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The nuclear industry has enormous challenges to address in understanding its
waste products and their safe disposal. It is extremely expensive and di� cult to
work with such waste products. As computational chemistry has made so many
advances in the last 30 years, the question arises as to whether it can start to answer
some of the basic questions. It was in this context that British Nuclear Fuels plc
approached the quantum chemistry group at the University of Cambridge. After
initial considerations, it was decided to write an entirely new quantum chemistry
package to address these fundamentalproblems. The MAGICs program has been
written to model as accurately as possible the properties of heavy-atom (in
particular, actinide) complexes in realistic environments.Major requirementswere
the need to include relativistic eŒects for which several investigations have been
carried out by quantum chemists in recent years. A severe di� culty is the high
angular momentum of the occupied orbitals in the actinides. It was also believed
that it was very important to include the eŒects of electron correlation.Again much
progress has been made by quantum chemists with this problem. Therefore this
code was written to take into account all these advances in a simple enough way
that calculations on realistic systems are possible. The program is the result of a
collaboration between British Nuclear Fuels plc and the University of Cambridge.
The program has been developedwith a view to making the implementationof new
ideas as straightforward as possible. Hence, the code has a simple modular
structure. Individual modules may of course be combined in a script to run more
complicatedprocedures, such as a self-consistent ® eld (SCF) procedure.The aim of
such an approach is to maximize the time spent in the science compared with that
spent interfacing with the computer code. For the end user a simple graphical user
interface through Cerius# is provided. Standard features of the input may be
selected easily from individual menus for each module. It is also possible to access
more advanced features. Comprehensive help facilities are available within the
interface. Use of the visualization tools helps not only to see the results of
calculations on large molecules more clearly, but also to present them in a concise
and clear way. The program has been developed on an SG workstation, but it has
been extended to run in parallel on a Cray T3E. This paper is the basic paper which
describes in detail the philosophy, science and implementation of the MAGIC
project. At the end, sample calculations are reported. Furthermore suggestions are
made about how this program may, even at this stage, be used to address problems
with actinides in the nuclear industry. In order to place the development of the
MAGIC project in context and to make adequate recognition of the contribution
of others, this article contains considerable material of a review nature, a brief
history of the development of quantum chemistry and density function theory, the
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treatment of core electrons and relativistic eŒects, the evaluation of integrals,
the treatment of solvent eŒects and the convergence of the SCF iterations. All
are written with calculations on actinide complexes as the ultimate goal.
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1. Introduction to the MAGIC project

The use of nuclear ® ssion for the generation of energy presently accounts for

25± 30% of the world’s energy supply [1]. This creates a problem, however, in what to

do with the spent nuclear fuel. One solution is simply to dispose of it. A more elegant

and environmentally aware solution, however, is to reprocess it to extract materials of

use. This will clearly involve recovery of any uranium-235, which forms the basis of the

® ssion process itself. It will also include extraction of plutonium, which is formed in

the reactor from uranium-238.
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There are a number of advantages to recycling in this way. As the uranium-235

content of naturally occurring uranium ore is very low, the fuel is enriched before

being used. This keeps the size of reactors down and means that the fuel has to be

changed less often. However, such enrichment, typically by diŒusion or centrifuge, is

expensive. In the spent fuel the uranium-235 content is typically higher than in nature

and so less enrichment is necessary. Hence the cost of producing fresh fuel is reduced.

Another advantage is in the conservation of resources, which has become a major

topic in recent years. This may also be extended to the use of ex-military material,

where the alternative is simply a di� cult disposal procedure. Finally, one easy way of

restricting access to plutonium is to store it in a mixed fuel ; it is a straightforward

procedure to generate such a mixed fuel within the reprocessing cycle.

Spent nuclear fuel consists of actinide elements and their ® ssion products. The ® rst

step in reprocessing is therefore to separate uranium and plutonium from the ® ssion

products. This involves a liquid separation between aqueous and organic phases. The

spent nuclear fuel is ® rst dissolved in nitric acid. Any insoluble material can be ® ltered

at this stage. The rest is passed through a mixture of an organic solvent, typically tri-

n-butylphosphate (TBP) in odourless kerosene, and water. The important uranyl and

plutonyl nitrates complex with the TBP and are extracted in the organic phase. Most

of the other nitrates simply dissolve in the water and are extracted in the aqueous

phase. In this way the uranium and plutonium may be separated, together with some

contaminants. The next stage is to separate the uranium from the plutonium. This may

be achieved by changing the oxidation state of the plutonium. For example, U(IV) in

hydrazine reduces the extractable Pu(IV) complex to the practically inextractable

Pu(III) complex.

Once the uranyl nitrate has been separated, it is heated to produce uranium

trioxide, which may be subsequently reduced to give uranium dioxide. It is this which

provides the basic fuel for the reactor. Before use, however, it needs to be enriched. For

this reason it is converted to uranium hexa¯ uoride ; this is a convenient choice because

it is gaseous under the conditions of the diŒusion experiment and ¯ uorine has only one

isotope. It is subsequently converted to uranium metal or back to uranium dioxide for

use in the reactor. The plutonyl nitrate may also be heated to produce plutonium

dioxide but, because of the presence of impurities, conversion to plutonium oxalate

and heating to give the dioxide is more typical.

The metal nitrates, which were extracted in the aqueous phase, must now be

disposed of. These are classi® ed as high-level waste. They are denitrated and vitri® ed

ready for long-term storage. Material from the recycling process, for example cladding

materials from the fuel rods, is encapsulated in cement. Other low-level waste is simply

buried in vaults.

It is clear that a good understanding of the chemistry of these systems can be used

in a number of areas. In the area of liquid separation a number of criteria need to be

satis® ed for a good extractant. These include a high distribution ratio for uranyl and

plutonyl nitrates, which is sensitive to the acidity, diŒerent a� nities for diŒerent

actinide elements, in particular uranium and plutonium, negligible a� nity for the

® ssion products, stability to chemical and radiolytic breakdown, and low toxicity, with

harmless degradation products which are simple to dispose of. We believe that

quantum chemistry can be used to model some of the molecules ; in particular the

change in their high-energy properties in diŒerent environments can now be studied.

In combination with experiment, such understanding can lead to the use of improved

extraction methods. The potential saving involved, because of the need for less
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experimental work, is considerable. Hence it may be possible to extract uranium and

plutonium more e� ciently or, for example, to extract other actinide elements

eŒectively. Another example might be to look for an extractant for the heat-releasing

elements (caesium and strontium) which cause problems later in waste storage, or for

technetium which aŒects the e� ciency of the uranium± plutonium separation.

A second area in which theoretical chemistry could be used is in describing the ® nal

waste storage procedure. It is important to engineer properties of the glasses in which

the high-level waste is vitri® ed. For example, they must incorporate the maximum

amount of waste material. They should be su� ciently reactive that they incorporate

the waste but also durable so that they do not need to be maintained over long periods

of time. With a good theoretical model, such properties may be predicted as well as the

likely eŒects of waste incorporation on the glass structure. Similarly, in the case of

intermediate-level waste, the cement properties such as chemical stability and leach

behaviour may be predicted. Theoretical chemistry may provide parameters for a

more reasonable model of the system, or in some cases it may even provide the model.

Having established an outline of the types of application to be studied, a choice was

then made about how to do the calculations. The easiest (and cheapest in the short

term) route would have been to use an existing computer package. The ® rst problem

with this is that, although such programs have been widely applied to elements in the

® rst and second rows of the periodic table, applications with actinide elements are still

rare. Even where available, they tend to be detailed examinations of small molecules

in the gas phase, rather than the complex systems to be studied here. Also it was not

possible to ® nd a program which would satisfy all the needs of the project. Even if it

had been possible, it is inevitable that such a program would need to be re® ned or

extended and this is often di� cult to do. Part of the reason for this is that, as quantum

chemistry improved in the period 1970± 1990, so many models were tried with no

de® nite conclusion over an optimum choice. The programs therefore grew to

incorporate many possible models and this led to much confusion. For the MAGIC

project, therefore, a choice was made about the basic model that would be used.

Having made this choice we also had to address the problems of the robustness of

the program. This refers not only to how the program executes but also, for example,

in the ease with which it may be moved between diŒerent computer platforms. Ways

in which we have done this include making the code structure as simple and short as

possible. Where possible, external mathematical library routines are used. In starting

from scratch we have also been able to decide on the modular format of the program

which helps not only to understand the running of the existing procedure, but also to

add extra functionality. With such a code it is also important that it should be

straightforward to run. This is addressed by the use of the Cerius# package by

Molecular Simulations Inc., to which MAGIC has been interfaced, although the

program can be run without it. In this way, the development eŒort should be directed

to improvement in the scienti® c model and not to attempts to understand the existing

computer science.

In choosing the scienti® c model we had to consider both the complex systems that

we wish to examine and the properties that can reasonably be predicted. It is clear that

this should be a relativistic model. A full Dirac± Fock four-component analysis is

rejected owing to the size and complexity of our systems. A two-component analysis

is therefore favoured, although as it is not clear whether the Douglas± Kroll (DK) [2]

treatment or the Chang± Pelissier± Durand (CPD) [3] treatment is more reliable, we

have included both. Even these methods, however, are expensive compared with the
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use of relativistic eŒective core potentials, which form the basis of our initial model.

Should we be unable to make reliable predictions based on these, and a two-

component model is a demonstrable improvement, then the basic model will be

changed.

As much of this chemistry takes place in the liquid phase, solvent modelling is

important. The simplest approach is to use a cavity model [4] where the liquid is a bulk

continuum with a ® xed dielectric constant. A multipole expansion of the solute is

performed and it is through this that the eŒect of the solvent is felt. Again our

philosophy is to use the simplest reasonable model for our systems of interest, which

we feel is an elliptical cavity and a quadrupole expansion. Many re® nements are

possible within this model, for example sophisticated cavity shapes and higher

multipole expansions, but before inclusion in the basic model they would have to be

demonstrably better than our existing model. It is more likely that our major

approximation lies in not allowing speci® c interaction between the solvent molecules

and the solute. One way to remove this is to perform a calculation on a small collection

of solute and solvent molecules using the quantum-mechanical model. This soon

becomes too expensive and so we are examining the use of mixed quantum-

mechanical± molecular-mechanical [5] models.

The choice of a quantum-mechanical method is crucial to the predictive success of

the entire model. We believe that it is important to include electron correlation in the

model. The high-level correlated techniques, such as the con® guration interaction (CI)

[6] or coupled-cluster (CC) [7] methods, are, however, too expensive when applied to

such large systems. Also, although they may be conceptually straightforward, their

implementation is often much less so. We have therefore chosen to use density

functional theory (DFT) [8].

For direct comparison with other methods we have chosen to use a Kohn± Sham

procedure in our implementation of DFT. There are a number of diŒerent density

functionals to choose from, each with its particular advantages over others. As it is

di� cult to choose just one possibility, we have included both the local density

approximation and the Becke± Lee± Yang± Parr (BLYP) functional, although the latter

is not part of our standard model [9, 10].

