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ABSTRACT: We present a hybrid MPI-OpenMP implementation
of Linear-Scaling Density Functional Theory within the ONETEP
code. We illustrate its performance on a range of high performance
computing (HPC) platforms comprising shared-memory nodes
with fast interconnect. Our work has focused on applying OpenMP
parallelism to the routines which dominate the computational load,
attempting where possible to parallelize different loops from those
already parallelized within MPI. This includes 3D FFT box
operations, sparse matrix algebra operations, calculation of
integrals, and Ewald summation. While the underlying numerical
methods are unchanged, these developments represent significant
changes to the algorithms used within ONETEP to distribute the
workload across CPU cores. The new hybrid code exhibits much-
improved strong scaling relative to the MPI-only code and permits
calculations with a much higher ratio of cores to atoms. These developments result in a significantly shorter time to solution than
was possible using MPI alone and facilitate the application of the ONETEP code to systems larger than previously feasible. We
illustrate this with benchmark calculations from an amyloid fibril trimer containing 41,907 atoms. We use the code to study the
mechanism of delamination of cellulose nanofibrils when undergoing sonification, a process which is controlled by a large
number of interactions that collectively determine the structural properties of the fibrils. Many energy evaluations were needed
for these simulations, and as these systems comprise up to 21,276 atoms this would not have been feasible without the
developments described here.

1. INTRODUCTION

Methodological developments over the last two decades have
made it possible to apply electronic structure methods to
systems containing many thousands of atoms. A number of
codes, such as ONETEP,1 CONQUEST,2 SIESTA,3

OPENMX,4 Ergo,5 CP2K,6 and BigDFT,7 have been developed
with calculations of this scale in mind, many of them based on
linear-scaling formulations of density functional theory (LS-
DFT).8−11 However, such large numbers of atoms mean that
the complexity of any technique requiring configurational
sampling (eg geometry optimization, ab initio molecular
dynamics, metadynamics, etc.) rapidly increases. The only
way to utilize these methods at the scale of thousands of atoms
is to take advantage of the massive parallelism made available
by recent developments in high performance computing
(HPC).
The aforementioned codes for large scale DFT calculations

can run on these powerful new HPC platforms, but most
development has focused on ensuring that so-called “weak
scaling” is maintained, such that larger problems can exploit
larger numbers of cores without loss of efficiency. Therefore, a
single point energy evaluation of a given configuration can
typically still take of the order of several hours. While

acceptable for some techniques, this is much longer than the
time-scale required to make methods such as ab initio molecular
dynamics feasible. Unfortunately, it is not always straightfor-
ward to address this issue by increasing the number of cores
used in a calculation: the parallel scaling of most codes for a
fixed problem size will saturate above a relatively small number
of cores.
Motivated by the need to improve upon this limit to the

scaling, we present here new developments on the paralleliza-
tion strategy of the ONETEP code that allow “strong scaling”
(i.e., scaling with core count at fixed problem size) up to very
large numbers of cores, even to many cores per atom, so that
the wall time for a given calculation is significantly reduced -
such improvements will also benefit the weak scaling of the
code. These developments are implemented by the introduc-
tion of an open multiprocessing (OpenMP)12 level of
parallelism, below the existing message passing interface
(MPI),13 resulting in a hybrid MPI-OpenMP implementation.
A hybrid implementation maps well to modern super-

computer designs where the shared memory space on an
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individual node allows OpenMP to be used, while MPI is used
to to communicate information between nodes. This suitability
arises from the fact that MPI and OpenMP differ significantly in
terms of the visibility of memory between cores. In MPI, each
process has its own memory space, and the movement of data
between processes is explicitly controlled using calls to the MPI
application programming interface (API). In contrast, OpenMP
is a shared memory system, and all threads spawned by a given
process have access to the same memory. The relevance of
hybrid approaches is currently increasing, as trends in processor
development focus on increasing shared-memory parallelism
(more cores per node), rather than faster processors.
Simultaneously, the number of nodes available in state-of-the-
art clusters is continuously increasing.
ONETEP1 is a software package implementing linear-scaling

density functional theory8,11,14 to calculate total energies,
forces, and a range of other properties of systems of hundreds
up to tens of thousands of atoms.15,16 The linear-scaling
computational cost with respect to the number of atoms within
ONETEP is achieved through the exploitation of the “near-
sightedness of electronic matter” principle.17,18 A unique
feature of this code is that it can achieve linear-scaling while
maintaining the high basis set accuracy of conventional plane-
wave codes. The development of the hybrid MPI-OpenMP
parallel scheme described in this article results in a significant
improvement in the number of cores that can be efficiently
utilized as well as lifting limitations the maximum number of
cores that can be used per atom.
In Section 2, we describe the ONETEP package, focusing on

the current approach to parallelism, then the implementation of
the hybrid MPI-OpenMP approach. Section 3 shows and
discusses the performance of the hybrid code performing single
point energy calculations on various chemical systems ranging
in size from hundreds to tens of thousands of atoms using
different HPC facilities. Section 4 discusses an initial
investigation into the mechanism by which sonification

decomposes a cellulose nanofibril into its component layers.
Calculations are made possible by the developments presented
here. We finish with conclusions in Section 5.

2. ONETEP METHODOLOGY AND PARALLEL SCHEME
2.1. Methodology. The theoretical basis of the ONETEP

methodology is discussed in detail elsewhere1 and are only
summarized here: The ONETEP program is based on a
reformulation of DFT in terms of the one-particle density
matrix, ρ (r,r′), expressed in the following form

∑ ∑ρ ϕ ϕ′ = ′
α β

α
αβ

βKr r r r( , ) ( ) ( )
(1)

where the “density kernel” K is the density matrix expressed in
the duals of the set of nonorthogonal generalized Wannier
functions (NGWFs)19 {ϕα(r)}. The calculation of the
electronic energy within ONETEP takes the form of two
nested loops, the density kernel, K, and NGWFs {ϕα(r)} are
optimized within the inner and outer loops, respectively. The
NGWFs are constrained to be strictly localized within spherical
regions centered on atoms, and their shape is optimized self-
consistently by expressing them in a psinc basis set20 which is
equivalent to a plane-wave basis set.21 As a result, ONETEP is
able to achieve linear-scaling computational cost while retaining
the large basis set accuracy characteristics of plane-wave codes.
The psinc functions used within ONETEP are centered on

the points of a regular real-space grid and are related to a plane-
wave basis through fast Fourier transforms (FFTs). In order to
perform operations involving NGWFs with a computational
effort independent of system size, the FFT box technique is
used.22 An FFT box is a box of grid points centered on the
atom associated with an NGWF and large enough to contain
any overlapping NGWF localization spheres in their entirety.
This representation permits the use of plane-wave methodology
to perform momentum space operations without the computa-
tional cost scaling up with the size of the simulation cell.

