an additional 7n3 multiplies for the
entire interpolation. Wemultiply this term by the unknown factor
c since we do not know the cost of these multiplies relative to
the whole interpolation (though c will be ≤1). The total operation
count of the Fourier transforms is:

7n2(2n log n + cn) (11)

= 14n3 log n + 7cn3. (12)
Fig. 7. Application of phase-shift interpolation (Section 3.1.3) in one dimension to
compute sample points for a three-dimensional input signal. The process results in
8 versions of the input signal subjected to different phase shifts (one of which is the
original). These are then interleaved to produce the final interpolated output.

We conclude that in terms of operation count, the phase-shift
interpolation technique, should be most efficient for sufficiently
large sizes of n. This is to be expected given that it never operates
on zeros and therefore should not perform redundant work.

Operation counts allow us to compare the theoretical perfor-
mance of each algorithm for large values of n. Assuming no other
limiting factors, the padding-aware and phase-shift algorithms
are capable of providing throughput improvements of 1.59× ( 2717 )
and 1.93× ( 2714 ) over the naïve algorithm, respectively. Over the
padding-aware algorithm, the phase-shift approach may provide
a 1.21× ( 1714 ) improvement in throughput.

In practice, operation counts are not an effective predictor of
performance for problems for similar magnitude. Hardware char-
acteristics such as cache size and memory bandwidth significantly
influence achievable performance. For this reason, we have ex-
plored adaptation as a mechanism by which we choose the most
appropriate implementation for a given problem size, hardware
platform and underlying FFT library.
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3.2. Platform-dependent implementation choices

We have implemented the algorithms described in Section 3.1
in a small C library: tintl (Trigonometric INTerpolation Library)
[28]. For each algorithm, we have implemented different varia-
tions, intended to exploit the performance characteristics of dif-
ferent platforms.

3.2.1. Real versus complex interpolation
ONETEP performs interpolation on real-valued data-sets. How-

ever, it always performs the interpolation of two data-sets simul-
taneously. If one of the data-sets is multiplied by i and added to
the other, a complex-valued data-set with the same number of el-
ements is formed. Interpolationmay be performed on this data-set
and the real and imaginary parts of the result separated afterwards
to retrieve the two interpolated real-valued data-sets.

This provides us with two implementation choices for the in-
terpolation of two real-valued data-sets. We can either interpolate
each one individually, or combine them to form a complex-valued
data-set, interpolate that, then split to form the result.

The Fourier transform is inherently complex-to-complex, so
interpolation on the combined data-set is much simpler to im-
plement and requires only complex-to-complex transforms. Com-
plex-to-complex transforms can easily be performed in-place,
since the input and output consist of the same number of complex-
valued elements.

Interpolation of a real-valued data-set requires complex-to-
real, real-to-complex, and possibly complex-to-complex trans-
forms (depending on the algorithmused). The real-to-complex and
complex-to-real transforms typically have slightly differing input
and output data sizes, preventing them from being performed in
place.

Either strategy may have different performance behaviour on
different architectures since:

• The working set when interpolating two data-sets simultane-
ously will be twice as large as interpolating a single one indi-
vidually. This may lead to reduced cache utilisation on some
architectures.

• Utilising only complex-to-complex transforms allowsmany op-
erations to be performed in-place, reducing memory require-
ments.

• The complex-to-complex, real-to-complex and complex-to-
complex transforms may have undergone differing levels of
performance optimisation.

• Combining, and in particular separating (since the interpolated
data is 8× larger) involves access to additional memory
regions, increasing the size of the working set. Additionally,
this data movement costs time and bandwidth but performs no
mathematical operations, leading to reduced efficiency in terms
of FLOPs per byte moved.

We have implemented interpolation variants for all three
upsampling algorithms that interpolate each pair of real data-sets
separately and combined as a complex-valued data-set.

3.2.2. Batched FFTs versus individual FFTs
The padding-aware and phase-shift implementations perform

a large number of one-dimensional Fourier transforms. For all
dimensions except one, performing a one-dimensional Fourier
transform on a pencil-shaped slice through an array will result in
data being accessed from non-contiguous locations. On processors
with caches, each accesswill typically read a larger amount of data,
called a cache-line. If the other data in this cache-line is unused,
bandwidth has been wasted.

Performing Fourier transforms in batch has a number of ben-
efits. For input data arranged in the appropriate manner, it is
possible to vectorise across corresponding elements in the differ-
ent inputs and reduce control flow overhead [29]. Use of vector
instructions (such as SSE and AVX on Intel processors) enables re-
ductions in both the number of instructions required for computa-
tion and for loads and stores.