The intensive two-electron integral computation is included in the model through

a three-centre approximation. The integrals are evaluated directly, that is as required,

without the need for their storage. This introduces the use of an auxiliary basis set. A

four-centre integral routine is currently under development and oŒers the opportunity

of greater comparison with existing calculations. It will also be used to verify the

accuracy of the auxiliary basis sets.

Within the model it is possible to make a number of further approximations in

situations where we know a priori the values of certain quantities. For example, we

may well know that many elements of a particular matrix are vanishingly small. It may

then become possible to save computational time by skipping their calculation. Where

it can be shown that such an approximation has no eŒect on the quoted accuracy of

the ® nal computed properties, it is allowed. We have successfully used such

approximations in both the two-electron and the DFT routines.

Although it is possible to calculate simple properties of the systems, that is a

Mulliken population and charge analysis, dipole and quadrupole moments, emphasis

has been placed on the use of external modules. Thus it is of advantage to use the

existing property analysis tools in a package like Cerius# where available and write

speci® c modules to evaluate those properties which are not.
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2. Quantum chemistry

In the year of writing (1999), quantum chemistry has been recognized through the

award of the Nobel Prize in Chemistry to W. A. Kohn and J. A. Pople [11] jointly. On

any basis therefore the ® eld is recognized not simply for its ability to solve the

quantum-mechanical equations to a good degree of approximation for any molecule

but also for the fact this ® eld can undertake calculations of real bene® t to the

community. We start by outlining how quantum chemistry can reach into the study of

actinides and their complexes.

Since 1926, theoretical scientists have been trying to solve Schrodinger’ s [12]

equation for molecular systems. An incomplete historical survey of work which has

stood the test of time as far as this project is concerned would include the following :

(1) the hydrogen molecule by James and Coolidge [13] in the 1930s;

(2) molecular orbital (MO) theory due largely to Mulliken [14] and Slater [15];

(3) self-consistent ® eld (SCF) theory due to Hartree [16] and Fock [17];

(4) the introduction of Gaussian basis functions by Boys [18];

(5) the presentation in 1964 by Nieuwpoort [19] of ab initio calculations on metal

carbonyls.

In other words, by the middle 1960s, computational chemists were using the SCF

[20] method to study molecules which contained atoms beyond the ® rst two rows of the

periodic table.

The following years were a period of enormous consolidation. Horribly di� cult

problems could start to be addressed because it was possible to program in

FORTRAN, and computers became reliable and more readily available. The

convergence of the SCF equations was attacked with success, as it was vital to

minimize the number of iterations of this linearized cubic problem. The evaluation of

the two-electron four-centre Gaussian integrals was attacked and solved in at least

three highly e� cient ways [21, 22]. Open- and closed-shell systems were studied using

restricted and unrestricted methodologies [23, 24]. The basis function problem was

cracked through the introduction of contracted combinations of Gaussian functions

[25± 27], with standard sets becoming common. Then Pople and co-workers announced

their GAUSSIAN program [28], which contained many of these ideas, but which

primarily was robust, worked and was freely available to all those who had a Vax

computer. By 1970, computational quantum chemistry as we know it today had been

born.

Much of the work in standard quantum chemistry over the next 20 years is not

directly relevant to us, although it was mathematically brilliant and exceedingly

original. The problem at hand was that part of the energy which was missing from

Hartree± Fock calculations, namely the electron correlation energy [29]. Although a

small contribution, it is nevertheless vitally important in molecular processes. (The

correlation energy contribution to the binding of the nitrogen molecules is

100 kcal mol­ ".) It was believed that the proper approach was to use methods which

were related to CI [18] or the linear combination approach. It is, however, important

to mention outstanding contributions, such as the multicon® guration self-consistent

® eld (MCSCF) [30] approach, the Mù ller± Plesset [25] theory up to fourth order and

CC theory [7]. Combinations of these approaches such as multireference double

con® guration interaction (MRDCI) [31] and complete active space and perturbational

treatment (CASPT2) [32] are also widely used. Each of them has the valuable property

that there is a straightforward route to improvement. All these methods produce the
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highest-quality results, but the downside is that they are all in principle much more

expensive than SCF. They are not the way forwards towards large molecular studies.

It is, however, important to recognize that this period was also a benchmarking period

in which the relative accuracy of diŒerent approaches was assessed [33].

There was one important development in the period ; Pulay [34] introduced his

gradient theory for geometry optimization, ideally suited to the use of Gaussian basis

functions. Molecular structures can now be optimized for all methods.

The study of molecules containing transition-metal atoms is a more di� cult

problem [35], where the chemical bond is weak. Roos [35] highlighted the di� culties

of Ni(CO)
%
, in which the nickel atom is d"!, while in the atom it is d*. The correlation

eŒects between the d electrons and the relativistic contributions cannot be neglected.

In ab initio quantum chemistry, the MCSCF method is essential to study ® rst-row

transition-metal complexes. Roos also referred to the large number of valence

electrons ; in Cr(CO)
’
, there are 66 and the correlation energy of all these electrons

must be computed. Such a problem is almost impossible using MCSCF techniques,

even with today’s computers. These three problems (orbital occupancy, relativistic

eŒects and number of participating electrons) exist, often with increasing eŒect, as one

works down the periodic table.

The prototypical molecule for actinide studies is UF
’
. Early calculations of the

one-electron energy levels in 1976 by Koelling et al. [36] used the fully relativistic

Dirac± Slater method with numerical atomic orbitals. The Slater part means that q%/$

is used for exchange and correlation. Ab initio SCF and CI calculations using

relativistic eŒective core potentials for uranium were reported in 1979 by Hay et al.

[37]. This was a major step forwards because the large number of electrons problem

was overcome. The orbitals could be examined in detail and the bond length was

optimized. Since that time, quantum chemistry methods have become more sophisti-

cated ; see for example the fully relativistic four-component Dirac± Hartree± Fock

­ CI calculations by De Jong and Nieuwpoort [38] for the photoelectron spectrum of

UF
’
. However, the complexity of these sophisticated and accurate methods means

that they cannot be applied to larger actinide complexes.

The success of calculations on UF
’

using the relativistic Xa method (see for

example those by Onoe et al. [39]) encourages the study of actinide complexes using

DFT. If it was 1989 today, we do not think that the MAGIC project would have

commenced. Perhaps this would have been because we had not thoroughly read the

literature. We were aware of Slater’s [15] Xa method of 1954 in which he removed

exchange from the SCF equations, replacing it by a term involving q"/$, where q is the

electron density. Unfortunately it was multiplied by an empirical constant. Slater said

that it worked, it did (or did not) include correlation eŒects and it came from the

uniform electron gas. It was given low attention because it was oversold. Anybody

who used it knew that molecules were overbound compared with experiment. We were

not familiar with the Hohenberg± Kohn [40] theorems, or the Kohn± Sham [41]

construction, or Bright Wilson’ s [42] incisive understanding. We ought to have been,

because our colleagues down the road in physics were using it successfully all the time.

We must make it clear that `we’ refers to `us ’ , and not all. In particular, Baerends

[43] was working with this DFT approach in the early 1970s. He was actually working

with hydrogen-like basis functions as well. His group [44] and others [45] were

obtaining useful results. In particular, Ziegler et al. [46] were producing quality results

for transition-metal complexes. We think that the reason that people did not go into

DFT earlier was that the molecules were overbound by the theory.
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Then came the breakthrough ; Becke [9] in his ® rst classic paper showed that the

predictions were remarkably improved if the exchange± correlation functional went

beyond the local-density approximation (LDA) [47] and included some dependence on

¡q. His second classic paper [48] told us how to evaluate accurately the matrix elements

of these DFT functionals. Becke’s results were impressive ; atomization energies were

suddenly very accurate; Pople was impressed and introduced Kohn± Sham DFT into

GAUSSIAN, and we followed soon after [49].

The enormous attraction of DFT is its cost ; in an elementary evaluation it is a SCF

method with Hartree± Fock cost. Electron correlation eŒects are there through the

functional, and not through the basis. It is possible to use an orbital model, which all

chemists like. Programming it is relatively simple. Not only does it give quality

predictions for ® rst- and second-row molecules, but also it works very well for

transition metal and actinide complexes and their properties. Many calculations by

Dickson and Ziegler [50] using the Amsterdam density functional code (ADF) [51] of

Baerend’ s group bear this out. Similar calculations by Eichkorn and Ahlrichs [52]

using TURBOMOL [53] also support this. A possible reason may be that the band-

type structure of these heavier atoms is more amenable to the LDA approximation.

For all these reasons, computational chemistry became a DFT ® eld and, by 1995,

the sceptical quantum chemistry community was dragged reluctantly into the DFT

arena. DFT calculations were reproducible, which has always been the hallmark of

quantum chemistry. Favourite functionals exist, both with (hybrid) and without

(generalized gradient approximation (GGA)) some Fock exchange contribution.

Faced with the scienti® c problems outlined in the introduction, we had decisions

to make. We had a speci® c type of chemical problem to study. All DFT programs in

1995 (with the exception of Baerends’ ) were cobbled from a regular quantum

chemistry SCF code. There had to be advantages from starting from scratch, which we

did. An important initial decision was not to include Fock exchange (this may have

been an error), and this had consequences for our evaluation procedures for the

Coulomb potential (see section 4). We therefore set about writing a DFT Kohn± Sham

code speci® cally designed to perform calculations on actinide complexes. Before

proceeding further, we must discuss relativistic eŒects (in the next section).

3. Relativistic theory

The entire MAGIC project commenced from a visit by Mr A. M. Simper, a

research employee of British Nuclear Fuels plc, to N. C. Handy. Adrian Simper

expressed an interest in investigating quantum chemistry for actinide complexes. We

recognized the immediate problems : the numbers of electrons and the essential

relativistic considerations. Adrian then became a graduate student with N. C. Handy

to study `relativistic calculations on molecules ’ . Nearly all this section is therefore

abstracted from his PhD thesis (1998).

The simple Bohr model of a relativistic atom suggests that the relativistic radius of

the uranium 1s orbital is 0 ± 74 of the non-relativistic radius. The immediate knock-on

eŒects are the stabilization of s and p orbitals, and the destabilization of higher-

angular-momentum orbitals. In particular the 6s orbital becomes occupied earlier

than expected. The atomic radii of lanthanides and actinides are signi® cantly aŒected

by the stabilization of the 6s and 7s orbitals respectively.

In relativistic quantum mechanics, one starts with the four-component Dirac
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equation hDW ¯ EW. In many-electron theory it is now generally agreed that the best

Hamiltonian is constructed from, ® rstly, the Dirac Hamiltonian R hD
i
, secondly, the

Coulomb term R e#}r
ij

and, thirdly, the spin± other orbit interaction of Gaunt and

the Breit retardation corrections.