Figure 1. Example of OpenMP usage within an MPI process in ONETEP. (a) and (b) illustrate how the number of threads created in different
OpenMP regions can vary, showing that in this example 16 threads have been chosen to be used for region (a) while 8 threads are used for region
(b). (c) illustrates that some OpenMP regions contain areas of code that must be executed sequentially, such as calls to the MPI library.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500686r | J. Chem. Theory Comput. 2014, 10, 4782−47944783



The OpenMP paradigms utilized within the hybrid MPI-
OpenMP version of ONETEP are illustrated in Figure 1. These
paradigms are implemented through the addition of pragmas
such as !$OMP PARALLEL and !$OMP END PARALLEL
which are used to declare the start and end of regions of code
executed in parallel.
2.2. The FFT Box Technique. Operations performed on

FFT boxes represent one of the largest computational
workloads in ONETEP. In particular, the calculation of the
charge density, local potential integrals, and the NGWF
gradient all employ these operations extensively. The routines
used to calculate these properties also represent areas of the
code with significant memory demands and communication
overheads. The numerical details of the FFT box operations
have been described in detail in an earlier paper22 and more
recently when we described the implementation of these
algorithms on GPU based accelerators.23 Here, we discuss the
distribution of work and communication between cores in the
hybrid code, as the numerical algorithms are unchanged.
At the MPI level of parallelism, the FFT box operations are

not distributed directly. Rather, the overall workload associated
with atomic data is distributed between MPI ranks using a
space-filling curve to distribute atoms, weighted according to
the number of NGWFs centered upon the atoms. In the hybrid
code, the same space-filling curve is used to distribute the
workload across MPI processes. However, during the
calculation of properties that are constructed from data
produced by FFT box operations, the FFT box operations
associated with an MPI process are distributed evenly across
OpenMP threads using a partitioning approach.
Figure 2 outlines the effect this new algorithm has on the

distribution of the FFT box operation workload across CPU

cores. The FFT box operations associated with NGWFs for an
MPI process are divided into batches; in the case of the MPI-
only code, a single core iterates over each member of the
current batch, while in the hybrid version the members of the
batch are distributed across a number of cores defined by the
number of OpenMP threads.
FFT box operations generate data that is not typically stored

across MPI processes in the atomistic manner defined by the
space filling curve described above. For example, the charge
density is stored as slabs of the simulation cell. This means that
communication of the data produced by FFT box operations is
necessary. During this stage of the process the master thread of
each MPI process deals with the exchange of data with other
MPI processes.
The use of the hybrid scheme means that the total number of

cores that may be used can exceed the number of atoms, a hard
limit within the MPI-only code. Further, the amount of
memory used per core is reduced as several cores share the
same NGWF data and simulation cell data. This is particularly
useful on systems with a relatively low amount of RAM per
core (less than 1 GB per core).

2.3. Sparse Algebra. Many of the operations in LS-DFT
codes rely on iterative algorithms involving sparse matrix
algebra. For example, approaches based on the Hotelling
algorithm24 are used to invert the overlap matrix; the canonical
purification scheme of Palser and Manolopoulos,25 or the CG-
optimization scheme of Li, Nunes, and Vanderbilt26 can be
used to optimize a density matrix. In all cases, rapid matrix−
matrix multiplications are required, on large matrices whose
dimension is the number of localized orbitals, and whose
fraction of nonzero elements is anywhere from under 1% up to
100%.

Figure 2. Distribution of FFT box operations across MPI processes and OpenMP threads in the hybrid MPI-OpenMP code.
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Previous work27,28 has described the work done to optimize
the parallel performance of sparse matrix multiplications.
Briefly, the algorithm is as follows: a typical operation is C =
A·B, where C, A, and B are all sparse matrices of dimension
such that the number of rows of A and C, the number of
columns of B and C are equal, and the number of columns of A
equals the number of rows B. The data associated with each
matrix is divided by columns over the MPI processes according
to the atom of each column function. The same scheme is used
again to subdivide the range of rows within each process’ data,
resulting in segments. Each segment is represented internally in
either a dense format (all elements stored), or a sparse format
(only nonzero atom-blocks are stored), or is blank (no nonzero
elements) as appropriate. Essentially, this is an atom blocked,
column-indexed format unique to ONETEP but is closely
related to the compressed column storage format. Segments
Cnm, labeled by row and column segment indices n,m which
each run over the range of MPI processes, can be calculated by
summing over the relevant segment−segment matrix products:
Cnm = ∑lAnl.Blm. This necessitates the communication of the
relevant segments of A from the process on which they are
stored to any processes on which C requires them in the above
summation. A “crop” is performed first, however, such that only
A data which will actually contribute to the result is transmitted,
as determined by the sparsity patterns of B and C (see Figure
3).
The parallel efficiency is further improved by grouping

together subsets of the nodes and sharing their B data in
advance, such that A data need only be transmitted to the same-
ranked processes in other groups, with the resulting
contributions to C being collated afterward over the processes
in the group. Therefore, on any given process there is an outer
loop over other processes n to receive data from, followed by an
inner loop over pairs of segments Anl and Blm. It is at this stage
that we are able to introduce an extra level of parallelism with
OpenMP. For each set of received segments of A, the loop over
segment pairs is divided over the available OpenMP threads
and individually dispatched as either a LAPACK dgemm call
(for pairs of dense segments) or a series of individual sparse
block multiplications. This OpenMP loop is subject to dynamic
load-balancing as the computational effort of each segment pair