Despite the advantages of batch transforms, we have also ex-
plored the approach of using individual Fourier transforms. When
using individual transforms,we reduce temporary storage require-
ments to a pencil-shaped region of the array being interpolated (as
opposed to another array of the same size). Also, since the data be-
ing operated onwill undergo other processing after the first Fourier
transform (multiplication by phase factors and an inverse trans-
form), performing individual FFTs ensures that the data is highly
likely to be in cache after the transform. In contrast, batched trans-
forms operate on larger amounts of data, so later operations may
require data that has since been evicted from the cache.

4. Synthetic results and discussion

We implemented the three interpolation algorithms described
in our C library, tintl (Trigonometric INTerpolation Library) [28].
For each interpolation algorithm, the library measures execution
times for the different platform-specific variations in order to
select the highest performing one. Hence, our results use the
highest-performing code variants for each algorithm.

In this section, we present results exploring the impact of
our platform-specific variations in isolation, hence the term ‘‘syn-
thetic’’. In Section 5, we look at the effectiveness of our techniques
in a real application context.

4.1. Algorithmic

Wecompared the performance of the three algorithmic choices.
For our benchmarking, we used a system containing 2.0 GHz In-
tel Xeon E5-2620 ‘‘Sandy Bridge’’ CPUs. All interpolations were
performed single-threaded. Version 11.0 of Intel’s Math Kernel Li-
brary [30] (IMKL) was used as the underlying library for perform-
ing FFTs. These results are shown in Fig. 8. A problem size of n
corresponds to the upsampling of a split-format complex-valued
n × n × n data-set.

The performance of the FFT routines such as those available
in FFTW [31] and Intel’s Math Kernel library [30] are typically
higher with transform sizes that can be expressed as a product of
small primes (smooth numbers). The ‘‘Cooley–Tukey’’ algorithm
which forms the basis for many FFT implementations [31] can
decompose a transform of composite size, but other algorithms
must be employed to handle prime-sized cases. As a consequence,
it is difficult to see a consistent performance trend for an FFT
implementation across a range of transform sizes unless the results
have been filtered to k-smooth numbers for some appropriately
chosen k.

ONETEP increases the size of its FFT-boxes in order to avoid
choosing transform sizes that give unfavourable performance. We
show our performance results filtered to problem sizes of the form
2a3b5c7d11e13f where e+ f < 2. This is both more representative
of the transform sizes used by ONETEP andmakes the performance
trends for these sizes clearer.

We find that on our ‘‘Sandy Bridge’’ system, for problem
sizes between 75 and 120 (those most relevant to ONETEP) that
the padding-aware and phase-shift approaches provide average
throughput improvements of 1.49× and 1.84× against the naïve
approach, respectively. For the same range of problem size, the
phase-shift approach provides an average throughput improve-
ment of 1.22× against the padding-aware approach. The relative
performance of all three algorithms is close to that derived in Sec-
tion 3.1.4 using operation counts.



16 F.P. Russell et al. / Computer Physics Communications 187 (2015) 8–19
Fig. 8. Time taken to interpolate three-dimensional complex-valued data-sets in
split format using a single thread running on a 2.0 GHz Intel Xeon E5-2620 CPU
with Intel MKL 11.0 as the underlying FFT library. Results have been filtered to only
include sizes that are of the form 2a3b5c7d11e13f where e + f < 2.

4.2. Platform-dependent

In this section, we look at the performance impact of our
platform-dependent implementation variations. These do not
change the underlying algorithm or operation count, but represent
different ways of mapping the algorithm onto the underlying FFT
libraries.

For our implementation, we benchmark different implementa-
tions at runtime and select the best-performing variant, allowing
us to take advantage of platform-dependent variation.

4.2.1. Complex versus real interpolation
ONETEP, our application of interest, applies Fourier interpo-

lation to real-valued data-sets. It typically interpolates two real-
valued data-sets simultaneously. This can either be implemented
as two interpolations of real-valued data-sets or the single inter-
polation of a complex-valued data-set (the real data-sets are com-
bined as the real and imaginary components of a complex-valued
input and split afterwards).

We note that FFTW (and IMKL, which supports the FFTW
interface) has the ability to accept input and output data in split
format, which represents complex-valued data as two separate
arrays containing the real and imaginary components. This offers
the possibility of avoiding the steps of combining and separating
real-valued data-sets when interpolating both simultaneously.
However, this functionality is not suitable for our purposes since
an FFTW plan requires a fixed offset in memory between the real
and imaginary arrays. The data-sets we interpolate are at varying
locations in memory, so this requirement is too restrictive.