Four-component atomic relativistic codes have existed for some time, in particular

the GRASP code due to Grant and co-workers [54], and the code due to Desclaux [55].

The GRASP code is a numerical Dirac± Fock (i.e. SCF) code, with the Breit terms

introduced as a perturbation (with the possibility of evaluating quantum electro-

dynamic terms as well). The Desclaux code is earlier. Four-component relativistic

calculations have been and are undertaken. Malli and Pyper [56] used numerical

atomic relativistic orbitals in an early study of AuH at the Dirac± Fock and CI level.

They showed that relativity shortened the bond by 0 ± 24 A/ . Nieuwpoort [35] used a

four-component code, originating with the studies of lanthanide compounds. The

code MOLFDIR due to Nieuwpoort and co-workers [57] is a Dirac± Fock program for

closed- and open-shell molecules, with the possibility of CI on top. Spin± orbit eŒects

are automatically included, and it was suggested that the code is useful as a benchmark

for calculations on relatively small molecules. Calculations on PtH, EuO*­
’

and CeF&­
)

have been reported. Another four-component code is due to Dyall [58]. For our

purposes, such four-component studies do not seem warranted if they can be avoided,

primarily because of expense, but also owing to extreme programming di� culties. If

four-component studies are envisaged, then the ugly problem of `variational collapse ’

arises unless the basis set for the small component is speci® cally derived from the basis

set of the large component.

Therefore we looked at two-component models. The simplest, and most appealing

if it is accurate enough, is the method of eŒective core potentials (ECPs). The principle

is that we are only interested in the valence electrons which are responsible for the

chemical behaviour. For example the complete electronic structure of the uranium

atom may be

1s#2s#2p’3s#3p’4s#3d"!4p’5s#4d"!5p’6s#4f"%5d"!6p’7s#5f$6d,

and it is probably wise to consider that the bulk of the chemistry may be understood

in terms of the 7s, 5f, 6p and 6d orbitals. Thus one represents uranium as

[Pt]6p’7s#5f$6d. The occupancy of these s, f, p and d orbitals will be uncertain in a

molecule, but that can become clearer once the platinum core is treated. In MAGIC,

we use the method introduced by Kahn, Baybutt and Truhlar (KBT) [59], as re® ned

by Hay and Wadt [60, 61]. We have reprogrammed the ECP equations and integrals

(details are given below) but here we simply introduce the concepts.

The essence of the ECP approach as it is now used is contained in the equation for

a valence orbital with angular momentum l for an atom

0 ® "
#
~# ®

Z ® N
c

r
­

l(l­ 1)

2r#
­ V ­ U

ECP 1 v
l
¯ e

l
v

l
. (3.1)

V is the Coulomb ­ exchange­ correlation potential and Ul is a non-local potential

which includes the eŒects of core± valence interaction, core shielding and overcomes

the nodal problem (a Phillips± Kleinman potential). The form used by KBT for the

total ECP for an atom is given by
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ECP
¯
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k
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ECP

¯
t

c
t
rnt exp ( ® b

t
r#). (3.4)

Here l
max

is the maximum angular momentum in the core.

The extension to include the dominant relativistic terms (mass± velocity, spin± orbit

and Darwin) is straightforward because they are one-electron operators ; one simply

performs two-component calculations including these operators. The ECP parameters

which we use were determined from post-Hartree± Fock atomic two-component

relativistic calculations (i.e. they were determined from CI calculations and not DFT

calculations). This immediately introduces the question of whether it is safe to

combine these ECP parameters with DFT in the valence space; we merely assume that

this does not introduce substantial errors.

Of course the ultimate test is the comparison with all electron calculations. Both

KBT and Hay and Wadt introduced devices to make the valence orbitals resemble

two-component Hartree± Fock orbitals, which were smooth in the core region and

appeared good in the tail regions. However, we have found that agreement between

various forms of ECP and the corresponding all-electron DFT calculation is generally

good and certainly within the `chemical accuracy ’ bounds of MAGIC. Bond energies

have millihartree agreement, bond lengths agree to hundredths of a bohr, and angles

to tenths of a radian. Such comparisons, however, have to be treated with care because

of the prescribed basis sets which are used in ECP calculations.

The major cost of an ECP calculation is the evaluation of

©g(C)rU
ECP

(A)rg(B)ª, (3.5)

where U
ECP

(A) is the ECP potential de® ned earlier on centre A, and g(B) and g(C) are

any Cartesian Gaussians on centres B and C respectively. We ® rst examined the ECP

code as written some years ago by Hay and Wadt ; we found it slow and not su� ciently

¯ exible for us, and we therefore decided to write our own algorithms for these matrix

elements. Details of this work due to A. M. Simper and C.-K. Skylaris are given in the

next section.

MAGIC also has the facility to perform more sophisticated two-component

relativistic calculations, which introduce to some extent the eŒects of the small

components.

The ® rst approach is commonly known as the CPD transformation. Much of the

original work involving renormalization of the large component was due to van

Lenthe et al. [62]. The key lies in the relation

w
s
¯

1

2mc 0 1 ­
E ® V

2mc# 1 ­ "
r[pw

L
, (3.6)

which allows the Dirac equation to be written as

9 V ­
1

2m
r[p 0 1 ­

E® V

2mc# 1 ­ "
r[p : w

L
¯ Ew

L
. (3.7)
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Next the inverse operator is rewritten through

1

2 0 1 ­
E® V

2mc# 1 ­ "
¯

mc#

2mc# ® V 0 1 ­
E

2mc#® V 1
­ "

(3.8)

and then one expands (1 ­ E}(2mc#® V ))­ ". This then yields the zeroth-order regular

approximation Hamiltonian HCPD
!

:

HCPD
!

¯ V ­ r[p
c#

2mc#® V
r[p. (3.9)

An expansion of HCPD
!

then shows that it contains the ordinary Newtonian terms

(p#}2m and terms in A and A#), the Darwin term (( ò #}8m#c#) ~#V ), the spin± orbit term

((1}4m#c#) r[(¡V ¬ p)) and the magnetic spin interaction ( ® (eò }2mc) r[¡ ¬ A).

The implementation of CPD into a DFT code yields the following orbital

equation, assuming that the energy expression is the usual DFT expression of

Kohn± Sham theory, with T replaced by T CPD, and after the neglect of a higher-order

term :

(T CPD ­ Š
ext

­ Š
J
­ Š

xc
® e

i
) w

i
¯ 0, (3.10)

where

T CPD ¯ r[p
c#

2mc#® V
r[p. (3.11)

If we then introduce the usual space± spin basis (A
i
a, B

i
b), then the matrix element of

T CPD between two such basis functions is

T CPD
ij

¯ dr [Ax
i
fAx

j
­ Ay

i
fAy

j
­ Az

i
fAz

j
­ i(Ax

i
fAy

j
® Ay

i
fAx

j
)

­ Bx
i
fBx

j
­ By

i
fBy

j
­ Bz

i
fBz

j
­ i(Bx

i
fBy

j
® By

i
fBx

j
)

­ Az
i
fBx

j
­ Bx

i
fAz

j
® Ax

i
ŒBz

j
® Bz

i
fAx

j

­ i(Ay
i
fBz

j
­ By

i
fAz

j
® Az

i
fBy

j
® Bz

i
fAy

j
), (3.12)

where f(r) ¯ c#}[2c# ® V(r)], and the superscripts denote the ® rst derivatives of the

Gaussian basis functions (A
i
, B

i
).

The CPD method was ® rst implemented in the ADF code of Baerend’s group. The

di� culty with the approach is the numerical evaluation of the full potential V at a

numerical integration grid point r. There is never any problem with the evaluation of

the external potential or the exchange± correlation potential, but the Coulomb

potential does cause di� culties. In the ADF code the density is represented in terms

of a ® tted Slater-type orbital (STO) basis, for which the potential is also trivial. In our

case the problem is di� cult, we proceeded through the evaluation of Gaussian nuclear

attraction integrals at each grid point, which is costly. Furthermore we found it was

necessary to use more quadrature points to evaluate this matrix element reliably.

Therefore this CPD code using a Gaussian basis is only recommended for trial

investigations.

The other approach which is available within MAGIC is the DK method. The

approach here is to ® nd a unitary transformation Hh ¯ UHU ‹ , so that H4 does not

couple the large and small components. The important references are the papers by

Foldy and Wouthysen [63], Douglas and Kroll [2], Hess [64] and Knappe and Rosch

[65].

Here we write U ¯ U
!
U

"
, where U

!
is the Foldy± Wouthysen transformation,
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which is an exact decoupling in the absence of an external ® eld. This gives the

transformed Dirac Hamiltonian hD
"

:

hD
"

¯ bE
p
­ A(V ­ RVR) A ­ bA(RV ® VR) A, (3.13)

where

A ¯ 0 Ep
­ mc#

2E
p

1 "/#, (3.14)

R ¯
ca[p

E
p
­ mc#

, (3.15)

E
p

¯ (c#p# ­ m#c%)"/#. (3.16)

The decoupling is exact in the absence of an external ® eld.

DK then introduced
U

"
¯ (1 ­ W #)"/# ­ W. (3.17)

For a W, whose kernal is given in the momentum representation by

W(p, pa ) ¯
ARV® VRA

E
p
(p) ® E

p
(pa )

, (3.18)

one obtains the two-component one-electron DK Hamiltonian

hDK
#

¯ E
p
­ A(V ­ RVR)A ® ("

#
[W #, E

p
]
+
­ WE

p
W ). (3.19)

This is the one-electron operator implemented in MAGIC. It exactly decouples the

small and large components through second order. An analysis of terms through c­ #

gives

E
p

¯ mc#­
p#

2m
®

p%

8m$c#
, (3.20)

AVA ¯ V ®
1

8m#c#
[p#, V ], (3.21)

ARVRA ¯ ®
ò

4m#c#
r[(¡V) ¬ p­

1

4m#c#
² ṕ V ² [ṕ . (3.22)

The Newtonian terms are there, the Darwin term is there, as is the spin± orbit

interaction. The unbounded mass± velocity term is also present and is not cancelled by

the W terms.

