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ABSTRACT: We present a method which uses DFT
(quantum, QM) calculations to improve free energies of
binding computed with classical force fields (classical, MM).
To overcome the incomplete overlap of configurational spaces
between MM and QM, we use a hybrid Monte Carlo approach
to generate quickly correct ensembles of structures of intermediate states between a MM and a QM/MM description, hence
taking into account a great fraction of the electronic polarization of the quantum system, while being able to use thermodynamic
integration to compute the free energy of transition between the MM and QM/MM. Then, we perform a final transition from
QM/MM to full QM using a one-step free energy perturbation approach. By using QM/MM as a stepping stone toward the full
QM description, we find very small convergence errors (<1 kJ/mol) in the transition to full QM. We apply this method to
compute hydration free energies, and we obtain consistent improvements over the MM values for all molecules we used in this
study. This approach requires large-scale DFT calculations as the full QM systems involved the ligands and all waters in their
simulation cells, so the linear-scaling DFT code ONETEP was used for these calculations.

1. INTRODUCTION

Finding a computationally tractable method for computing
accurate free energies of binding, typically between proteins
and ligands, is one of the main challenges of computational
drug optimization.1−4 Typically, for large biologically relevant
systems, force fields are used,5−8 introducing dependency of the
results on the parameters of the force field. The use of classical
mechanics usually does not account for interactions which can
only emerge from an ab initio quantum mechanical description,
such as the exchange and the electronic charge transfer and
polarization.9

A further great complexity of biomolecular free energy
calculations is the requirement for extensive conformational
sampling. Ideally, all conformational sampling would be
performed using ab initio calculations, but this is far too
computationally expensive to be feasible. A compromise
between chemical accuracy and speed involves treating only
part of the system (such as the binding pocket) with quantum
mechanics and treating the rest with classical mechanics; this is
known as the QM/MM approach. There are many applications
of this method to calculate binding free energies.10−12 QM/
MM can require a large degree of expertise in the way the
system should be partitioned into MM and QM regions, and
setting up simulations for a nonexpert can be nontrivial.
Additionally, if the QM region is chemically bound to the
classical region, one needs to cleave chemical bonds and cap
them with appropriate functional groups, for which chemically
motivated approaches exist.13

A different strategy is to avoid direct conformational
sampling using QM methods and instead define MM and
QM ensembles and develop an approach for calculating the
change in free energy between the two. This was first described
by Warshel et al.14 when he introduced an extended
thermodynamic cycle which, for the calculation of free energies,
has the form shown in Figure 1.

Here, A and B are different molecular systems; commonly
these are different ligands bound to the same protein. ΔG3,
ΔG7, ΔG9, and ΔG10 correspond to the standard (absolute)
binding energy. Calculation of these values cannot be done
directly. Computationally more tractable are alchemical
mutations of one structure into another, in the complex
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Figure 1. Extended thermodynamic cycle for computing free energies
with QM methods.
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(“com”) and in solvent (“solv”), respectively (ΔG1 and ΔG5).
In this cycle, ΔG2, ΔG4, ΔG6, and ΔG8 are the QM corrections
to the classical free energies (ΔG1 and ΔG5).
As free energy is a state function, one can define the change

in free energy in going from the classical to the quantum
description. This has been applied, in the context of the cycle of
Figure 1, by sampling structures using classical mechanics
molecular dynamics, extracting regularly spaced uncorrelated
snapshots, and perturbing to more expensive QM-based
potentials.15 Such methods, while alleviating some of the errors
due to the classical force field, are still subject to the sampling
issues associated with the classical, computationally cheaper
potential. One possible way to apply this method is with the
single-step free energy perturbation approach, i.e., using the
structures generated from the classical MD simulation to
calculate their fully quantum or QM/MM energy and then
using the Zwanzig equation16 (eq 1) to calculate the MM to
QM change in free energy