The interpolation of complex-valued and real-valued data-sets
have a number of differences including:

• If interpolation is performed using complex-valued data, the
real data-setsmust be combined to forma complex data-set and
split apart after the interpolation.

• Interpolation of real-valued data often requires additional
storage since it may involve real-to-complex or complex-to-
real transforms that cannot be performed in-place.

We plot results for interpolating two real-valued data-sets in
Fig. 9 for each of our three algorithms. Each plot represents the
ratio of the execution time of an implementation performing two
real-valued interpolations relative to the same interpolations per-
formed using an implementation combining and separating two
real-valued data-sets and interpolating purely complex-valued
data.

On this platform, we observe that the best choice of data format
for the ‘‘padding-aware’’ algorithm depends strongly on the prob-
lem size. For the ‘‘naïve’’ and ‘‘phase-shift’’ strategies, operating
Fig. 9. Cost of interpolating two three-dimensional real-valued data-sets
separately relative to combining both into a complex-valued data-set, interpolating,
then splitting into two real-valued results. Benchmarking was done using a single
thread running on a 2.0 GHz Intel on E5-2620 CPU with Intel MKL 11.0 as the
underlying FFT library. Results have been filtered to only include sizes that are of
the form 2a3b5c7d11e13f where e + f < 2.

on a combined data-set is typically more efficient than perform-
ing separate interpolations (though we note that this is inherently
a platform-specific result).

4.2.2. Batched FFTs versus individual FFTs
In the ‘‘phase-shift’’ implementation, multiple interpolations

are performed in which the input and output data-sets are the
same size (Fig. 7). Each interpolated block represents a new set of
interpolated samples. All blocks are later interleaved to form the
higher-resolution representation of the input.

Interpolation of each block in the multi-dimensional case is
performed using the technique shown in Fig. 6 (excluding the
interleave step). The one-dimensional process is performed on
each one-dimensional ‘‘pencil’’ through the block in the dimension
being interpolated.

Eachone-dimensional FFTmay access data fromnon-contiguous
areas ofmemory (depending on the stride of the dimension) giving
poor cache utilisation. Batched FFTs allow FFT implementations to
improve memory system utilisation by performing multiple FFTs
simultaneously whose data is co-located in memory.

Batched FFTs can be expected to be at least as fast as performing
the same set of transforms individually. However, for our ‘‘phase-
shift’’ implementation, we wish to optimise memory utilisation
across a forward and backward FFT and a correlation (the element-
wise multiplication of phase-shift coefficients).

We compare two different implementations:

• The ‘‘batched’’ implementation in which the forward and
backward FFTs are applied to entire blocks. The element-wise
multiplication is also applied to the entire block.

• The ‘‘individual’’ implementation in which the forward trans-
form is applied to a single ‘‘pencil’’, the pencil undergoes
element-wise multiplication then the backward transform is
applied.

The first implementation enables leveraging the performance
improvements afforded by using batched FFTs. The second
improves temporal locality of memory accesses by moving all
manipulation of each ‘‘pencil’’ closer together in the algorithm.We
present the timings of interpolating a given data-block using the
‘‘individual’’ approach relative to the ‘‘batched’’ approach in Fig. 10.

We observe that for smaller problem sizes, using batched FFTs is
usually more efficient for all three dimensions. For larger problem
sizes, it becomes more efficient to use the ‘‘individual’’ approach
in the x dimension (in which values are contiguous) but more un-
predictable for the other two dimensions. Hence, for many larger
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Table 1
Properties of problems on which ONETEP benchmarks were run.

Abbrev. Psinc energy cutoff (eV) NGWF radius (Bohr) FFT-box size Atoms Description

amyloid 600 7.0 75 × 75 × 75 1712 Amyloid fibril
nanotube 800 8.0 99 × 99 × 99 700 Carbon nanotube
cellulose 800 8.0 99 × 99 × 99 1881 Cellulose
lysozyme 1000 8.0 99 × 99 × 99 2615 Lysozyme complex
tbl600 600 8.0 91 × 91 × 91 181 ‘‘Tennis ball’’ monomer
tbl800 800 8.0 99 × 99 × 99 181 ‘‘Tennis ball’’ monomer
tbl1000 1000 8.0 117 × 117 × 117 181 ‘‘Tennis ball’’ monomer
tbl1200 1200 8.0 117 × 117 × 125 181 ‘‘Tennis ball’’ monomer
Fig. 10. Within the ‘‘phase-shift’’ implementation, cost of interpolating using
individual transforms relative to the use of batched FFTs. Results are shown for
interpolation in the x, y, and z directions, each of which has different data strides.
Benchmarkingwas done using a single thread running on a 2.0GHz Intel on E5-2620
CPU with Intel MKL 11.0 as the underlying FFT library. Results have been filtered to
only include sizes that are of the form 2a3b5c7d11e13f where e + f < 2.

problem sizes, tintl will use choose to perform phase-shift inter-
polation using a mixture of batched and individual transforms.