Subtracting mc# yields the two-component DK DFT operator

FDK ¯ TDK ­ Š
J
­ Š

xc
, (3.23)

T DK ¯ E
p
® mc# ­ AVA­ ARVRA® WE

p
W

® "
#
(W #E

p
­ E

p
W #). (3.24)

To work in MAGIC we now introduce a Gaussian basis set as usual. We must

transform to momentum space by diagonalization of the basis function representation

of the kinetic energy. Since p is diagonal in the momentum basis, it follows that the

operators E
p
, A and R have a diagonal representation as well. The di� culty comes in

the matrix representation of operator products owing to the incomplete basis. Hess

has shown that we must proceed through

C
ij

¯ (AB)
ij

¯
k

A
ik

B
kj

. (3.25)

Indeed this is so critical that we introduce the full uncontracted basis in the
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completeness relation. Further algebra gives the following representations for the

remaining terms :

ARVRA ¯ ò #A « Vll A « ­ i ò #elmx rx A « Vlm A « , (3.26)

A « ¯
cA

c#­ E
p

(3.27)

Vlm ¯ ©¡l n
i
rV r¡m n

j
ª (3.28)

W # ¯ (ARVRA) (AVA) ® (AVA) (R#) (AVA)

® (ARVRA) (R­ #) (ARVRA) ­ (AVA) (ARVRA), (3.29)

WE
p

W ¯ (ARVRA) E
p
(AVA) ­ (AVA) E

p
(ARVRA)

® (AVA) R#E
p
(AVA) ® (ARVRA) E

p
R­ #(ARVRA). (3.30)

This completes the description of how this Hamiltonian was programmed within

MAGIC.

As written, this DK code had substantial memory requirements because of the

necessity to use the uncontracted basis. To overcome this cost we introduced a `two-

centre ’ approximation [66]. This works as follows. Submatrices on two speci® c centres

were extracted, and then the DK transformation performed using all the primitives on

those two centres. The elements are then pushed back. The two-centre approximation

greatly reduces the memory requirements, while retaining the millihartree accuracy

requirement. In conclusion to this section, the inclusion of relativistic eŒects into

MAGIC was the PhD research topic of A. M. Simper. The ECP code forms the

straightforward production method ; the CPD and DK methods are available, but

only for more detailed research purposes.

4. One- and two-electron integral evaluation

4.1. Introduction

All one-electron integrals of MAGIC are calculated before a SCF calculation and

stored in the archive. From there, they are retrieved whenever a module needs them.

The number of basis functions necessary to study the size of systems for which

MAGIC is intended results in a prohibitively large number of two-electron integrals.

It is impossible to keep all these in memory or even to store them on disk. MAGIC is

therefore a direct SCF program and it computes the two-electron integrals from the

beginning at every SCF iteration, based on the principles of direct SCF pioneered by

Almlof et al. [67] and later elaborated by Ha$ ser and Ahlrichs [68]. The neglect of

integrals with zero value makes the scaling of the computational cost with the size of

the system slightly higher than quadratic.

The two-electron integral subroutines are brand new and implementationally not

related to any of the previous two-electron integral evaluation packages. The theory

that we implemented to generate the two-electron integrals is that of the quadrature

and recursions of Rys and co-workers [69± 71] with subsequent re® nements such as the

reduced multiplication scheme [72] and the use of the transfer equations at the

contracted stage [73].

4.2. Coulomb energy e Š aluation in MAGIC

The direct scheme of MAGIC can calculate two-electron integrals which are used

in the evaluation of the Coulomb operator matrix elements of the Kohn± Sham matrix.

In some ongoing calculations, they are also used in the exchange operator matrix
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elements of the Kohn± Sham matrix in calculations where hybrid functionals are used

or for traditional Hartree± Fock calculations.

In DFT calculations that employ functionals with only local exchange the two-

electron repulsion integrals contribute only to the Coulomb part of the Kohn± Sham

matrix and the corresponding expression for the energy. The Coulomb operator

matrix elements FJ
ij

can be written in terms of the electronic density q and two basis

functions u
i

and u
j

as a two-electron integral : (u
i
u

j
r q). A very successful ap-

proximation which speeds up considerably the calculation is the use of an auxiliary

basis set to expand (® t) the density. This ® tted density qW is then used in the evaluation

of the Coulomb part of the Kohn± Sham matrix, in place of the `true ’ density q. As a

result, only three-index two-electron integrals are required. There are inherently fewer

three-index integrals than four-index integrals and their calculation requires less

computational eŒort anyway. Therefore such an approximation is signi® cantly faster

than the conventional four-index two-electron integral approach.

The auxiliary basis density ® t method was ® rst developed by Baerends et al. [43]

and was called the `discrete variational method ’. Each contribution to the density due

to every set of basis functions on a pair of atoms was approximated (® tted) as a linear

combination of auxiliary functions based on the same pair of atoms. It was therefore

a local ® tting procedure, that is it ® tted separately each diatomic contribution to the

density. Also, in its original form, it involved the evaluation of three-centre overlap

integrals and only a two-dimensional matrix of two-electron integrals (two-index)

between pairs of basis functions. This ® tting scheme was based on the minimization of

the mean square deviation between the true and the ® tted density.

MAGIC takes advantage of auxiliary basis density ® t methods for the signi® cant

computational savings that they yield are necessary for quick calculations on the

systems that we are aiming for.

The density ® tting procedures implemented in MAGIC are based on the

improvements of Dunlap et al. [74] and Ahlrichs and co-workers [75], which are

claimed to yield a more accurate ® t. They are based on the minimization of the mean

square of the electric ® eld due to the true and the ® tted density. This results in the

evaluation of three-centre two-electron integrals. Two options for density ® tting are

available.

(1) The density q(r) is ® tted as a whole according to the following formula :

q(r) E qW (r) ¯
NAUX

t="

q
t
f
t
(r),

where q
t
are the expansion coe� cients or charges [76, 77] and qW (r) represents

the ® tted density. The elements of the Coulomb contribution to the

Kohn± Sham matrix are calculated in two stages. First, the charges are

calculated:

q
s
¯

NAUX

t="

NBF

i,j="

(V­ ")
st
( f

t
r u

i
u

j
) D

ji
,

where N
BF

is the number of basis functions, N
AUX

is the number of auxiliary

functions, D
ij

is the density matrix and (V­ ")
st

is the inverse of a two-

dimensional matrix containing two-electron integrals between the auxiliary
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functions. Then, the actual elements of the Coulomb Kohn± Sham matrix are

calculated from

FJ
ij

¯
NAUX

t="

(u
i
u

j
r f

t
) q

t
.

We call this the global ® tting procedure and it is the preferred way of ® tting

densities in most DFT programs [78] which use this approximation for the

Coulomb part of the energy. It has proved rather accurate for standard

calculations and a variety of auxiliary basis sets have been developed by

various groups [75, 79, 80]. Furthermore, MAGIC oŒers the possibility of

including auxiliary basis functions centred on any (user-de® ned) point along

the distance between an atom pair or even on arbitrary points in space, should

the need for this arise.

(2) The diatomic density q
AB

(r) ¯ R
i,j

DAB
ij

uAB
i

(r) uAB
i

(r) due to every pair of atoms

A and B is ® tted to auxiliary functions centred on these atoms only, resulting

in diatomic ® tted densities q4
AB

(r) whose sum is the total ® tted density. This

scheme is even faster since it requires the consideration of functions only on

pairs of atoms. However, it is less accurate since by de® nition only auxiliary

functions on A and B are used to represent each diatomic density q
AB

. We call

this the local or diatomic ® tting procedure. An added di� culty of the local ® t

is that, currently, there are no auxiliary basis sets available speci® cally designed

for this purpose.

It is worth mentioning that all the integral subroutines of MAGIC, consistent with

our programming philosophy, do not involve any limitations on the size of the system

being studied and the computational resources that they can occupy. This also implies

that there is no limit on the number of basis functions that an atom can have, on their

angular momentum or on the number of primitive Gaussians per contraction.

Recursions are programmed in full. For low angular momenta, explicit expansions are

used for improved computational speed. Such requirements, although trivial, are not

taken for granted in some standard quantum chemistry packages.

A statistical analysis of the density ® t at the end of the calculation can be

performed to check whether the accuracy of the ® t is satisfactory and its in¯ uence on

the result. This, together with a detailed comparison of the above-mentioned three

ways to evaluate the Coulomb part of the Kohn± Sham matrix for a variety of basis sets

and molecules will be described in a subsequent publication.

4.3. Gradient and geometry optimization

MAGIC can optimize geometries through an implementation of a geometry

optimizer based on the use of analytic gradients of the energy and an approximation

to the Hessian by the Broyden± Fletcher± Goldfarb± Shanno (BFGS) update formula

[81, 82]. Such quasi-Newtonian methods have been shown to be rather successful and

avoid the high computational cost of directly calculating the Hessian [83, 84].

According to the BFGS formula the inverse Hessian at a speci® c molecular geometry

(nth step of the geometry optimization) is given by the following expression :

G
n

¯ 0 1 ®
q

n
[d ‹

n

q ‹

n
[d

n

1 G
n­ " 0 1 ®

q
n
[d ‹

n

q ‹

n
[d

n

1
‹

­
q

n
[q ‹

n

q‹

n
[d

n

, (4.1)
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where the column vector q
n

¯ X
n
® X

n­ "
is the diŒerence between the molecular

geometry at step n and at the previous step. In a similar fashion, d
n

¯ g
n
® g

n­ "
contains the diŒerence between the two consecutive gradients. 1 is the unit matrix. As

the number of geometry optimization steps increases, the approximation to the inverse

Hessian given by equation (4.1) becomes better. Because of the approximate inverse

Hessian and the fact that the potential energy surface is not simply a quadratic

function of the coordinates, a line search has to be performed and various line search

schemes can be used. However, the gain in optimizer steps that a line search yields can

be outweighed by the extra point energy evaluations that it requires. In addition, there

seems to be no line search scheme which is e� cient and robust enough for all types of

molecule and levels of theory. We therefore use directly the quasi-Newtonian step

vector scaled by a factor less than or equal to unity. The density at the previous

geometry is used as a starting density for an SCF calculation during a geometry

optimization.

Analytical gradients for SCF functions are essential for geometry optimizations

and the formulae for a variety of ab initio methods are readily available [85]. MAGIC

uses the gradient of the DFT energy calculated using the global density ® tting scheme

for the Coulomb energy. The expression for the gradient is the same as in the four-

index case but with the Coulomb part of the gradient

"
#
D ‹ ¥II

¥R
Ac

D (4.2)

replaced by

¥ C ‹

¥R
Ac

V­ "C ® "
#
C ‹ V­ "

¥V

¥R
Ac

V­ "C , (4.3)

where II is the four-index two-electron supermatrix, C is the three-index two-electron

supermatrix and R
Ac is a Cartesian coordinate of centre A (c ¯ x, y, z). A detailed

derivation of the above formalism including extensions for second derivatives has been

published by Komornicki and Fitzgerald [86].

Calculation of the gradient requires the use of ® rst derivatives with respect to

atomic coordinates of the one- and two-electron integrals that contribute to the

energy. The translational invariance principle is employed to save some computational

eŒort [87, 88]. Some attention is due to the evaluation of the derivatives of the

exchange± correlation potential matrix elements. These integrals are evaluated by

three-dimensional molecular quadrature and errors in the gradient can result with

small quadrature grids. These errors disappear in the limit of an in® nite grid or if

consistency is preserved by taking account of the derivatives of the grid with respect

to atomic coordinates as some workers have stated [89± 91]. In MAGIC we use large

enough grids that lead to negligible errors in the gradient. We prefer such an approach

to the computational complexity of grid derivatives because it leads to overall more

accurate exchange± correlation energies. The extra overhead due to the larger grid is

very small owing to the neglect of zero contributions.