βΔ = − ⟨ − Δ ⟩−G k T Uln exp[ ]B QM MM MM (1)

where kB is the Boltzmann constant, T is the temperature,
ΔUQM−MM is the potential energy difference between the
desired potential (in this case QM) and the sampling potential
(in this case MM), β is 1/kBT, ⟨···⟩ represents an ensemble
average, and the subscript MM represents the potential used to
obtain the structures.
The Zwanzig equation is derived under the assumption of

using total potential energies and is exact in the limit of infinite
sampling. However, if it is applied in this way for potentials that
do not share a high degree of configurational space overlap,
sampling issues occur;17 e.g., structures that are unfavorable in
the desired potential may be heavily sampled in the sampling
potential and vice versa. These issues can be observed by
gradually increasing the number of snapshots included within
the Zwanzig equation. If large “jumps” occur in the free energy
as the snapshots are increased, these are characteristic of poor
sampling of the desired potential by the sampling potential,18,19

as in these cases the discrepancy in the two potentials tends to
create distinct snapshots for which the ΔUQM−MM is large and
negative affecting strongly the convergence of the Zwanzig
equation, as it is an exponential average. If these “jumps” in free
energy are suitably small, they can be smoothed out with more
approximate approaches, such as the cumulant expansion of eq
1.16,20−22 However, due to the large difference in magnitudes
between the classical and quantum energies and the insufficient
overlap between the classical and quantum configurational
space, we observe a lack of convergence even when the
cumulant expansion is applied. References 15 and 23 apply the
equation by comparing between components of the interaction
energy or the full interaction energies, rather than the total
potential energy. Beierlein et al.15 use the difference between
the Coulombic contribution to the interaction energy, and Fox
et al.23 use the full quantum interaction energy where they
perform density functional theory (DFT) calculations on the
whole ligand−solvent system using the ONETEP linear-scaling
DFT program.24

Interaction energies are defined by

= − −U U U Uint com lig host (2)

where the Ucom is the potential energy of the entire system, e.g.,
a ligand bound to a protein and in the same example Uhost

would be the energy of the protein in the same geometry
without the ligand present and Ulig is the energy of the ligand.

Uint cancels out the intermolecular interactions within the host.
We should note that intramolecular terms do not cancel out
exactly in the QM description, as in this case pairwise additivity
does not apply.
To overcome the difficulties associated with using classical

force fields as a guiding potential for quantum mechanics due to
the inexact overlap of configurational space,25 Woods et al.26

applied an acceptance criterion that allowed them to use MM
to generate structures that were statistically correct for a QM/
MM ensemble. The application of this method employs a
Monte Carlo (MC) technique to generate MM structures and a
Metropolis Hastings MC criterion to accept or reject these
structures to the QM/MM ensemble. By adapting this method
using hybrid Monte Carlo (HMC),27 it is possible to minimize
the number of quantum calculations while obtaining uncorre-
lated structures.
An alternative approach for generating a correct quantum

ensemble would be to use the HMC technique27 which is based
on MD and therefore allows larger moves between acceptance
tests and does not suffer random walk errors associated with
standard Monte carlo techniques.28,29 In this paper, we propose
a HMC based approach for correcting classical free energies
with quantum techniques. To do this, we use HMC to generate
from MM an ensemble of QM/MM structures that is a much
closer representation of the fully quantum ensemble. By doing
this, the errors associated with sampling unfavorable structures
are significantly lessened and also states intermediate between
MM and QM/MM are generated which allow us to compute
the MM to QM/MM change in free energy using
thermodynamic integration (TI) which has stable convergence.
We can then apply a single-step free energy perturbation from
our generated QM/MM ensemble to the fully quantum
ensemble. In order to validate our method, we calculate
hydration free energies for five ligands. To our knowledge, this
is the first time that HMC has been used in this manner for free
energy calculations.
In section 2, we describe the theory and programs we have

used including our three-step extended thermodynamic cycle
that goes from MM to QM/MM to full QM. In section 3, we
present and discuss our results on the hydration free energies of
ligands as obtained with MM, QM/MM, and full QM, and in
section 4, we finish with our conclusions.