product may vary significantly depending on the degree of
sparsity of the segments.
The second level of parallelization thus created also further

enables the communications workload to be hidden behind
computation. The master thread of each MPI process deals
with receiving, sorting, and cropping the index and data of A
and replying to requests by other MPI processes for local
segments of data and only processes actual multiplication of
segment−segment pairs when no communication is currently
required. All other threads work exclusively on the multi-
plication of segment−segment pairs. This is designed to ensure
that by the time the other threads have dealt with their segment
pairs, the next set of segments of A have already been received,
ensuring there is no communications overhead from the
perspective of the majority of the threads. For large systems
with large kernel cutoffs (hence many nonzero elements in the
matrices), switching from an MPI-only communications
strategy to a hybrid OpenMP-MPI strategy generally produces
a major efficiency gain in the sparse matrix algebra routines at
high total core counts. This is because, at fixed total core count,
as thread count rises and process count falls, the workload is
being divided into larger chunks which can each individually be
processed more efficiently with dense linear algebra.

2.4. Other. Apart from FFTs and matrix algebra, the final
sizable fraction of the computational load in a ONETEP
calculation consists of the operations on FFTbox data to either
construct the row sum ∑βK

αβϕβ(r) or evaluate matrix elements
of the form ⟨ϕα|Ô|ϕβ⟩ for various operators Ô. In these cases,
the FFT box data is already efficiently parallelized over MPI
processes according to the distribution of the atoms. The
OpenMP threads can best be harnessed by allowing the various
threads to work on an FFT box each. In the row sum operation,
each NGWF ϕβ(r) that overlaps any of the functions ϕα(r) in
the current batch of functions local to the process is considered
in turn: an OpenMP thread is assigned to each FFTbox to
which the NGWF ϕβ(r) contributes and adds Kαβϕβ(r) to each
grid point r.
Likewise, during matrix element calculations, for each ket

function Ô|ϕβ⟩ in the batch, each overlapping NGWFs ⟨ϕα| is
considered: an OpenMP loop extracts the data of Ô|ϕβ⟩ from
the FFT box corresponding to the points in common between

Figure 3. Schematic of the parallel decomposition of the workload for a sparse matrix multiplication under the hybrid OpenMP-MPI scheme, on 12
MPI processes. Blue shading indicates segments containing nonzero elements. The red boxes highlight a specific segment of C local to MPI process
6 and the range of segments of A and B which contribute to it. The green box indicates the set of segments communicated by MPI process 3, of
which only some are nonzero. The OpenMP parallelism divides up the workload of each MPI process by dynamically distributing the segment pair
matrix product operations between available threads.
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ϕβ(r) and ϕα(r) and then calculates ⟨ϕα|Ô|ϕβ⟩. Because these
operations each act on different FFTboxes, there is effectively
no OpenMP synchronization overhead, and the scaling with
thread count is efficient as long as the batches of NGWFs are
large.
Another section of the code subject to OpenMP parallelism

is the nonlinear-scaling Ewald summation,29 which calculates
the electrostatic interaction between the point charges
representing the ion cores at positions RI, RJ and charges ZI,
ZJ. In terms of the Ewald potential VEW and Madelung potential
vM for a given simulation cell, the expression to be evaluated has
the general form

∑= − −
≠

E Z Z v vR R
1
2

( ( ) )
I J I

I J I J MII
,

EW
(2)

Here, the inner loop over atom pairs IJ can be parallelized with
OpenMP (the outer loop already being parallelized with MPI).
Near-perfect scaling with both OpenMP threads and MPI
processes can be achieved as long as the thread and process
count both remain significantly smaller than the number of
atoms. It is of note that the current implementation of the
Ewald summation in ONETEP is not formally linear-scaling. In
the calculations that are routinely performed using ONETEP
this has not been an issue as the overhead relating to this area
of the code is small - for example in the applications on
cellulose that we present in Section 4, for our largest system
with 21,276 atoms the Ewald takes 3% of the total time in each
single point energy calculation which consists of 9 NGWF
iterations.
Finally, in all sections of the code dealing directly with grid

data on whole-cell grids, such as evaluation of the exchange-
correlation energy and potential, there is a further opportunity
for thread-parallelism. The data distribution (as described in ref
30) of realspace data is in slabs perpendicular to the third lattice
vector the simulation cell (the ‘3′ direction, typically along z).
Each MPI process allocates memory and performs computa-
tions only for the points ri local to its slab. Within each MPI
process, the loop over the grid points i within the local slabs can
be OpenMP-parallelized very efficiently, for example when
evaluating the exchange correlation energy εxc(n(r)).

3. BENCHMARKS

For measuring the performance of a large scale parallel code the
most important quantity from an application perspective is the
actual time to solution. Therefore, for most users, the most
appropriate metric is the “Strong scaling”, describing the
relative performance of the code as the number of cores are
increased for a given problem size. Ideal (linear) strong scaling
is often difficult to achieve since as the number of cores
increase, the total volume of communication of data between
cores, and the number of individual messages, also increases. In
addition, parts of the code, such as control logic, may not be
amenable to parallelization,31 particularly if there are two levels
of parallelization as in the current MPI-OpenMP hybrid
scheme. A second metric is the “weak scaling” which describes

the behavior of the time to solution as both problem size and
the number of cores used are simultaneously increased. A
further metric that may be used is the parallel efficiency (PE),
which gives the speed-up obtained on a given number of cores
relative to the ideal speed-up from a chosen reference number
of cores, thus giving a measure of the actual performance in
relation to the optimal performance. We employ a rule-of-
thumb in this work that a PE of less than 0.5 represents a
wasteful use of resources.
Significant effort has been devoted to achieving good weak

parallel scaling of LS-DFT codes so as to demonstrate the
feasibility of very large calculations. For example, the
CONQUEST LS-DFT code has been used to perform
calculations on 2,097,152 bulk silicon atoms using 4096 CPU
cores,32 which is equivalent to 512 atoms per core. It has also
been shown to exhibit very good weak-scaling from 8 to 4096
cores for the bulk silicon system mentioned above and good
strong-scaling between 16 and 128 cores for hut clusters of Ge
on the Si(100) surface with 11,620 or 22,746 atoms. Other LS-
DFT codes such as SIESTA3 and FREEON33 exhibit good
scaling in the regime of thousands of atoms simulated on up
hundreds of cores.34