4.4. EŒecti Š e core potentials

The use of ECPs is a necessary approximation in calculations of heavy-element-

containing large molecules. This is because most molecules of chemical interest usually

include more than ten atoms. For molecules of such size all-electron two- and four-

component methods have too high a computational cost for currently available
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computer resources, which renders them ine� cient for routine calculations. ECPs

allow for the incorporation of the most important relativistic eŒects in the same single

determinant framework of non-relativistic Kohn± Sham calculations. In addition, they

are constructed in such a way as to yield orbitals with no nodes in the core region, a

consequence of which is the use of a smaller (valence only) basis set. These two features

of ECPs lead to increased computational speed while maintaining su� cient accuracy.

The derivation of ECPs according to KBT [59] has proved particularly successful

and popular in molecular calculations. A large number of researchers have derived

ECP parameters and matching valence basis sets for the KBT scheme for almost all the

atoms of the periodic table and with various degrees of sophistication in their

derivation. As a small part of what is available we mention the ECPs derived by Hay

and Wadt [60, 61] and Wadt and Hay [92] and the newer ECPs by the Stuttgart group

[93± 95]. The latter contain two diŒerent ECPs for each element, one which has been

derived using standard non-relativistic theory and one which has been derived by

taking into consideration relativistic eŒects. It is then possible to use the two kinds of

ECP to run two sets of calculations and to obtain an estimate of the changes that the

consideration of relativity causes on a molecule.

The KBT-type ECPs are conveniently expressed as linear combinations of

Gaussian functions (see equations (3.2)± (3.4)). In all ECPs derived to date the powers

n
kL

and n
kl

are restricted to the values 0, ® 1 and ® 2. In MAGIC, the ECP parameters

are kept in a library ® le just like basis sets and the addition of new ECPs is a trivial

matter.

All the computational eŒort of using ECPs lies in the calculation of the integrals

of the one ECP operator with the basis functions. Once those are calculated, they can

be treated as the rest of the one-electron integrals and no more computational eŒort

is required. A few methods and corresponding programs for evaluating these matrix

elements have been developed over the years [59, 96± 98].

MAGIC has built in from the beginning the ability to use the KBT form of ECPs

in all the types of calculations that it supports. Their implementation is described in the

following section.

4.5. EŒecti Š e core potential integral e Š aluation

As with all of MAGIC, the ECP integral code has been written from the beginning.

The KBT ECP operator matrix elements are expressed as sums of two kinds of one-

electron integral :

v
AC

¯ u
A

rnkL exp ( ® f
kL

r#) u
C

ds (4.4)

and

c
AC

¯ & ¢

!

©u
A

r lm ; Bª (r) rnkL+# exp ( ® f
kL

r#) ©u
C

r lm ; Bª (r) dr, (4.5)

where u
A

and u
C

are primitive Cartesian Gaussian functions on centres A and C

respectively.

We evaluate the v
AC

integral according to the con¯ uent hypergeometric formula

presented by McMurchie and Davidson [96]. For the evaluation of the c
AC

integral we

have implemented a variant of the McMurchie± Davidson method [99]. The original

implementation proved too slow for the types of molecule that we wish to study. We

therefore derived a new, more e� cient way of evaluating this particular integral. It is

a mixed numerical± analytical integration technique. It exploits the fact that the

Gaussian functions in c
AC

are independent of each other as far as angular integration
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is concerned and the high e� ciency of the Log3 radial quadrature scheme [100] for

molecular integrals.

The angular integrals ©u
A

r lm ; Bª (r) are calculated by analytical integration at

every radial point of the Log3 quadrature. Then they are used to calculate the c
AC

integral as a whole:

c
AC

¯
nr

i="

©u
A

r lm ; Bª (r
i
) ©u

C
r lm ; Bª (r

i
) rnkl

i
exp ( ® f

kl
r#
i
) w

i
, (4.6)

where n
r
is the number of radial quadrature points, and r

i
and w

i
are the corresponding

points and weights respectively. The accuracy of the numerical part of the integration

is controlled by increasing the number of points in stages until a prede® ned precision

(10­ "! in our case) is achieved. It can be extended to scale linearly and, as the rest of

MAGIC, it has no limitations on the number of basis functions, angular momentum

and size of system. Calculations on actinide complexes with large ligands and metal

clusters with many ECP centres are well within the reach of the method. A detailed

description of the method has been published [10].

5. The self-consistent ® eld procedure

The Fock operator for a Kohn± Sham procedure leads to a complicated high-

dimensionality nonlinear equation to be solved. Solution of such an equation allows

us to represent the orbitals for the system within our model. As an analytic solution is

not available, and unlikely ever to be so, an iterative scheme is used. However, it is not

clear that an iterative scheme will always be able to ® nd a solution.

The problems of ® nding such solutions have been well documented in the

literature, particularly in the cases of open-shell molecules [102] and those described by

multicon® guration methods [30]. A number of solutions have been proposed, most of

which have found success in solving a particular type of convergence di� culty.

In addressing convergence di� culties, two approaches may be considered. In

analogy with observations in chaos theory, convergence behaviour may be changed by

changing the initial conditions, or by changing the form of the Fock operator.

Examples of the former include changing the initial guess orbitals, the atomic basis

sets, the geometry and the occupation of the initial orbitals by altering the spin

multiplicity. The way in which the convergence behaviour depends upon these

parameters is clearly very complicated. In the case of the guess orbitals, for example,

the general rule is that, the `better ’ the initial guess, the faster the convergence.

However, this assumes that one knows what `better ’ is and in the limit actually

assumes knowledge of the solution. Although this may be possible by analogy with

similar systems, which one has previously analysed, an absence of such comparisons

may lead to inaccurate assumptions. The other variables mentioned relate to the

detailed mathematical description of the system. A direct connection between these

and convergence behaviour has not been established. Even if it were, it is not clear that

this could be used to improve such behaviour. One is often also obliged to use certain

starting parameters, such as using a geometry obtained from experiment.

Another commonly used technique is to converge for a system related to the system

under investigation and then to use its density as a starting point for the true system.

For example, where it is not possible to converge the system with a stretched bond

directly, it may be possible to converge for a shorter bond length. The density from this

calculation would then be used for the system with a slightly stretched bond. This

process would be repeated until the desired bond length has been attained.
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Much attention has been given to methods involving changing the form of the

Fock operator. One such method is the use of level shifting proposed by Saunders and

Hillier [103]. The idea is that convergence behaviour may be improved by applying a

shift to the virtual orbital eigenvalues. This does not aŒect the ® nal energy. One case

in which this will clearly help is in making degenerate highest occupied molecular

orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) non-degenerate,

although it appears to be of considerable assistance in other cases. The value of the

level shift has been examined. We adopt the simplest approach which is to shift all

virtual eigenvalues by the same ® xed amount. The value of the shift is typically four,

although some systems require a much larger value. This technique forms an

important part of the basic MAGIC model.

Scaling has been widely used to improve convergence. For example it is possible at

any given iteration to scale the nonlinear part of the Fock operator such that the total

energy is minimized. One then proceeds to the next iteration, making use of this revised

Fock operator. Such schemes have been examined by Seeger and Pople [104].

Direct inversion of the iterative subspace (DIIS) was ® rst introduced by Pulay [105]

to accelerate the self-consistent procedure to a solution. One simply forms a linear

combination of previous Fock matrices at any given iteration. The coe� cients within

this combination are calculated on the basis of an error vector, which is any property

of the system which becomes zero at convergence. This is typically chosen to be the

vector given by FDS ® SDF. Clearly such a transformation involves a change in the

form of the Fock operator and, as such, is often used to help to ® nd a solution.

Numerical di� culties may arise in the DIIS procedure from the use of error vectors

which are becoming very small towards convergence. The C2-DIIS method of Sellers

[106] is used within MAGIC to overcome some of these. It basically involves the

diagonalization of a matrix and an appropriate selection of eigenvector for the

expansion coe� cients.

One may consider methods which do not involve diagonalization of the Fock

matrix. These methods will obviously avoid any problems arising from degenerate

eigenvalues of the Fock matrix. The large ¯ uctuations in density are also avoided.

An example of this technique is direct energy minimization (DEM) [107]. One

begins from the observation that the total energy of a molecule is minimized by

rotating the virtual orbitals into the occupied orbitals. Therefore, if the rotation matrix

were known, it would be possible to rotate the occupied orbitals directly to give the

lowest possible energy. However, the rotation matrix is not normally known. We

suppose that the change in the rotation matrix as we move about the orbital surface

is governed by forces which obey Newton’ s law. If we can calculate the forces, we can

integrate to give simple equations of motion for the rotation matrix elements. It

happens that it is possible to evaluate the forces and indeed they are proportional to

the MO Fock matrix. This leads to simple equations of motion which describe the

evolution of the rotation matrix. In this form we simply move about the orbital

surface. However, the scheme is easily adjusted to become a steepest-descent procedure

which ® nds the lowest possible energy. When this is true, the rotation matrix is clearly

zero. One satisfying aspect of the scheme is that the convergence criterion often is that

the MO Fock matrix elements become zero. Once the new rotation matrix has been

found, a Levy [108] transformation of the occupied orbitals is performed. Although a

® nite number of terms in the exponential expansion are used, problems due to orbital

orthogonality do not normally arise.

An alternative procedure is the conjugate gradient density matrix search [109].
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Here it is the density matrix which is adjusted, subject to maintaining its idempotency

(D# ¯ D). This latter restriction is imposed by the application of a puri® cation

transformation, de® ning a new density matrix as 3D#® 2D$ [110]. The scheme involves

the minimization of a function of the density, which is typically FD. The conjugate

gradient technique is used to accomplish this.

Both of these methods are more robust in ® nding a solution than standard

diagonalization techniques. However, their disadvantage is that they are slow.

It is important to consider further details of the self-consistent procedure. The ® rst

is the way in which convergence is checked for. The simplest way is to look at the

absolute diŒerence in total energy in successive iterations and indicate convergence

when this drops below a certain threshold. Computational issues limit how strictly this

threshold may be set. Such a scheme leads to a signi® cantly less well converged

electron density. Further use of this density, in the calculation of molecular properties,

may therefore lead to unsatisfactory results. Accuracy is therefore improved by

converging on the density. This may be accomplished by checking the absolute

diŒerence in the density matrix between successive iterations or, even more strictly, the

root mean square deviation in this matrix. This is the standard within the MAGIC

model. When DIIS is used, it is more elegant to check the magnitude of the error

vector, which is done. In the DEM procedure, the obvious check is on the maximum

absolute element of the MO Fock matrix.