2. METHODS
Our method first generates an ensemble of structures closer to
the fully quantum ensemble by applying the hybrid Monte
Carlo method using classical molecular dynamics to sample
configurations but accepting a QM/MM ensemble. The QM/
MM ensemble energy is calculated as the energy of the MM
system but with the Coulombic component of its interaction
energy replaced by the equivalent interaction energy in the
quantum description. This takes into account the electronic
polarization of the ligand as a result of the surrounding solvent.
Once an ensemble of QM/MM structures has been generated,
then a single-step perturbation approach can be applied to
calculate the free energy of mutation from the QM/MM to the
full QM ensemble.

2.1. Theoretical Details. 2.1.1. The Hybrid Monte Carlo
Method. To generate an ensemble of structures that
corresponds to a “target” potential from a “guiding” potential
used for sampling, the traditional hybrid Monte Carlo (HMC)
method can be used.27 The difference between the target and
the guide states can involve differences in the ensembles. For
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example, the guide can be an MM NVE ensemble and the
target can be a QM NVT ensemble. By using the HMC
method, the detailed balance condition (eq 3) is satisfied

ρ π ρ π→ ′ = ′ ′ →R R R R R R( ) ( ) ( ) ( ) (3)

where ρ(R) is the probability of occupying a certain
configuration R in the target ensemble. From here onward,
this will be referred to as state probability. π(R → R′) is the
transition probability shown in eq 4, which consists of the trial
probability and the acceptance probability

π π→ ′ = → ′ → ′tR R R R R R( ) ( ) ( )acc (4)

where t(R→ R′) is the trial probability, which is the probability
of moving to a new configuration and πacc(R → R′) is the
acceptance probability of going from R to R′ in the target
potential, given by a Metropolis−Hastings criterion, and is
given by eq 5.

π ρ
ρ

→ ′ = ′ ′ →
→ ′

⎧⎨⎩
⎫⎬⎭

t
t

R R
R R R
R R R

( ) min 1,
( ) ( )
( ) ( )acc

(5)

The generation of new configurations in the HMC method is
performed by an underlying MD simulation. The advantages of
using the HMC method are that the sampling errors associated
with the target potential are avoided and the configurational
differences between R and R′ can be large.28 To satisfy a
detailed balance, the MD simulation in the guiding potential
must be reversible; therefore, we have chosen to run within the
microcanonical ensemble. The acceptance probability shown in
eq 5 requires inputs at points R and R′ which are the starting
and end points of an MD simulation, respectively. The state
probability is the probability of being in a certain conformation
in the target potential, which for both the original configuration
and the final configuration is, according to the rules of statistical
mechanics, given by the Boltzmann distribution

ρ
β

=
− U

Z N V T
R

R
( )

exp( ( ))
( , , ) (6)

where Z(N, V, T) is the configurational partition function and
U is the energy of R in the target potential.
In addition to the state probability, the trial probability (eq

7) is required in eq 5. This is the probability of transitioning
from one structure to another, e.g., from R to R′. In theory,
MD simulations are deterministic, i.e., if a simulation is given
the same structure and velocities and run for the same length of
time, the final structure will always be the same. As such, the
trial probability is directly proportional to the momenta given
at the start of the simulation. In order to create a Markov chain
of structures, random momenta are provided at the start of each
MD simulation. These random momenta are taken from a
Gaussian distribution using the Marsaglia polar method.30 The
Gaussian is used so the Boltzmann distribution of kinetic
energies is satisfied. Additionally, by selecting momenta from a
Gaussian, we can set the temperature, thus providing a
thermostat.