In ONETEP, Hine et al. showed nearly ideal weak-scaling
behavior on total energy calculations on strands of model DNA
systems from 2091 to 16775 atoms on 32 to 256 cores and
respectable strong-scaling to 256 cores.28 Since then, further
unpublished developments improved the limit of high-
efficiency strong-scaling with MPI process count (as defined
by keeping the parallel efficiency greater than 0.5) to over 1024
processes, at least for large systems. In the work described here,
however, we are able to demonstrate that significantly larger
core counts can be reached without loss of parallel efficiency.
In the following, we have carried out benchmark calculations

on a number of systems: the Iridis 4 supercomputer at the
University of Southampton; the UK’s national supercomputer,
ARCHER, a Cray XC30, at the University of Edinburgh; and
BlueJoule, an IBM BlueGene/Q system at the STFC’s Hartree
Centre. The specifications of these machines are outlined in
Table 1. They were chosen for this study as they are
representative of the range of large scale computing resources
available to research groups in both academia and industry.
CPU cores on a node generally have access to all the shared

memory on the node. However, in “non-uniform memory
access” (NUMA) systems the memory access times may
depend on the location of the memory relative to the core. The
Iridis 4 and ARCHER both contain 2 CPU sockets per node.
This gives rise to NUMA issues as the two sockets are on
different PCI express buses along with half of the nodes RAM.
As such, in order for a core on one bus to retrieve data from a
memory location in the RAM on the other bus it must transfer
data across the quick path interconnect bus, which is
significantly slower than the PCI express bus, resulting in
reduced access speeds. A second NUMA issue arises on
machines such as the recently discontinued HECToR super-
computer, where a single, 16 core, processor contains two
processor dies, each with its own L3 cache and 8 CPU cores. In

Table 1. Hardware Systems Used To Perform Benchmark Calculations

system cores nodes cores per node cores per NUMA region hardware threads per core theoretical performance (TFlop/s)

BlueJoule 114,688 7,168 16 16 4 1,426
ARCHER 72,192 3,008 24 12 2 1,560
Iridis 4 12,200 750 16 8 2 250
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contrast, BlueGene/Q systems such as BlueJoule are truly
symmetric multiprocessor systems where all cores have equal
access to the memory on a node. Memory-locality must be
considered carefully when executing codes on machines with
NUMA. In practice we find that on all systems tested here, it is
highly detrimental to spread the threads of a given MPI process
over more than one NUMA region. For example, on ARCHER,
a calculation performed on an ATC trinucleotide containing
189 atoms using production-quality settings takes 2,162 s when
the threads associated with an MPI rank are split across 2
NUMA regions but 1,389 s if they are restricted to a single
NUMA node.
Many modern CPUs support simultaneous multithreading

(SMT) a form of hardware multithreading in which a single
CPU core executes code for multiple software threads. The use
of SMT was found to be detrimental to performance in the case
of the FFT box operations within ONETEP on Intel cores.
This is thought to be caused by either competition between
threads for limited memory bandwidth or over subscription of
the available shared cache resources in the FFT regions of the
code. This is a common problem with memory-bound
algorithms such as FFTs. In contrast, the sparse matrix code,
consisting of many small matrix−matrix multiplications, does
not face such limitations, and the use of SMT results in a
benefit to performance.
3.1. Small Systems. Initial tests were performed using a

small system, an ATC trinucleotide containing 189 atoms.
These calculations were run for 1 NGWF iteration with
production-quality settings (no kernel threshold, 8.0 a0 NGWF
radii, 800 eV psinc kinetic energy cutoff). In the previous MPI-
only implementation, the number of cores that could be used in
such a calculation was limited by the need to retain at least 1
atom per MPI process, so here we demonstrate that the new
hybrid implementation is able to significantly exceed this limit
while retaining favorable scaling. Indeed, we show that it is
possible to exceed 1 core per NGWF.
Figure 4(a) (and inset) shows the total time for an electronic

energy minimization on the Iridis 4 supercomputer; the best
performance that can be achieved using the MPI-only
implementation is highlighted in the inset. Panel (b) shows
the strong scaling performance, and panel (c) shows the parallel
efficiency. For each total number of cores, separate curves are
shown for different numbers of OpenMP threads per MPI
process.
It is seen that the performance of calculations with a larger

number of OpenMP threads per MPI process improves as the
total number of cores used increases. For example, when using
64 cores in total the best performance is achieved when using 2
OpenMP threads per MPI process, while at 512 cores in total,
optimal performance is obtained using 8 threads per MPI
process. This finding has implications for the optimal manner in
which calculations should be submitted to a machine as
calculations with smaller total core counts may benefit from the
use of the MPI-only approach.
Parallel efficiency is seen to be greater than 0.4 up to 256

cores in the hybrid OpenMP-MPI runs, and the total time to
solution can be reduced by a factor of 2× relative to the MPI-
only implementation. It should be emphasized that this is a
rather smaller system than typically run with ONETEP and is
included here principally to demonstrate that the speedup
obtained through hybrid parallelism is not limited to large
systems.