Having presented the performance of our interpolation imple-
mentation in isolation, we now look at effectiveness for a real ap-
plication context in the following section.

5. ONETEP results and discussion

Details of the problems chosen for the tests within ONETEP are
given in Table 1. The problems were chosen to be representative
of typical ONETEP use. The 181 atom ‘‘tennis ball’’ monomer is a
very small system by ONETEP standards and is used as a reference
in which we consider the effect of varying the size of the FFT
boxes (by changing the kinetic energy cutoff) whilst maintaining
the same molecular structure. The 700 atom carbon nanotube
represents a structurally well-ordered system containing only a
single atom type, permitting an ideal distribution of the workload
across multiple cores. The 1881 atom cellulose system also has a
well ordered structure but contains multiple atom types. The 1712
atom beta-amyloid fibril and 2615 atom lysozyme complex are
both larger, non-crystalline biomolecular systems and approach
the problem size for which ONETEP is designed. However, it is of
note that the lysozyme system has a relatively small FFT-box size
compared to the other test systems.

We modified ONETEP to use tintl and compared performance
against standard ONETEP. Version 3.5.9.1 of ONETEP was used for
the benchmarks and was compiled with version 13.1.3 of the Intel
Fortran compiler. Version 11.0 update 5 of Intel’s MKL was used as
the underlying library for performing FFTs.

Each ONETEP benchmark was run with MPI parallelisation
with a maximum of 8 atoms assigned to each MPI process. All
of the benchmarks except for the ‘‘Tennis Ball’’ problems were
parallelised across multiple nodes.
Fig. 11. Performance impact of optimal algorithm selection on Fourier inter-
polation routines inside ONETEP on different test problems. FFT box sizes are
shown in parentheses. Results are shown for the fourier_interpolate and
fourier_interpolate_product routines and for the aggregated timings of
both routines.

Benchmarking was performed on the ‘‘ARCHER’’ UK national
supercomputing service [32]. Each node contained two 2.7 GHz,
12-core Intel Xeon E5-2697 v2 ‘‘Ivy Bridge’’ processors. One
ONETEP MPI process was assigned to each of the 24 physical cores
of each node (12 per socket).

In a manner similar to our automatic selection of the best
platform-specific implementation variations, tintl times all three
algorithmic choices at runtime then provides the fastest imple-
mentation to ONETEP. For our benchmarks, the ‘‘phase-shift’’ im-
plementation is typically chosen.

Standard ONETEP uses the ‘‘padding-aware’’ approach (Sec-
tion 3.1.2), interleaving two real-valued data-sets so that interpo-
lation can be performed on complex-valued data.

We present speedup results in Fig. 11 restricted to the
ONETEP routines that perform Fourier interpolation. We present
speedup values for the fourier_interpolate and fourier_
interpolate_product routines (see Section 2) and also for the
aggregated timings of both. These routines are used in the calcu-
lation of the local potential and charge density respectively. The
unmodified code is seen to spend between 15% and 53% of its en-
tire runtime in these two routines. The lowest value of 15% is seen
for the amyloid fibril problem which has a particularly small FFT
box, all other problems spend more than 29% of their runtime in
these routines.

Bothfourier_interpolate andfourier_interpolate_
product interpolate two real-valued data-sets but the latter rou-
tine performs a point-wise multiply between the two resulting
data-sets, giving a single real-valued data-set. The library we have
written also has functionality to handle this case since performing
the product within the interpolation routines enables reducing the
amount of data written compared to if the product was performed
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Table 2
Performance counter values for the fourier_interpolate routine in ONETEP
using the native ONETEP ‘‘padding-aware’’ implementation the tintl implementa-
tion of the same algorithm. Results were collected from the tbl1000 benchmark
problem which has an FFT box size of 117 × 117 × 117.

Performance Counter Unmodified ONETEP Modified ONETEP

L1 Data cache miss 3.87e7 2.95e7
L2 Data cache miss 1.74e7 9.20e6
L3 Cache miss 1.22e7 6.62e6
Instructions 1.16e9 1.08e9
Floating point operations 1.55e9 1.56e9
Clock cycles 2.03e9 1.41e9

later. The fourier_interpolate_product routine is typi-
cally called 3–4 times more often than fourier_interpolate
which is why the aggregate speedup tends towards the same val-
ues as fourier_interpolate_product.