∏
π

β→ ′ ∝ −
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t

m k T m
R R

p
( )

1
2

exp
2i

n

i

i

i1 B

2

(7)

To derive a workable form of the acceptance criterion, we
place eqs 6 and 7 into eq 5. By noticing that eq 7 is the
functional form of kinetic energy (K(P), where P are the
momenta), we obtain

π
β β
β β

β
β

→ ′ =
− ′ − ′
− −

=
− ′ ′
−

⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭

U K
U K

H
H

R R
R P
R P

R P
R P

( ) min 1,
exp( ( )) exp( ( ))
exp( ( )) exp( ( ))

min 1,
exp( ( , ))
exp( ( , ))

acc

(8)

The method presented here aims to mutate a solvent−ligand
complex from its MM representation to a “quantum corrected”
representation where the classical electrostatic interactions have
been replaced by interactions from a QM/MM calculation. The
acceptance criterion is then

π

β β

β β

→ ′

=
− ′ − ′

− −
+

+

⎪

⎪

⎪

⎪

⎧
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⎩

⎫
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( )
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exp( ( )) exp( ( ))

exp( ( )) exp( ( ))
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MM QM

MM QM

Coul
int

Coul
int

(9)

where the target potential energy is calculated by

= − −
− + −
−

= − +

+U U U U
U U U
U

U U U

[
] [

]

(10)

(11)

MM QM MM
com

MM
com

MM
host

MM
lig

QM/MM
com

QM/MM
host

QM/MM
lig

MM
com

MM
int

QM
int

Coul
int

Coul Coul

Coul

Coul Coul

The above equation uses the classical potential energy (UMM
com)

for the whole complex and subtracts from it the electrostatic
(Coulomb, “Coul”) contribution of the classical interaction

energy (UMMCoul

int ). This interaction energy is replaced by the

interaction energy between the QM/MM ligand (UQM/MM
lig ) and

the host (UQM/MM
host ) from the QM/MM calculation (in this

work, the host is the solvent). The QM/MM description used
here is the quantum ligand surrounded by classical point
charges. The dispersion (Lennard-Jones) part of the interaction
energy is not replacedit still comes from the MM calculation.

2.1.2. Transitioning between MM and QM/MM. In order to

make the transition from UMM to UMM+QMCoul
int smoothly,

intermediate λQM/MM steps can be introduced. The introduction
of these steps is trivial, and can be performed by changing the

UMM+QMCoul
int (R) term of eq 9 with the following

λ

λ λ= − +

+

+

U

U U

R( ; )

(1 ) ( )

MM QM QM/MM

QM/MM MM QM/MM MM QM

Coul
int

Coul
int (12)

HMC is run for all lambda states between the MM and QM/
MM, such that at λQM/MM = 0 we are accepting to a classical
canonical ensemble and at λQM/MM = 1 to the QM/MM
corrected canonical ensemble. The difference for each lambda
value is in the MC acceptance criterion which influences the
progress of the MD simulations accordingly. The free energy
between the MM and QM/MM is then obtained using
thermodynamic integration (TI)
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∫
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1

QM/MM MM QM MM

0

1

QM/MM QM
int

MM
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Coul Coul QM/MM

Each lambda window is built up by running classical MD
simulations and applying the acceptance test shown in eq 12.
To clarify, no MD simulation that involves a mix of MM and
QM/MM is needed.
2.1.3. Transitioning to the Full QM. We expect that the