3.2. Intermediate Systems. We next present the benefit
that is afforded to more typical problems, containing thousands
of atoms. Figures 5 and 6 show the performance of the hybrid
code for production-quality calculations on a series of systems
containing approximately 4000 atoms (a zigzag carbon
nanotube (CNT) using a 50.0 a0 density kernel cutoff, 8.0 a0
NGWF radii, and 800 eV psinc kinetic energy cutoff; a H-
terminated GaAs nanorod using no density kernel truncation,
9.0 a0 NGWF radii, and 700 eV psinc kinetic energy cutoff; a
supercell of bulk silicon using no density kernel truncation, 8.0
a0 NGWF radii, and 800 eV psinc kinetic energy cutoff; a strand
of B-DNA comprising a sequence of 64 randomized base pairs
using 100.0 a0 density kernel cutoff, 8.0 a0 NGWF radii, and
800 eV psinc kinetic energy cutoff). These calculations were
run for 1 NGWF iteration, and all simulations were performed
on the ARCHER supercomputer. Specifically, Figures 5 and 6
show parallel efficiency and speed-up, respectively. These values
are measured relative to the same runs on just 48 cores with the
MPI-only code, which is the smallest number for which all the
systems fit in the available memory. We use 5 different balances
of MPI vs OpenMP, ranging from 24 MPI processes per node
each with 1 thread, up to just 2 MPI processes per node, each
with 12 threads. For each of these choices of balance, we use a
total number of cores ranging from 240 to 3840.
An MPI-only strategy is seen to give satisfactory performance

(parallel efficiency greater than 0.5) only up to about 1000

Figure 4. Scaling of the hybrid MPI-OpenMP code for calculations
performed on a 189 atom nucleotide using the Iridis 4 supercomputer,
for varying choices of number of OpenMP threads per MPI process.
The inset in panel a) shows the results for larger core counts in more
detail.
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cores. Increasing the level of OpenMP multithreading again
incurs a parallel efficiency hit for each extra thread, so at small
core counts it is not beneficial. However, crucially, it preserves
the scaling to much higher total core counts without nearly as
much loss of parallel efficiency. For example, a run with 8
threads per process has almost the same MPI efficiency at 4096
cores as an MPI-only run at 512 cores. Therefore, the hybrid
code gradually becomes much more favorable at higher core

counts. For 6 OpenMP threads per process, a parallel efficiency
of around 0.5 compared to a 48 core run is retained even at
4096 total cores (i.e. at around one core per atom). This
significantly reduces the wall time in which such jobs can be
completed. For example, for the CNT, the maximum number
of cores on which the job could be run with PE > 0.5 was 960,
whereby each NGWF optimization iteration took 213 s.
Contrastingly, with 6 threads per MPI process on 3840 cores

Figure 5. Parallel efficiency of a variety of chemical systems containing approximately 4000 atoms on ARCHER. Calculations were run for 1 NGWF
iteration with production-quality settings.

Figure 6. Strong scaling of a variety of chemical systems containing approximately 4000 atoms on ARCHER. Calculations were run for 1 NGWF
iteration with production-quality settings.
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this is reduced to 81 s, a speed-up of 2.6×. Comparison to
Figure 4 shows that slightly more cores per atom may be used
for the larger systems before parallel efficiency is lost (between
1 and 2 cores per atom for the 4000 atom systems and 1 core
per atom for the smaller system). This occurs because the
number of FFT box operations per atom increases with size of
the system, while the number of NGWF overlaps approaches its
asymptotic value that increases linearly with the number of
atoms.
Figure 7 shows the parallel efficiency of the sections of the

code used in the calculation of the charge density, the local
potential integrals, and the products of sparse matrices - the
major bottlenecks in calculations of this size. Calculations on a
zigzag carbon nanotube (CNT) and a strand of B-DNA
comprising a sequence of 64 randomized base pairs performed
on the Iridis 4 supercomputer were used for this analysis.
Figure 7 attempts to break down the overall parallel

efficiency according to the various computational tasks
performed during a typical run, focusing on evaluation of the
charge density, evaluation of matrix elements of the local
potential in the NGWF basis, and on sparse matrix algebra.

The FFT box operations demonstrate uniform scaling with a
number of MPI processes and incur a P.E. hit with each added
thread: this is likely to be due to the thread-serialization during
the operations involving whole-cell grids. Meanwhile, in the
sparse matrix product operations, because the total communi-
cations volume increases with MPI process count, the scaling
with number of MPI processes is relatively poor and each
increase in thread count improves the scaling with total core
count. The overall efficiency results from the balance of these
two components, which at large system sizes are close to equal
parts of the total load. Future work should therefore be aimed
at improving the thread-parallelization of the whole-cell grid
operations and the MPI-parallelization of the sparse matrix
algebra.

3.3. Large Systems. Finally, we demonstrate the ability to
simulate very large systems, containing tens of thousands of
atoms on BlueJoule, a Tier 0 computational resource currently
ranked 23rd in the Top500 list of supercomputers.
The BlueJoule platform allows us to take advantage of SMT

for suitable areas of code. In the following benchmarks we have
used SMT for all operations except the FFT box operations. As
such, the number of OpenMP threads per MPI process are

Figure 7. Parallel efficiencies for timings of individual routines considered in isolation from the rest of the code. The P.E. for charge density (C,F),
local potential (B,E), and sparse matrix products (A,D) sections of the code are shown, for calculations performed on zigzag carbon nanotube
(CNT) (left) and a strand of B-DNA comprising a sequence of 64 randomized base pairs (right). Calculations were performed on Iridis 4 and run
for 1 NGWF iteration with production-quality settings.
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denoted as “4/16” to indicate 4 threads for the cache intensive
FFT box operations and 16 threads for other areas of the code.
As the amount of RAM per core on BlueJoule is relatively

low, it is not possible to utilize every CPU core on a node when
using the MPI-only implementation. This necessitates the use
of a “number of cores charged” metric as these unused cores are
still classed as active in such a calculation.
When running at this scale we observe that the balance of

computational effort has shifted considerably compared to the
smaller systems, and sparse matrix algebra is now the largest
individual component. Because these routines begin to exhibit
poor scaling with MPI process count beyond a few thousand
processes, due to the volume of point-to-point communica-
tions, greater levels of OpenMP threading and correspondingly
smaller MPI process counts are seen to considerably improve
the performance.
Figure 8(a) shows the performance of the hybrid MPI-

OpenMP code for a 13,969 atom beta amyloid fibril protein,

run on the BlueGene/Q. These calculations were run for 1
iteration of NGWF optimization with production-quality
settings (5 iterations of the density kernel loop, 30.0 a0 density
kernel cutoff, 8.0 a0 NGWF radii, 800 eV psinc kinetic energy
cutoff). A full single point energy calculation requires 10−15
such NGWF iterations.
Figure 8(a) shows that the use of MPI alone scales to only