A second important point concerns the nature of the solution. When such a

solution is obtained, it is merely a stationary point and, as such, may be a minimum,

maximum or point of in¯ ection. To verify that a minimum has indeed been located, it

is necessary to perform a `stability analysis’ [111]. This involves the calculation of

second-derivative properties and work is under way to include this in MAGIC.

However, if the solution is not a minimum, this does not tell one how to ® nd the

minimum, or indeed whether it exists.

There are a number of problems with ® nding solutions to nonlinear equations

which these methods attempt to address. The simplest is perhaps that due to density

¯ uctuations which occurs, for example, in the restricted treatment of the hydrogen

molecule with an extended bond length. Two solutions to the problem are possible,

namely H+ ­ H­ or H­ ­ H+. One therefore ® nds an oscillation in the iterative scheme

between these two possibilities. To ® nd a solution, one uses either an unrestricted

model or the level shift technique, which appears to ® nd the same solution. Another

straightforward di� culty is in the treatment of degenerate eigenvalues of the Fock

matrix. In this case a swapping of eigenvectors takes place in successive iterations,

leading to arti® cial diŒerences in the density matrices. This is most easily solved by

avoiding the use of diagonalization. When one considers the actinide elements, their

electronic structure makes location of solutions di� cult. This is partly because of the

small energy diŒerence between many of the valence orbitals. Density ¯ uctuations

typically occur, with electrons moving easily between diŒerent orbitals in successive

iterations. It is interesting that we usually observe an oscillation between only two

possible con® gurations.

A typical MAGIC calculation involves a combination of techniques. It is found

that the initial use of a level shift or DEM helps to stabilize the iterative scheme. The

value of the level shift may be either 4 ± 0 or 20 ± 0. Where a value of 20 ± 0 has been used,

this is normally reduced after about 15± 20 iterations to a value of 4 ± 0. It is then usually

found necessary to keep the level shift applied to ® nal convergence. This often proves

to be a very slow procedure. Where DIIS can be used, this is preferred.
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The convergence of the SCF iterations remains an ongoing research topic. At

present we are examining a `non-integer ’ occupancy scheme if there is a band-type

structure to the orbital energies. This is similar to a MCSCF approach, but in the DFT

formalism.

6. Density functional theory

Our opening policy was not to include the possibility of including any Fock (exact)

exchange in the energy expression, although we are now questioning this decision.

Therefore in the MAGIC program we use GGA functionals, namely those for which

the exchange± correlation energy expression is

E
xc

[q] ¯ f
xc

(qa, qb, faa, fab, fbb) r. (6.1)

In this expression qr, r ¯ a, b are the spin densities, and frr« ¯ ¡qr[¡qr « . The program

is written in terms of spin densities.

In the program the exchange± correlation potential Š
xc

(r) is not speci® cally

evaluated in the Kohn± Sham part, because an integration by parts removes the

necessity for the evaluation of second derivatives of f
xc

. However, Š
xc

(r) is required for

the evaluation of the energy gradient, necessary for any geometry optimization. Such

subroutines have been independently written and checked. The functionals in use in

MAGIC are LDA [112, 113] and BLYP [9, 10].

The latest version of MAGIC involves the evaluation of the DFT parts in O(N )

cost, that is the cost goes up linearly with increasing size of the molecule. All the DFT

matrix elements and exchange± correlation energies must be evaluated by quadrature,

which means the generation of a quadrature grid and associated weights. The Becke

procedure is used to partition molecular space into atom-centred Voronoi polyhedra,

within which a spherical polar grid is generated. The number of such grids is equal to

the number of atoms. For each grid point, a list of those basis functions which are

signi® cant (less than 10­ *) is generated. All loops inside over basis functions will only

involve this list. The code is therefore O(N ) cost.

The speci® cs of the grid now follow. For the radial grid we use the recipe of Mura

and Knowles [100], for which the speci® c parameters for our atoms are a ¯ 5 or 7,

depending on the atomic number. For the angular grid we always use the two-

dimensional Lebedev set, using 110, 302, 590 or 974 points [114]. The code makes its

automatic selection according to a speci® c data set instruction. We have found no

evidence of instability with these choices, and we expect that the Kohn± Sham energies

which we calculate to be accurate to 0 ± 001E
h
.

The DFT part of the code is e� ciently written, and in no way is a dominant part

of the calculations. New functionals may trivially be added as appropriate. However,

it must be stressed that the use of DFT to study actinides is de® nitely a semiempirical

approach which has not yet been adequately validated.

7. Solvent eŒects

As mentioned previously, a large part of the chemistry that is of interest to British

Nuclear Fuels plc takes place in the liquid phase. This prompts us to extend the gas-

phase computations to incorporate the eŒects of such an environment. One of the

current strategies for the inclusion of solvent eŒects is the use of a continuum solvent

model. The solute, or system of chemical interest, is housed inside a cavity in an in® nite

dielectric continuum which assimilates the bulk liquid. Such models eŒectively involve

the addition of a solvent term into the quantum-chemical Hamiltonian. Models such

as the polarizable continuum model of Tomasi and co-workers [115] and continuum
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solvation model (COSMO) [116] are two examples. The formalism of these models

explicitly uses the induced charge density on the cavity surface as a variable in the

model. The model that we have used is based on the reaction ® eld concept of Onsager

[117] and it uses the formalism of the self-consistent reaction ® eld method, introduced

by Rivail and Rinaldi [118]. This model seems more elegant as it only involves the use

of the size and shape of the cavity, the dielectric constant of the continuum and the

properties of the solute inside the cavity to calculate the electrostatic contribution to

the solvation free energy, thus bypassing the direct use of the surface charge density.

We give a brief outline below.

The liquid environment is represented by an in® nite polarizable continuum of the

dielectric constant e(x). Inside this continuum, there is an ellipsoidal cavity of

dielectric constant e
i
(x) ¯ 1, into which the solute is placed. The charge distribution

of the solute polarizes the continuum, which then creates an electric ® eld that reacts

back on the solute, that is the reaction ® eld. For a given charge distribution, the

interaction energy between the solute and the continuum can be written as

©H
cav

ª ¯ "
#

¢

l,m=!

C
lm

©Q
lm

ª#. (7.1)

This can be derived from the equations governing the classical electrostatics of the

model. The coe� cients C
lm

are the reaction ® eld factors which depend entirely on the

size and shape of the cavity and the dielectric constant of the continuum. The Q
lm

are

then related to the multipole moments of the charge distribution within the cavity. The

angular brackets, in this case, denote quantum averages. This energy term can then be

added to the Kohn± Sham energy functional and then, in the subsequent minimization,

an additional term arises in the Fock matrix Flm ¯ FKS
lm ­ F cav

lm , which arises entirely

from the cavity term above. The Fock equations are then solved, self-consistently, in

the presence of the solvent, thus allowing for the electronic polarization of the solute

by the solvent. This is the self-consistent reaction ® eld method. The inclusion of

analytical derivatives of the above term then allows geometry optimization, thus also

allowing for the nuclear polarization eŒects of the solvent.

In our implementation of this model, we use an ellipsoidal cavity [119]. The

dimensions of the cavity (i.e. its three semiaxes) are well de® ned within the model.

They are related to the van der Waals radii of each of the atoms in the solute and an

empirical relation between the total volume enclosed in the van der Waals surface of

the molecule and the actual experimental molecular volume. Full details have been

given in [119]. Since this de® nes the geometry of the cavity, this also, together with the

dielectric constant, completely de® nes the reaction ® eld factors in the above equation.

We then include terms in the expansion up to and including the quadrupole, that is

l ¯ 2. These two factors, namely the shape of the cavity and the truncation of the

multipole expansion, may seem to be a little careless since well developed models for

a molecularly shaped cavity and inclusion of terms in the expansion of up to order

l ¯ 7 already exist in the literature (see for example [118, 120]). Our reasoning for

choosing the model that we have is as follows. As stated previously, the purpose of

designing the MAGIC program is to enable the user to perform calculations reliably

on large heavy-atom systems. These will involve large complexes, typically complexes

that will have a very low symmetry. Thus, such systems will not have dominant high-

order multipoles and the terms in the above expansion will monotonically decrease as

one goes to higher and higher orders. Given this fact, a truncation at the quadrupole
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term seems appropriate. Similar reasoning can also be applied to the use of the

ellipsoid-shaped cavity since large complexes will typically have such a shape.

It is worth clarifying the physical content of the model since elaborations to the

basic model do exist. Firstly, we have written the dielectric constant as having a

frequency dependence. In this model we use the static permittivity or the zero-

frequency dielectric constant as, for the moment, we are interested in the static

properties of large heavy-atom systems, that is properties in which the dynamical

response of the liquid to changes in the charge distribution of the solute are not

particularly important. Two of the physical eŒects that have not been included are the

free energy of cavity formation (cavitation energy) and the dispersion contribution to

the interaction free energy. Both terms have been shown to be roughly constant with

respect to changes in the geometry of the solute [120] and, therefore, as we shall be

typically interested in geometries and energy diŒerences, we expect that these terms

will have a smaller contribution to such quantities than the more dominant

electrostatic energy. Finally, the model that we have implemented, or any cavity model

for that matter, will be most eŒective in situations where the interactions between the

solute and the solvent are relatively weak, and, in particular, in cases where there is no

chemical activity between the solute and solvent. In such cases, the solvent acts purely

as an environment and it will more than likely induce quantitatiŠ e changes in the

potential energy surface of the solute, for example inducing a change in the barrier

height to some sort of isomerization. Such a solvent can be said to be passive. The

approximations made in such models will break down in the cases where the solute

interacts strongly with the solvent, that is the solute interacts chemically with the

solvent molecules in its immediate neighbourhood and chemical bonds between solute

and solvent are formed. In these situations, the discrete nature of the liquid is of vital

importance and, thus, the continuum approximation to the solvent breaks down. Here

the solvent is active rather than passive. The potential energy surface of the solute now

has qualitatiŠ e changes. One can consider that the binding solvent molecules then

become part of the solute and the whole complex forms a large supermolecule. If one

wishes to continue to use continuum models in these situations, supermolecule

calculations must be performed, with a large cavity containing the solute molecule and

several solvent molecules. This sort of calculation has recently been performed in a

study of the uranyl and plutonyl cations [121].

8. The code

Considering the complexity of the applications that are envisaged by the project,

we have structured the MAGIC program in as transparent and easily extended way as

possible. Further, the program needs to be as robust as we can make it while still

allowing execution in a reasonable time. This latter requirement also includes

minimizing the use of computer resources and, in particular, the e� cient use of

memory.

The starting point is the choice of computer language, although writing the code

simply should make it possible to change this fairly easily. However, an initial choice

of FORTRAN was made for the scienti® c programming. It is the relatively in¯ exible

nature of this language leading to greater consistency, compared with C, as well as its

general use throughout scienti® c programming, which prompted its choice. Some

Cray extensions were used, in particular POINTER and MALLOC, where they

oŒered advantages. Otherwise only standard features of the languages were used. For
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those routines with a greater computer science connection, for example the input and

output of the program, we chose to use C.