QM/MM ensemble is a much closer representation of the QM
ensemble, so the transition from the QM/MM to QM should
be possible with a method which is simpler than the HMC
method. Therefore, to perform this perturbation, the energy
differences UQM − UMM+QMCoul

int are calculated and then the
Zwanzig equation is used to calculate the free energy change
from QM/MM to full QM, as shown in eq 1.
We have also computed this free energy by using the

interaction energy, as defined in eq 2, of the full quantum
system, in place of the total energy UQM. The full QM
interaction energy in DFT contains also the attractive
component of dispersion interactions which are given by
various types of empirical correction.31,32 We have therefore
also investigated the effect of changing this empirical dispersion
correction between different dispersion methods.
As we are doing the transition to full QM via a QM/MM

state, our full thermodynamic cycle has three steps, as shown in
Figure 2. Figure 3 shows the whole correction process.
2.2. Computational Details. As to our knowledge this is

the first time such a three-step approach is used, our aim in this
paper is to validate it in the calculation of hydration free
energies, as preparation for application to more challenging
host−ligand systems in the future. We applied our method to
the calculation of hydration free energies for ethanol, ethane,
ethylene glycol, dimethyl ether, and propane, each in a
simulation cell with explicit waters. These molecules were
chosen due to their different degrees of polarity, ranging from
nonpolar (hydrophobic) such as ethane and propane to highly
polar (hydrophilic) such as ethylene glycol.
2.2.1. Classical Simulation Details. The charges for the

solute were obtained from AM1-BCC calculations using
Antechamber;33 the force field parameters were taken from
the GAFF force field.34 The water model used throughout was
the TIP3P model.35 Electrostatics were treated with PME, and
a cutoff of 8 Å was used for van der Waals interactions. All
classical MD simulations were performed within the double
precision version of Gromacs v4.6.5,36 to allow us to use the
velocity Verlet integrator, as access to kinetic energies is
required for the HMC method. The double precision was
necessary to ensure good energy conservation in the NVE
simulations.
Each ligand was solvated with 450 waters, and the whole

system was equilibrated using the following procedure.
Structures were initially minimized with the steepest descent
algorithm for 5000 steps. Following this, a 500 ps simulation in

the canonical ensemble was run using a time step of 1 fs and
the Berendsen thermostat was used to heat the system, raising
the temperature linearly from 100 to 300 K. Finally, a 1 ns
isothermal−isobaric simulation was performed using the
Berendsen barostat. After equilibration, the box size for each
ligand was around 24 Å3.
Using the NPT equilibrated structures, further equilibration

was then applied using the HMC method where structures
were accepted from the NVE ensemble into a classical NVT
ensemble for 100 HMC steps. As the MD simulations used
within the HMC method were run in the microcanonical
ensemble, we expect to have an acceptance rate of 100% as the
total Hamiltonian energy should be constant. However, due to
fluctuations within the total energy during the NVE simulation,
this is commonly not the case. To minimize these fluctuations,
a time step of 0.25 fs was used. The length of these MD
simulations was determined by tests described in section 3.
Classical relative free energies between systems were

calculated using TI. Seventeen classical λMM windows were
used, mutating the charges and VdW interactions at the same
time using soft-core potentials. The classical λMM windows had
the values 0.0, 0.002, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 0.95, 0.99, 0.998, and 1.0. The small λMM differences at
the end points are to tackle discontinuities. Each classical λMM
window underwent an equilibration procedure which is the
same as that mentioned above, with the exception that the NPT
simulation to equilibrate the box size was 500 ps. Following
this, a production simulation of 2 ns was run. Errors associated
with the TI free energies were calculated by hysteresis, and the
free energies are the average of the forward and reverse
calculations.

2.2.2. Quantum Simulation Details. For our DFT program,
we have used ONETEP.24 The ONETEP program is a linear-
scaling DFT code that has been developed for use on parallel
computers.37 ONETEP combines linear scaling with accuracy
comparable to conventional cubic-scaling plane-wave methods,
which provide an unbiased and systematically improvable
approach to DFT calculations. Its novel and highly efficient
algorithms allow calculations on systems containing tens of
thousands of atoms.38 ONETEP is based on a reformulation of
DFT in terms of the one-particle density matrix. The density
matrix in terms of Kohn−Sham orbitals is

∑ρ ψ ψ′ = ′ ′
=

∞

fr r r r( , ) ( ) ( )
n

n n n
0 (15)

where f n is the occupancy and ψn(r) are the Kohn−Sham
orbitals. In ONETEP, the density matrix is represented as