We find that on realistic benchmark problems, we are able
to improve the throughput of ONETEP’s interpolation routines
by over 1.55×. We observe that we typically achieve greater
performance improvements with larger FFT-box sizes. We also
observe performance variation in the nanotube, cellulose,
lysozyme and tbl800 problems. Each of these problems has
the same FFT-box size (99 × 99 × 99) but exhibits different
speedup values for fourier_interpolate_product (though
not fourier_interpolate). We have determined that both
standard ONETEP and ONETEP modified to use tintl exhibit per-
formance variations in the fourier_interpolate_product
routine across these problems despite identical FFT box sizes.
Changing the number of nodes the problem is parallelised across
does not appear to change this result suggesting that this behaviour
is not due to MPI communication.

StandardONETEPuses its own implementation of the ‘‘padding-
aware’’ algorithm whereas our interpolation library typically
chooses to use the ‘‘phase-shift’’ approach. Across many bench-
mark problems, the performance improvement we observe for
ONETEP’s Fourier interpolation routines is much larger than the
1.22× we observed in our synthetic benchmarks comparing these
two algorithms (Section 4.1). This suggests that the ‘‘padding-
aware’’ implementation in tintl must be operating more effi-
ciently than ONETEP’s native ‘‘padding-aware’’ implementation,
despite using the same algorithm.

We compared the performance characteristics of the ‘‘padding-
aware’’ implementation in ONETEP and in tintl using the Per-
formance Application Programming Interface (PAPI) library [33]
to monitor processor hardware performance counters. Both im-
plementations were analysed during a ONETEP execution on the
tbl1000 problem. Results are shown in Table 2.

We note that both ‘‘padding-aware’’ implementations have
similar instruction and floating point operation counts. However,
the nativeONETEP implementation incurs significantlymore cache
misses. Since we perform the same FFT calls, we attribute this to
the code that stages data to and from the FFT routines in the native
ONETEP implementation.

We present results in Fig. 12 that show the impact of our
optimisations on the overall running time of ONETEP. In this case,
the extent to which performance is improved is highly problem
dependent, since different problems spend different proportions
of time performing Fourier interpolation.

6. Conclusions

We have presented three algorithms for implementing Fourier
upsampling built from Discrete Fourier transforms. For each of
these algorithms we have derived operation counts that show
that these algorithms have different costs (although the same
asymptotic complexity). We have presented performance results
Fig. 12. Performance impact of optimal algorithm selection on total ONETEP
execution time on different test problems.

showing that the differences in operation count have ameasurable
impactwhen implemented on top of an existing high-performance
Fast Fourier Transform implementation.

As well as varying the underlying algorithm, we have explored
platform-dependent optimisations that do not affect the operation
count but instead the efficiency with which the code can be
executed by a given processor.

The performance of implementation variations across software
platform, hardware platform and problem size is hard to predict.
In response, we have developed a system that can choose the
appropriate algorithm and platform-dependent optimisations to
employ at runtime. We have evaluated the performance of this
library both standalone and when called by the linear-scaling
quantum chemistry code ONETEP.

We have hand-crafted our implementation of these algorithms,
which are currently restricted to 2× upsampling for the three-
dimensional case. We would like to support multiple dimensions
and different resampling resolutions. However, code that gen-
eralises efficiently to multiple dimensions can be hard to write
correctly by hand. An approachusing code-generation to automati-
cally generate implementations of the algorithms describedwould
enable this.

Our approach in this paper has been to leverage existing FFT
libraries in order to achieve high performance. An alternative
approach would be to use code-generation to generate parts (or
the entirely of) high-performance interpolation implementations
directly. Pruned FFT implementations [9] also offer the possibility
of reducing the operation count of the ‘‘padding-aware’’ approach.
However, as interpolation is expressible as a linear transform,
the SPIRAL [34] framework should be capable of generating the
entirety of an interpolation implementation.

In conclusion, we have shown how both choice of algorithm
and variations in algorithm implementation to exploit specific
platforms can be used to improve performance through the
selection of efficient implementations at runtime. As a real test
case, we have presented performance results from the linear-
scaling quantum chemistry code ONETEP. The implementation of
the algorithms within the tintl library means that an extensive
code rewrite is not required. Code additions required to call the
tintl interpolation implementation are minimal, and removal
of the existing interpolation implementation results in a code
decrease. Extensive benchmarks with ONETEP illustrate that our
techniques can be used to provide performance increases of
over 1.55× for individual routines and over 1.2× for the entire
calculation across a number of non-trivial benchmark problems.
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