2048 active cores (4096 cores charged). Contrastingly, the use
of the hybrid code allows us to increase this by at least a factor
of 4, to 16,384 cores. There is a corresponding increase in
performance of up to 6× when compared against the fastest
MPI-only calculation. As observed for the smaller systems
described above, the performance of the hybrid code depends
strongly upon the number of OpenMP threads per MPI
process. The MPI-only test is the slowest throughout and, as

mentioned above, does not scale to the largest number of cores.
At lower total core counts it is seen that 4/16 OpenMP threads
per MPI process gives the best performance and 16/64
OpenMP threads per MPI process is still less efficient. This
pattern reverses at higher core counts, presumably due to the
reduction in MPI communication that results from the shift
from MPI to OpenMP parallelism.
Figure 8(b) shows the performance of the hybrid MPI-

OpenMP code for an even larger system, a beta amyloid fibril
trimer, containing 41,907 atoms. These calculations were run
for 1 NGWF iteration with the same settings as used for the
13,969 atom system described above. In this case, the high total
memory demands mean that the system was run only for 8/32
and 16/64 OpenMP threads per MPI process, from 8,192 to
32,768 cores. We observe that the performance of the 8/32-
thread version surpasses that of the 16/64-thread version
although the difference in performance reduces as overall core
count is increased.
It is instructive to compare the performance of the current

Hybrid OpenMP-MPI implementation with other similar codes
where possible. However, such comparisons are hard to make
fair, since different approaches to LS-DFT make very different
approximations in relation to underlying basis sets and their
approaches to localization and truncation of sparse matrices.
These factors make it difficult to judge when comparable
accuracy is achieved in two different approaches. In addition,
fair comparisons must be run on equivalent hardware and with
both codes set up to achieve optimal performance on that
hardware, preferably by their respective developers. Such a
detailed comparison is therefore beyond the remit of the
current article.
Nevertheless, we can make some preliminary comparisons on

the basis of already-published work, particularly that by the
developers of CP2K, who have applied hybrid parallelism to
their code,35 and in particular to the sparse matrix algebra with
the DBSCR library.36 Several fundamental differences exist
between these codes: first, CP2K uses Gaussian basis sets
augmented with plane-waves, and thus a larger number of
functions per atom than the number typically used by
ONETEP, where a minimal number of in situ optimized
functions are used; second, CP2K applies thresholding to
determine the truncation of its representation of the density
kernel matrix, in contrast to the approach used in ONETEP,
where all nonzero elements of intermediate matrices are
retained until the final result of an optimization step is used to
update the current kernel. Combined, these two facts mean that
for the same system, matrices in ONETEP would be less sparse
but be smaller overall. An estimate of the number of floating
point operations of useful computational work (FLOPS) per
second for sparse matrix operations can be made according to

= ×N nzFLOPS 3 2 (3)

Here, N is the size of the sparse matrix, and nz is the fraction of
nonzero elements, or occupancy. In ONETEP these estimates
contain some unavoidable uncertainty because of the variation
in sparsity levels arising from the use of varied, fixed sparsity
patterns in different circumstances, as described above.
For example, for a 13,846-atom model of an amorphous

organic hole conducting material in ref 36, a 133,214 × 133,214
matrix is obtained with 18% occupancy, whereas in this work
(Figure 8), the closest comparable system is the 13,969 atom
Amyloid Fibril, where the matrices are of size 36,352 × 36,352
and vary from 14% up to 60% nonzero elements. On a Cray

Figure 8. a) Total time for 1 iteration of the 13,969 atom beta-amyloid
fibril, for MPI-only (blue), and 4/16, 8/32, and 16/64 OpenMP
threads per MPI process (red, green, and purple, respectively). b)
Total time for the 41,907 atom Amyloid fibril trimer. Both sets of
calculations consisted of 1 iteration of the NGWF optimization loop
with production-quality settings (5 iterations of the density kernel
loop, 30.0 a0 density kernel cutoff, 8.0 a0 NGWF radii, 800 eV psinc
kinetic energy cutoff).
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XC30 architecture, the DBSCR library obtained average
timings for sparse matrix product operations for the
aforementioned matrices of 0.5 s at 32768 cores (153
teraFLOPS/s), ∼1.1 s at 8192 cores (70 teraFLOPS/s), and
12.0 s at 512 cores (6 teraFLOPS/s), indicating relative parallel
efficiencies of 0.38, 0.68, and 1, respectively.
The closest comparison we could achieve for ONETEP on

comparable XC30 cores was to run on 8160 cores and 528
cores (680 MPI processes × 12 threads and 44 MPI processes
× 12 threads, respectively). We provide teraFLOP/s figures
based on the range of sparsity patterns noted above, noting that
denser matrices dominate the computational effort. At 8160
cores, average time per matrix multiplication was 0.59 s (1.6 to
19 teraFLOPS/s), and at 528 cores it was 5.95 s (0.1 to 2.9
teraFLOPS/s). This corresponds to a relative parallel efficiency
of 0.65. Comparison with Figure 8 suggests that scaling up to
16384 cores would generate further reduction in computational
time. For equivalent-sized physical systems on equivalent
hardware, typical sparse matrix product operations in ONETEP
therefore display comparable parallel efficiency scaling, and
similar total times, but are still rather less efficient overall on the
basis of total teraFLOPS/s of useful work, because the typical
matrix sizes for CP2K are larger. This suggests there is room for
further improvement in the sparse algebra routines in ONETEP
in future work, despite the advances presented here.