∑ ∑ρ ϕ ϕ′ = * ′
α β

α
αβ

βKr r r r( , ) ( ) ( )
(16)

where ϕα(r) are localized nonorthogonal generalized Wannier
functions (NGWFs)39 and Kαβ, which is called the density
kernel, is the representation of f n in the duals of these functions.
Linear scaling is achieved by truncation of the density kernel,
which decays exponentially for materials with a band gap, and
by enforcing strict localization of the NGWFs onto atomic
regions. In ONETEP, as well as optimizing the density kernel,
the NGWFs are also optimized, subject to a localization
constraint. Optimizing the NGWFs in situ allows for a
minimum number of NGWFs to be used while still achieving
plane-wave accuracy. The NGWFs are expanded in a basis set
of periodic sinc (psinc) functions,40 which are equivalent to a
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plane-wave basis, as they are related by a unitary trans-
formation. Using a plane-wave basis set allows the accuracy to
be improved by varying a single parameter, equivalent to the
kinetic energy cutoff in conventional plane-wave DFT codes.
The psinc basis set provides a uniform description of space,
meaning that ONETEP does not suffer from basis set
superposition error.41

Following the classical 100-step equilibration within the
HMC method, we switched from going from NVE (MM) to
NVT (MM) to going from NVE (MM) to NVT (QM/MM).
The first 100 steps of this process were also taken as
equilibration where the QM/MM energy was computed

according to eq 10. After this, 500 steps were run and counted
as production, for the transition to QM/MM. This process was
repeated, accepting different values of λQM/MM. We used three
values, λQM/MM = 0, 0.5, 1.
Each quantum simulation was performed using ONETEP.24

Four NGWFs were used on heavy atoms and one on hydrogen,
all with a radius of 8.0 a0. Calculations used a psinc kinetic
energy cutoff of 800 eV. Embedding charges42 were used to
represent water within the calculations, so only the ligand was
fully represented by QM. Only the electrostatics were corrected
by quantum mechanics, so dispersion was included at the
classical level, as in eq 10.

Figure 2. Three-step thermodynamic cycle. Cycle I shows the classical mutation from ligand A to B, cycle II describes the transition from MM to
QM/MM, and finally cycle III shows the transition from QM/MM to full QM.

Figure 3. Flowchart for computing steps 2 and 3 of the three-step thermodynamic cycle of Figure 2.
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The fully quantum calculations for cycle III of the
thermodynamic cycle of Figure 2 were obtained by restoring
the embedding charges to explicit atoms, keeping all other
parameters the same with the exception of the dispersion
component which, within the total energy perturbation, was
treated by a damped London potential31 using the “Elstner”
method.43 Within the interaction energy perturbation approach,
the “Elstner”,43 “Grimme D2”,32 “Grimme D3”,44 and the
dispersion component of the force field were all tested. When
the force field dispersion was used within the correction, this
was extracted from the classical simulation and used within the
QM interaction energy.
2.3. Determining the Length of the MD Simulations

Used within the HMC Method. In order to optimize the
length of the MD simulations required to run the HMC
method with a reasonable acceptance rate, the MD runs were
increased progressively from 0.1 ps to 1 ns. This was applied to
ethanol in 450 waters and was repeated for two runs to ensure
convergence. Each HMC run consisted of 500 production steps
following the equilibration procedure described in subsection
2.2.2. The results can be seen in Table 1. “Energy” refers to the

average energy differences (UQMCoul

int − UMMCoul

int ) at λQM/MM = 1.
These energy differences are required for TI (eq 14). By
examining the energy differences at λQM/MM = 1 where the
acceptance will be lowest, we can confirm the acceptance at
other windows will also be sufficient.
The largest difference between two HMC runs shown is 2.51

kJ/mol, which is around thermal error (kBT, 2.5 kJ/mol).
Similarly, there is only a small amount of error between
simulations of different lengths. This suggests that the energy
difference is essentially independent of the length of the MD
simulation used for this system. In order to ensure uncorrelated
snapshots while keeping the length of CPU time required for
each MD manageable, 100 ps was chosen as the HMC step size,
for all our subsequent HMC simulations. The 1000 ps
simulations show no substantial improvement on the 100 ps
run, while taking an order of magnitude longer to run.