The main structure of the program is modular. Each module corresponds to a

speci® c part of the model, for example building the DFT grid or adding the two-

electron contribution to the Fock matrix, and is entirely self-contained. This allows

these features of the model to be changed quickly by the amendment of the

appropriate module. Although these modules may be executed individually, a single-

point energy calculation is typically performed by a script which combines modules in

a de® nite way. It is, of course, possible for users to construct their own individual

scripts where required. Similarly, in collaborating with others to develop the program,

they write their own module to perform the science and this is incorporated into a

given procedure.

An important consideration of such a scheme is how the modules communicate,

that is both receive data and output results. We would also like such results to be easily

transferred among diŒerent users. To do this we use an archive facility within the

MAGIC. This consists of a number of binary ® les which are written to the hard disk

during execution of the program. These include both intermediate and ® nal results.

Simple instructions within the routines, namely put and get, write and retrieve

named archive ® les. For example, the instruction `call put (`̀ molecule.centres ’ ’ ,

centres) ’ would write the contents of the array `centres ’ to an archive ® le called

`molecule.centres ’ . This archive ® le may then be subsequently retrieved by another

module. It is also convenient that the ® nal results can be viewed from the archive

making an output ® le redundant. One advantage of this approach is that the accuracy

of display of the results may be easily adjusted by the access facility. It is then only

necessary for diŒerent users to have the same archiving module in order to pass archive

® les between them.

Looking at the robust aspects of the code, we programmed each module as simply

and consistently as we could. This should make it simpler for each programmer, either

the original programmer looking back over a routine or a new programmer, to

understand its computer science. This should also avoid undue repetition of existing

code within the program. Emphasis is then placed on the science, where we want it.

Each module is short (less than 1000 lines of code) and performs a clear task.

Although we initially made no approximations within our chosen model, we found

this to be too slow for practical use. Therefore we introduced the following

approximations. In the calculation of two-electron integrals we do not calculate

integrals smaller than an input threshold. In the DFT module we do not calculate the

values of basis functions less than a ® xed threshold for batches of grid points. Again

in the DFT we do not add contributions to the Fock matrix less than a ® xed threshold.

These approximations save considerable time in execution of the program, particularly

for larger systems. It is clear that the threshold may be set to remove completely the

approximation if required.

Mathematical library routines are widely used where possible in MAGIC. This

removes the need for writing speci® c mathematical procedures, often much less

e� ciently or robustly than in existing libraries. It also helps to improve the portability

of the program between machines.

One way to improve the e� ciency of a program is to run it in parallel. We have

developed a parallel version of the MAGIC program on a Cray T3E at the CINECA

supercomputer centre in Italy. The message-passing interface has been used as it is the

most portable of the existing parallelization methods. No Cray-speci® c instructions
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have been used, making it equally applicable on a Silicon Graphics machine, for

example. Work has been mainly concentrated in the two-electron and DFT routines,

which are usually the most expensive in any calculation. Mathematical procedures,

such as diagonalization, have been parallelized through the use of Scalapack through

an easy-to-use interface. Other modules, such as the grid build, have been parallelized

in a simple manner.

The development of the MAGIC code has been predominantly on Silicon Graphics

computers, with the parallel version being developed on the Cray. The Casevision

Visual Debug environment has been used, allowing the developer to check many

aspects of the basic source code as work is in progress. Such tools make the

development of a robust code more straightforward. When completed, a module is

checked by running a collection of roughly 200 test decks. Thus we are able to verify

that it is performing correctly and that it is not adversely aŒecting another part of the

program.

9. Graphical user interface

The MAGIC program includes an interface to the molecular modelling package

Cerius# [122]. After the initial selection of a study area (which is the directory in which

all subsequent ® les will be kept), the user is then presented with a number of modules

to run. Each module has its own panel from which appropriate options may be

selected. When ready, the user simply clicks on the go button to run the module.

Within each panel there are a number of other features. On the right-hand side of

each there are a number of help buttons. The ® rst displays a general description of the

module. Next there is a button to show the archive ® les read by the module. Further

buttons show the archive ® les added, those required by a module for successful

execution and the resources used.

It is also possible to use the MAGIC tools from the graphical user interface. These

are similar to modules except that they do not write to the archive. Typically they read

some archive information, use it as necessary and output the results directly to the

user. Examples of such tools include `Access ’ , which displays the contents of an

archive ® le.

Job control is handled from a panel. It allows calculations to be run in the

foreground or background. They may be killed while running and results may be

checked at intermediate points of the calculation.

Access to the other modules of Cerius# is very useful. These include the geometry

sketcher, which is used to provide a rough starting geometry. An optimization with an

empirical potential is usually run before beginning the MAGIC calculation.

10. Applications

The applications of the MAGIC project have been carefully chosen to give us

information about both the model that we are using and the types of property that we

may reasonably calculate to compare with experiment. The purpose of this section is

to demonstrate our approach to calculating these properties of actinide complexes. We

shall also discuss some example systems and the situations in which these occur. Where

speci® c details have been published elsewhere a reference is given.

Our starting point is the uranium hexa¯ uoride (UF
’
) molecule in the gas phase.

There is a large amount of experimental information [123± 127] about this molecule,

providing us with comparative data. There have also been a number of other



352 A. Willetts et al.

theoretical studies [38, 39, 128± 134]. This allows us to examine the relative accuracy of

our methods. UF
’

is important for the enrichment process of uranium and as such

plays a key role in the nuclear industry [135, 136]. It is the feedstock for the production

of UO
#

ceramic nuclear fuel, made by the reaction UF
’
­ 2H

#
O ­ H

#
Y UO

#
­ 6HF

via some intermediates that are not well understood. In order to compare and contrast

the properties of similar complexes of diŒerent actinides, we next consider plutonium

hexa¯ uoride (PuF
’
). Although PuF

’
is not currently used in any reprocessing process,

it has historically been suggested that the separation of uranium, plutonium and

® ssion products could be achieved by the same method as uranium-235 and uranium-

238 separation. It is this separation process which involves the hexa¯ uoride.

The calculations were then extended to include the dimers of both UF
’

and PuF
’
.

The UF
’

dimer has been suggested as one of the intermediates that occur in the

production of UO
#
ceramic nuclear fuel from UF

’
. Our aim was to verify whether such

an intermediate might possibly exist under the typical conditions of the fuel

manufacture.

It is important that our applications should move towards the real-world systems

that we ultimately wish to study. Therefore the next step was to move to small uranium

and plutonium complexes. Our primary interest is in the relative stability of these

complexes. In particular, we are interested in how the structure of the ligand aŒects the

complex stability. The ligand chosen was thenoyltri¯ uoroacetone (TTA), which is

based on the familiar acetylacetone (acac) ligand. We shall use it as a representative of

the 1,3-diketone class of ligands. Experimental data are now restricted to some

stability constants, with no previous theoretical work available.From the experimental

data it is possible to derive a trend for the ease of extractions of diŒerent valence states

of plutonium. It is this which will be compared with our theoretical results. At this

point the detailed results become predictions.

Finally we present a discussion of some considerably more complicated uranium

and plutonium complexes and the circumstances in which they are used. These systems

tend to become more and more speci® c. For meaningful comparison with experiment

and for reasonable prediction, it becomes increasingly necessary that the true system

is modelled. For example, it may be necessary to include the fact that the complex is

in solution.

10.1. Uranium and plutonium hexa¯ uoride monomer and dimer

We performed a comprehensive study on the UF
’

monomer which has been

described in detail in [137]. The minimum energy as a function of the U± F distance,

assuming octahedral symmetry, and the atomic energies, were determined at the

following levels of theory :

(1) in an all-electron non-relativistic calculation ALL (UF)-nr, by using an all-

electron relativistic basis set on uranium and a non-relativistic basis set on

¯ uorine ;

(2) by using a relativistic eŒective core potential (RECP) on uranium and a non-

relativistic ECP on ¯ uorine (RECP(U)-ECP(F)) ;

(3) by using a RECP on uranium and an all-electron non-relativistic basis set on

¯ uorine (RECP(U) ® ALL(F)).

Both the LDA and the BLYP functionals were used.

Turning to the dimer, we assumed that each monomer maintains O
h

symmetry and

that the dimer has D
#h

symmetry. We are aware of the fact that in the real system the
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monomers might have a distorted geometry, but for this ® rst investigation we

considered the octahedral symmetry of each monomer and the D
#h

symmetry of the

dimer a reasonable approximation.

A more detailed discussion has been reported in [137]. The key conclusions of these

investigations were as follows :

(1) Atomization energies of both UF
’
and PuF

’
were predicted close to experiment

when using ECPs on both the actinide and halogen. The experimental energies

are 32 ± 55 eV [123] and 28 ± 86 eV [124] respectively. These compare with the

calculated results of 33 ± 92 eV and 29 ± 58 eV using the LDA exchange

functional.

(2) Relativistic eŒects must be included (e.g. they lead to a 50% change in the

calculated atomization energy of UF
’
). The calculated atomization energy of

UF
’

without relativistic eŒects was 23 ± 11 eV.

10.2. Complexes of uranium and plutonium with thenoyltri¯ uoroacetone

The use of 1,3-diketones for the extraction and puri® cation of actinides is a well

established fact [135, 138, 139]. In the case of plutonium, a possible chelating species

is 4,4,4-tri¯ uoro-1-(2-thienyl)-1,3-butanedione or TTA. Some ions in aqueous

solutions are not extracted by organic solvents and may be converted into chelate

compounds, which in turn are soluble in non-polar solvents, such as benzene, benzene

derivatives or chloroform. Numerous compounds are also known that form chelate

complex compounds which are extractable into organic solvents. 1,3-Diketones have

been tested for possible application in an isolation process, in which a non-ionized

chelate species is formed, which is then extracted into an organic solvent. The

chelation reaction involved is given by the following equation

Pun+ ­ nHTTA Y Pu(TTA)
n
­ nH+. (10.1)

In the case of plutonium, the chelation of Pu(III), Pu(IV) and Pu(VI) involves three,

four and two molecules respectively of TTA. From a study on the equilibrium

constants [139], it turns out that the extractability of these species is determined by the

series

Pu(IV) ( Pu(III) " Pu(VI) E U(VI).

In another paper [140] we present an extensive study on complexes of plutonium and

TTA. In the following we describe in general terms the methods that we used to study

these compounds and the typical properties that we are interested in. We performed

energy calculations on the complexes and in some cases we estimated the solvent eŒect.

We also optimized bond distances, with particular attention to the plutonium± ligand

bonds. Although our models are a simpli® cation of the real chemical processes, we

think that an investigation of the electronic structure and properties of a number of

molecules can provide useful information for a better understanding of the real

chemistry of these compounds.