4. SIMULATIONS OF LARGE CELLULOSE
NANOFIBRILS

Cellulose is one of the most abundant forms of biomass, with a
huge number of applications ranging from use as an energy
source37,38 to a support in tissue engineering.39 Cellulose is a
polymer of cellobiose monomers and is commonly found in the
form of cellulose Iβ nanofibrils within plant cell walls. Cellulose
Iβ nanofibrils are composed of a number of elementary
cellulose chains, the exact number of chains depending upon
the biological source. Figure 9a shows the 8-layer, 36-chain
structure for cellulose Iβ derived from Ding and Himmel’s
model for primary maize cell walls,40 and Figure 9b shows a
truncated version of this model in which the number of
elementary fibrils has been reduced.
Renneckar et al.41,42 recently described experimental studies

showing the fragmentation of cellulose nanofibrils along the
sheets defined by the pyranose rings into mono- and bilayer
structures after undergoing sonication. A molecular sheet
delamination mechanism was proposed for this process wherein
a single layer at a time was separated from the nanofibril. These
experimental results are consistent with a structure wherein the
intrasheet interactions are stronger than the intersheet
interactions. A number of computational studies of cellulose
Iβ have investigated the relative strengths of these interactions.
In agreement with the experimental results, studies using plane-
wave methods43 suggested that the intrasheet interactions in
cellulose Iβ are eight times larger than the intersheet
interactions. However, this study used a unit cell containing
just 2 cellobiose molecules and periodic boundary conditions,
meaning the system was treated as fully crystalline and the finite
size and exposed surface of a true nanofibril were not accounted
for. A related study using cellulose Iα models and fragment
molecular orbital Møller−Plesset second order perturbation
theory (FMO-MP2) methods44 show the intersheet inter-
actions to be stronger than the intrasheet interactions for a
truncated crystalline structure composed of 12 elementary
chains 6 cellobiose units in length. However, the difference in

energies was observed to reduce if the same structure was
equilibrated using molecular dynamics methods.
Here, we illustrate that with the recent hybrid MPI-OpenMP

developments in ONETEP we are able to perform inves-
tigations on larger, and much more realistic models of cellulose
nanofibrils which capture their complex properties and move
away from the heavily truncated models used in previous
computational studies. Our aim here is to perform a preliminary
study of the delamination process which is of fundamental
importance for the structural implementations of cellulose
nanofibrils in applications such as tissue engineering39 and
within a wide range of composite materials.45 As this is a
preliminary study, the effects of solvation and structural
relaxation are beyond the scope of this paper, and we expect
to investigate these effects in future work.
Cellulose Iβ nanofibrils, containing 36 elementary cellulose

chains of 1 and 14 cellobiose units in length (Figure 9a/c),
were constructed using the cellulosebuilder46 software package.
This structure was modified to create the truncated structure
shown in Figure 9b by deletion of the relevant chains. Figure 9c
emphasizes the differences between nanofibril models that are 1
and 14 cellobiose units in length. A nanofibril containing 14
cellobiose units was chosen for the large system here as it
represents a system that could be used in a more complex
future study that would examine the interactions between

Figure 9. a) Axial view of a cellulose Iβ nanofibril containing 36
elementary chains. Chains contain either 1 or 14 cellobiose units each
(1,620 and 21,276 atoms, respectively). b) Axial view of a truncated
cellulose Iβ nanofibril containing 18 elementary chains. Chains contain
1 or 14 cellobiose units each (810 and 10,638 atoms, respectively). c)
Cellulose Iβ nanofibril containing 36 elementary chains that are 14
cellobiose units in length. The length of a nanofibril containing a single
cellobiose residue is highlighted for comparison. 1) Highlights the top
layer of a 36 chain nanofibril which is translated in the 36 chain, 1 layer
series of calculations, 2) Highlights the top layer of a truncated 18
chain nanofibril (18 chain, 1 layer) and 3) Highlights the top 4 layers
of a 36 chain nanofibril which are translated in the 36 chain, 4 layers
series of calculations.
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cellulose nanofibrils and other biological molecules such as
cellulase enzymes which are used in the production of cellulosic
ethanol.37,38 A system of this size would be required in order to
fully describe all of the interactions of a nanofibril with these
enzymes.
In order to simulate potential energy curves approximating

the delamination process, a series of structures were generated
by translating single sheets (1 and 2), and groups of sheets (3),
of elementary chains in the intersheet axis shown in Figure 9.
To model the intrasheet interactions, a single fibril from a sheet
containing 3 elementary fibrils (equivalent to that marked 1 in
Figure 9a) was translated in the intrasheet axis shown in Figure
9. All single point energies were carried out using a 40.0 a0
density kernel cutoff, 7.0 a0 NGWF radii, and 800 eV psinc
kinetic energy cutoff; all atoms had 4 NGWFs, except hydrogen
atoms which had 1. The Grimme D2 correction47 was used to
model the van der Waals interactions. These calculations were
run until full self-consistent convergence was reached with a
NGWF gradient threshold of 2 × 10−6 Eha0

3/2. Simulations for
the nanofibrils containing 14 cellobiose units per elementary
chain were performed on BlueJoule, and those containing 1
cellobiose unit per elementary chain were performed on Iridis
4.

Figures 10a and b show the interaction energy profiles for
nanofibrils that are 1 and 14 cellobiose units in length,
respectively. Interaction energies calculated by taking the
difference between the global maximum and minimum for
each system are given in Table 2. Data is normalized by the
number of cellobiose units in an elementary chain in both cases
- the values for the system 14 cellobiose units in length were
divided by 14 and those for the smaller system by 1.
Figure 10 shows that there is a significant difference in both

the locations of the minima and the shapes of the curve when
comparing systems of different sizes. In the larger system
smooth curves with a minimum shifted slightly toward a
negative displacement (−0.1 Å, reduced interplanar distance)
are observed. In contrast, the curves for the small system show
a minimum shifted toward a larger separation (+0.3 Å,
increased interplanar distance) between layers, and multiple
minima are observed. The results for the small system are
qualitatively similar to those observed elsewhere43 and may be
explained by the sensitivity of the energy to individual van der
Waals interactions in these smaller systems.
The intrasheet interaction energy per cellobiose unit appears

to be stronger for the smaller system (0.78 vs 0.59 eV), despite
the much larger number of favorable interactions in the larger
system. This indicates that the intrasheet interactions are not

Figure 10. Interaction energy curves for cellulose nanofibrils 1 (a) and 14 (b) cellobiose units in length. Displacements are relative to the structure
generated by cellulosebuilder. Data is normalized by the number of cellobiose units in each elementary chain.