3. RESULTS AND DISCUSSION
3.1. Classical TI. The classical free energy of mutation

(relative hydration free energies) between our ligands was
calculated using ethanol as the reference. The values are shown
in Table 4 in the “classical” column. All the experimental values
were obtained from ref 45 with the exception of that for
ethylene glycol, which was taken from ref .
The mutation to propane shows the largest hysteresis which

is 1.2 kJ/mol, which can be attributed either to the force field or
to the introduction of two additional atoms, whereas all other
mutations involved either one or no additional atoms. All

calculated free energies were within thermal error (2.5 kJ/mol)
from the experimental free energies, with the exception of
ethanol to ethane which, while being a well converged
mutation, is 7.2 kJ/mol away from the experimental value,
pointing to force field limitations.

3.2. Calculating the Free Energy of Mutation from
MM to QM/MM. The resulting dV/dλQM/MM values as a
function of λQM/MM value from the application of the HMC
method to all test systems are shown in Figure 4. Three runs
were performed for each ligand, and in each case, they are
consistent and converge to the same value.
The largest differences between the same λQM/MM window

are shown by ethanol and ethylene glycol. In the case of
ethanol, the largest difference of 2.5 kJ/mol between the three
runs is observed at λQM/MM = 1 and the difference for ethylene
glycol is much larger at 5.8 kJ/mol again at λQM/MM = 1. This
can be explained by the presence of the hydroxyl groups
forming much stronger bonds with the surrounding water than
any of the other ligands used, leading to low acceptance.
Indeed, this is reflected by the values shown within the graph.
Ethane shows the smallest energy difference in going from
λQM/MM = 0 to λQM/MM = 1. This can be expected, as it is the
most apolar, meaning that the quantum Coulombic contribu-
tion to the interaction energy was very close to the classical
equivalent. Following this trend, propane is the next apolar, and
thus has the next smallest energy difference, then dimethyl
ether, followed by ethanol, and then ethylene glycol.
This trend is also reflected within the acceptance ratios

(shown in brackets within Figure 4). Again, the lowest
acceptance is found when applying the HMC method to
ethylene glycol, with an acceptance below 10%. This low
acceptance is caused by the large mismatch between the energy
differences, which shows an inconsistency between the QM and
MM electrostatic interaction energies. This fluctuation of
energy differences could be explained by the strong electronic
polarization of polar ligands. Polarization is implicitly included
within the AMBER force field and explicitly within the QM/
MM description. Implicit polarization may be inaccurate in a
chemical environment that varies from that of water (e.g., a
binding pocket), but the force field nevertheless shows
excellent correlation with experimental hydration free energies
(“classical” column, Table 4).
In order to assess the polarization effect on these ligands, the

dipole moments of structures that were accepted to the QM/
MM ensemble for dimethyl ether and ethylene glycol were
calculated both classically and within ONETEP. The classical
dipole moment was calculated once per structure, given that the
force field is not polarizable, so the dipole does not change
between the vacuum and solvent, but the quantum dipole
moment was calculated twice, once in the solvent (embedding
point charges) and once in the vacuum. The results are shown
in Table 2 for five structures for each molecule that span the
range of the dipole moments obtained by each calculation
method.
The classical dipole moment for dimethyl ether is fairly

constant between the five sampled snapshots, whereas the
dipole moments for ethylene glycol fluctuate. The discrepancy
between the classical dipole moments and those of the QM/
MM system in solvent is markedly larger (0.2−0.4 eÅ) for the
ethylene glycol than for dimethyl ether (discrepancies of less
than 0.1 eÅ). In fact, for dimethyl ether, two of the classical
dipole moments correctly match the quantum dipole moments,
and with the exception of structures 4 and 5, the quantum