In most of the calculations the LDA exchange functional [112, 113] was used. Some

comparative calculations were done including the correlation functional VWN and

also the exchange± correlation BLYP [9, 10] functional. The relativistic eŒects are

considered by the use of RECPs.
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Figure 1. Pu(L1)
#
, Pu(L2)

#
, Pu(L3)

#
and Pu(L4)

#
.

The RECP employed on the uranium and plutonium atoms and the ECP on the

¯ uorine atom are those reported by Hay [128, 141]. The valence basis set used to

represent the 6s, 7s, 6p, 7p, 6d and 5f orbitals of uranium was the (10s8p2d4f) primitive

contracted to [3s3p2d2f] and that of plutonium was the (12s10p2d4f) contracted to

[3s3p2d2f], while on ¯ uorine a (4s5p) primitive basis contracted to [2s2p] was

employed, as reported in Hay’s [128] paper. The all-electron basis used for the light

atoms was the Dunning DZ [142], and for plutonium the uncontracted (24s19p16d11f)

reported in [143]. The auxilary basis sets for the light atoms were those optimized by

Eichkorn et al. [144] for a split valence plus polarization [145] basis. For plutonium,

since a speci® c auxiliary basis set does not exist, we used the rubidium auxiliary basis,

reported in [144].

The initial geometry of the complexes was optimized by using the force ® eld

obtained by Rappe et al. [146] within the Cerius# package. We later optimized only the

Pu± O (ligand) distances ab initio, but this made little diŒerence to our results.

The properties that we looked at were both energetics and geometries, which were

used to give an estimation of the relative stability of the diŒerent complexes. We

analysed a number of diŒerent types of complex, as summarized by the following.

(1) DiŒerent actinide elements (uranium and plutonium). The preliminary study

involved plutonium. This was extended to include uranium so that a

comparison could be made of the in¯ uence of the actinide on the stability of the

complex.
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Table 1. Examples of Pu(II) and Pu(VI) complexes: D
e

is the diŒerence between the
energy of the complex minus the energy of plutonium (or PuO#+

#
) and twice the energy of

the ligand. The values are computed with the LDA exchange functional.

System D
e

PuO#+
#

(L2­ )
#

414.82
Pu#+ (TTA­ )

#
287.58

Figure 2. The HOMO of the PuO
#
(L2)

#
complex.

(2) DiŒerent Š alence states of the actinides. The order of extractability of the

diŒerent valence states of plutonium is known from experiment. This is one of

the few comparisons that we are able to make with experiment. We considered

plutonium in its (II), (IV) and (VI) valence states. These contain two, four and

two TTA ligands respectively.

(3) DiŒerent ligand structures. We decided to examine the eŒect of the ligand

structure on the stability of the complex. In particular we removed the side

groups from the ligand in a systematic way. These are labelled L1, L2, L3 and

L4 (® gure 1). The ligand L1 does not contain a side group, L2 contains the

electron-withdrawing CF
$

group, L3 the electron-donating sulphur ring and

L4 a diŒerent electron-donating group, NH
#
. With these four ligands we

formed the complexes of Pu(II). In table 1, some examples of results on these

compounds are reported.
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Figure 3. The electrostatic potential of the PuO
#
(L2)

#
complex drawn on a density isosurface.

(4) DiŒerent multiplicities of the actinides. The similar energies of the HOMO and

LUMO of the actinide elements lead to very small diŒerences between the

energies of diŒerent electronic con® gurations. We therefore decided to

investigate the eŒect of this diŒerence on our calculated complex stabilities.

The visualization of the results of an ab initio calculation becomes increasingly

important as the complexity of the system increases. It helps considerably in the

identi® cation and subsequent discussion of the qualitative results of the calculation.

Clearly a large number of diŒerent pictures may be produced and it is important that

an appropriate choice of property is made. Three such pictures (® gures 2± 4) have been

included for the PuO
#
(L2)

#
complex. The ® rst shows a representation of the HOMO.

We see that the atomic orbitals involved are those on the plutonium atom and the

surrounding oxygen atoms. This may be used, for example, in explaining the nature of

the bonding. The second picture shows the electrostatic potential on a density

isosurface. We have included only the nuclear contribution. The areas of more

negative potential are in the vicinity of the plutonium atom, moving towards smaller

negative potential around the ¯ uorine atoms. The third picture shows a slice through

the electronic density. It should be remembered that, as the plutonium is represented

by an ECP, only the valence density is shown. As expected, the areas of greatest density

are in the vicinity of the atoms. Even given the use of an ECP, there is still considerable

density about the plutonium atom. As we move further out, so the density decreases.

Our results all indicate that the complexes of uranium and plutonium with ligands

based on a 1,3-diketone structure are very stable. The trend in stability of the complex

when the ligand structure is changed parallels that of the known volatility of these

compounds. The Pu(VI) and U(VI) valence states form considerably more stable

complexes than the corresponding (II) valence states. The spin multiplicity of the

actinide fragments was carefully considered and a number of calculations led to the use

of the following : Pu(IV) and U(II) quintets ; Pu(II) septet ; UO#+
#

singlet ; PuO#+
#

triplet.



MAGIC: an integrated computational en Š ironment 357

Table 2. Examples of U(II) and U(VI) complexes: D
e

is the diŒerence between the
energy of the complex minus the energy of uranium (or UO#+

#
) and twice the energy of the

ligand. The values are computed with the LDA exchange functional.

System D
e

UO#+
#

(L2­ )
#

590.78
U#+ (TTA­ )

#
423.54

Figure 4. A slice through the electronic density of the PuO
#
(L2)

#
complex.

Some comparative calculations have been carried out on the analogous uranium

complexes (table 2). The dissociation energies of U#+(TTA­ )
#

and UO#+
#

(L2­ )
#

are

shown at the LDA exchange functional level. We expect the LDA to overestimate the

binding energy of these compounds. In general we notice that the Pu± U(VI)

compounds are more stable than the Pu± U(II) compounds are. Among the Pu(II)

compounds, those with the electron-donating groups (Pu#+(L3­ )
#

and Pu#+(L4­ )
#
)

were found to be more stable than that with the electron-accepting group Pu#+(L2­ )
#
.

Further, comparing the plutonium and uranium results, the uranium compounds

seem to be more stable than the plutonium compounds. These are only preliminary

results and a complete investigation which includes a basis set superposition error

estimation and a proper geometry optimization of the complexes has been given [140].

We are currently investigating also Pu(IV) which seems to form stable complexes

[147]. The coordination number is generally eight in Pu(IV) complexes. A qualitative

assessment of the idealized geometry of an eight-coordinated plutonium complex is

often described in terms of cubic distortion, forming polyhedra of lower energy, which

closely resemble a dodecahedron, square antiprism or bicapped trigonal prism [147].
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10.3. Towards real chemistry : some plutonium complexes of biochemical interest

Initially, one of the primary aims of MAGIC is to assess the suitability of

complexants for the solvent extraction process. To this end, MAGIC is able to

calculate energies of complexes formed between organic ligands and the various

cations, such as the uranyl or plutonyl ions. The need to extract actinide elements

occurs not only in fuel reprocessing technology but also in areas such as medicine. Our

examples of still larger and more complex ligands include some plutonium complexes

of biochemical interest. These were chosen partly because they represent an interesting

area of actinide extraction and partly because the ligands need to be highly speci® c.

Although the actinide elements have no essential role in the normal biochemical

reactions which occur in plants, animals or man, a knowledge of their interactions with

the various constituents of cells and tissues is important for the understanding of the

mechanisms which control their speci® c tissue deposition pattern, for the initiation of

toxic eŒects and for the development of methods for treating people who may become

contaminated with actinides. The reactions of the actinides with various components

of mammalian blood, cells and tissues have been the subject of a number of

publications [135, 136, 147].

Because it is the most abundant actinide produced in the ® ssion nuclear fuel cycle,

and because it is now present in minute quantities in our normal environment, the

biochemistry of plutonium has been more widely studied than that of any other

actinide. Chelation therapy for the removal of plutonium following contamination has

been the subject of a number of reviews [136, 147, 148, 149]. Several compounds have

been proposed as chelating agents. Ethylenediaminetetraacetate (EDTA) is certainly

one of the most common for all metals in general. As regards its use with the actinides,

the [Th(H
#
O)

#
(EDTA)] and [U(H

#
O)

#
(EDTA)] complexes have been isolated.

Potentiometric pH titrations and ion-exchange and spectrophotometric studies show

that stable 1 :1 metal chelates are formed with Pu(III), Pu(IV), Pu(VI) and Pu(VI)O#+
#

.

The chelating agent diethylenetriaminepentaacetate (DTPA) is the therapeutic of

choice for actinide decorporation therapy. DTPA is an extremely hydrophilic molecule

and its eŒectiveness will depend upon its ability to chelate the actinide from tranferrin.

Formation constants for the interaction of DTPA with some actinides elements are

available [136] and it turns out that DTPA is expected to be eŒective in chelating

plasma protein bound actinide. In fact, DTPA is able to reduce the body burden of

most of the actinides. From this discussion it seems obvious that DTPA is most

eŒective against actinides present in plasma.

At the present stage we are running calculations on complexes of plutonium with

both EDTA and DTPA. These examine both the nature of the bonding and its

strength. This is the ® rst step in our goal of engineering new ligands for the speci® c

extraction of particular actinide elements.

11. The future

The MAGIC project is about the use of computational methods to predict the

properties of actinide systems in the real world. Assuming this, the future of the project

may involve the following areas of research.

(1) Applications must be made on systems with a greater resemblance to those in

current use at British Nuclear Fuels plc. The systems that we have presented in

this paper have proved useful in de® ning where in a complicated mathematical
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model problems may arise. These may be inadequacies in the model or simply

to do with the way that the model has been implemented. It is mainly through

the study of more and more complicated systems that we shall move the project

forwards. We have tried to choose systems where comparison with experiment

or other theoretical calculations is possible. Otherwise, any predictions that we

have made have been cautiously stated. The true usefulness of such an

approach, however, will be when the results are accurate enough to be used for

prediction. In this way, much experimental eŒort may be saved.

(2) Improvement in the existing theoretical models is required to give better results

for a wider range of systems. For example, we may well imagine the use of a

relativistic functional. This also carries on directly from comment (1), in that

it is only through inclusion of accurate solvent and radiation eŒects, for

example, that we may hope to make good predictions.

(3) Predictions of the properties of these systems beyond those currently calculated

are needed. Examples of such properties include those involving reaction

kinetics.

(4) When developing a computer program for such a project it is important that

the main focus, that is the applications, is kept a priority. However, it is

inevitable that we have also carefully considered the structure of the program.

From the viewpoint of the code developer, we have made the program as

transparent as we could. There is, however, always further work to do in this

area, as new ideas come to mind. This is also true of the end user, where it is

through the use of the program by a number of people that its interface will

develop.

In summary, the MAGIC project attempts to use existing quantum chemistry

methods to look at very complicated systems. Careful consideration of the computer

program allows the user and developer to concentrate on the science, and not

necessarily the computer science.
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