Table 2. Interaction Energies for the Inter- and Intraplane Interactions within Model Cellulose Iβ Nanofibrils 1 and 14
Cellobiose Units in Lengtha

normalized interaction energies for fibril 1 cellobiose unit in length (eV) normalized interaction energies for fibril 14 cellobiose units in length (eV)

intrasheet 0.78 0.59

1) 36 chain, 1 layer 0.81 3.56

2) 18 chain, 1 layer 1.52 5.73

3) 36 chain, 4 layers 1.63 6.73
aData is normalized by dividing by the number of cellobiose units in an elementary chain.
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simply additive and is thought to occur due to the presence of
intrachain hydrogen bonds between adjacent cellobiose units
that are present in the structure containing 14 cellobiose units
per elementary chain but not in the smaller system containing a
single cellobiose unit per elementary chain. The intrachain
hydrogen bonds between different cellobiose units are
highlighted “IC” in Figure 11; intrachain hydrogen bonds
present in chains containing only a single cellobiose unit are
not highlighted.

For both the short and long nanofibrils it is observed that the
interaction energies for the 36 chain, 4 layers (3) and 18 chain,
1 layer (2) systems are greater than that of the 36 chain, 1 layer
system (1) (1.52 ≈ 1.63 > 0.81 eV for the small system and
6.73 ≈ 5.79 > 3.56 eV for the large system). This is
unsurprising as a greater number of elementary chains are
translated in these systems, and thus a greater number of
favorable interactions are broken. When considering the effect
of truncation, the difference in energies between the 36 chain, 4
layers (3) and 18 chain, 1 layer (2) systems is small in both
cases (0.10 eV for the small system and 1.00 eV for the large
system). These differences show that the truncation of a
cellulose nanofibril through the removal of sheets of elementary
cellulose chains has an impact on the properties of the
nanofibril.
The results for the smaller system indicate that the inter- and

intrasheet interaction energies per cellobiose unit are similar
(largest intersheet interaction - intrasheet interaction = 0.84
eV), while the larger system shows intrasheet interactions to be
significantly weaker than the intersheet interactions (largest
intersheet interaction - intrasheet interaction = 6.14 eV). This
demonstrates the complexity of the system as experimentally it
is known that sonication in water separates the sheets but does
not separate the chains within a sheet. This is still consistent
with our findings as the intersheet interactions are electrostatic
and van der Waals driven and can thus be easily disrupted at the
individual level by sonication, resulting in penetration by
solvent. However, the individual intrasheet hydrogen bonds are
not so easily broken. The single cellobiose model gives a
qualitatively different picture demonstrating that when
attempting to understand the properties of cellulose nanofibrils,
a realistic, extended structure is required - truncation in terms

of either the number of elementary cellulose chains or their
lengths can change the shape of the potential energy surfaces
significantly.

5. CONCLUSIONS
We have presented a hybrid MPI-OpenMP implementation of
the ONETEP software package and illustrated its performance
on a range of high performance computing platforms. Our work
has focused on the most computationally demanding routines
within the code, namely FFT box operations, operations
performed on sparse matrices, the calculation of integrals, and
the Ewald summation. We have demonstrated the ability of the
hybrid MPI-OpenMP code to scale to the regime of tens of
thousands of atoms on tens of thousands of cores, a scale that is
out of the reach of the MPI-only code. This is achieved by
overcoming restrictions that arise from both software and
hardware limitations.
The limitations of the MPI-only code arise from an

algorithmic restriction to more than one atom per core and
the technical issue of high communication costs arising from
the use of thousands of MPI ranks. Within the hybrid MPI-
OpenMP code the former restriction is lifted entirely and the
latter restriction is severely reduced, as the possible number of
cores per MPI process is increased from just one up to
potentially the number of cores per node (or per NUMA
region if applicable). Hardware restrictions such as a low
quantity of RAM per core are overcome by utilization of shared
memory by the hybrid MPI-OpenMP code. This is a very
important issue as it means that machines such as BlueJoule
may be used much more efficiently than previously possible.
The limitations in the current hybrid MPI-OpenMP

implementation are 3-fold. The first issue, poor parallel
efficiency at high MPI process counts, appears to arise from
the scaling of the sparse matrix product code. Addressing this
issue will further improve the scale of the calculations for which
ONETEP may be used. Second, there is a parallel efficiency hit
per added thread resulting from serialisation of MPI
communications within threaded regions: this may be
addressed using thread-aware calls to the MPI library. The
final issue, the strong scaling at lower MPI process counts but a
high number of cores per atom, is, in part, caused by the
limitation of the FFT box code to a single level of parallelism
(each FFT box operation is performed entirely by a single
core): a second level of parallelism is technically possible and in
future implementations will increase performance significantly;
however, the limitation of a single MPI process per NUMA
region would still apply.
Future developments to address these limitations include the

application of OpenMP parallelism to other areas of the code,
inclusion of a second level of OpenMP parallelism within the
FFT box operations themselves, and the combination of the
GPU accelerated version of the code described elsewhere23

with these developments.
In summary, the development of a hybrid MPI-OpenMP

implementation of the ONETEP code improves the applic-
ability of ONETEP significantly, enabling shorter “time to
solution” and permitting users to utilize powerful HPC
resources more efficiently. This is exemplified by the
calculations we performed on the 13,969 atom amyloid fibril
protein on the BlueJoule BlueGene/Q machine which
performed 6× faster with an 4× increase in resources due to
the inability of the MPI-only implementation to fully utilize the
cores on a node. These developments also facilitate the

Figure 11. A cellobiose unit is highlighted as part of a cellulose chain.
Intrachain (IC) hydrogen bonds are shown. We can also see a second
chain which is connected to the first one via intrasheet (IS) hydrogen
bonds. IC hydrogen bonds within a single cellobiose unit are also
present but are not shown here.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500686r | J. Chem. Theory Comput. 2014, 10, 4782−47944793



application of the ONETEP code to much larger problem sizes
than previously attempted, illustrated by calculations performed
on systems containing 41,907 atoms.
We have applied the hybrid MPI-OpenMP code to simulate

cellulose nanofibrils in order to investigate the mechanism by
which sheets of elementary cellulose chains are separated when
undergoing sonication. We have found that for this biological
structure it is important to use large models, such as those used
here with 21,276 atoms, in order to correctly describe the
interactions that collectively determine the structural properties
of the fibrils. It would have been nearly impossible to perform
these calculations with the MPI-only implementation of
ONETEP, but with the developments described here they are
now feasible.
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