Table 1. Determining the MD Simulation Length within the
HMC Method for Ethanol in 450 Watersa

energy (kJ/mol)/acceptance (%)

HMC step size (ps) run 1 run 2

0.1 −16.08/14.0 −16.90/17.5
1 −15.46/16.2 −16.56/11.5
10 −16.01/13.6 −14.99/13.3
100 −16.78/8.6 −14.27/16.6
1000 −13.64/21.6 −16.21/11.2

aEnergy is the average of (UQMCoul

int − UMMCoul

int ) at λQM/MM = 1.
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dipole moments for dimethyl ether within solvent match the
experimental value of 0.271 eÅ extremely well, whereas classical
mechanics overestimates it. Another interesting comparison

between the methods can be made with a TIP3P water
molecule, where the quantum dipole moment in a vacuum is
calculated to be 0.380 eÅ and the classical dipole moment is
0.489 eÅ. The experimental value is 0.385 eÅ, showing again
that the quantum value is extremely close and the classical
value, again, is much less accurate.
These results highlight the fact that only by using quantum

corrections we can account for the explicit polarization, as the
force field can at best describe it in an implicit (average)
manner, and indicate that the lower HMC acceptance for
ethylene glycol may be a consequence of the large discrepancy
in polarization between the classical and quantum descriptions.
Integrating each energy vs λQM/MM value curve gives the free

energy, in accordance with eq 14. These free energy values are
shown in Table 3 for each of the three runs.
The magnitude of these free energies again follows the trend

of the polarity of the molecules. The differences show the
convergence between the free energies. In every case,
convergence has been achieved. The largest difference is
present for ethylene glycol of 1.86 kJ/mol; however, this value

Figure 4. PMFs for moving between UMM and UMM+QMCoul
int . Each point shows the average energy difference required for eq 14 in kJ/mol. These

energy differences were calculated for three λQM/MM windows for each system. The value in brackets shows the acceptance.

Table 2. Magnitude of the Dipole Moments in eÅ for Five
Example Structures of Ethylene Glycol and Dimethyl Ether
Accepted into the QM/MM Ensemble

ligand structure
QM/MM
solvated

QM/MM
vacuum classical

ethylene glycol 1 0.457 0.340 0.313
2 0.635 0.530 0.579
3 0.725 0.566 0.515
4 0.720 0.492 0.641
5 0.895 0.735 0.460

dimethyl ether 1 0.237 0.121 0.338
2 0.304 0.218 0.378
3 0.300 0.230 0.371
4 0.318 0.229 0.320
5 0.331 0.220 0.329
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is still within thermal error (2.5 kJ/mol). By combining these
free energies with the classical free energies shown in Table 4
under the “classical” column, according to cycles I and II of the
three-step thermodynamic cycle (Figure 2), we obtain the QM/
MM corrected free energies shown in Table 4 under the MM
+QMCoul

int corrected column.
The addition of the QM correction due to the MM to QM/

MM transition to the classical relative free energies between
ethanol and ethane shows a definite improvement of the free
energy which was badly underestimated by the force field. The
corrections for ethylene glycol and propane move the free
energies in the direction of improvement, although they
overlook the experimental values. The free energy for dimethyl
ether is shifted further away from the experimental value, as the
classical free energy was extremely close already. These results
are encouraging and demonstrate the effect of QM/MM
derived polarization on the free energies as an intermediate step
toward the final stage where we will introduce the full QM
description.
3.3. Calculating the Free Energy of Mutation from

QM/MM to QM. Once a QM/MM ensemble of 500 structures
was built up, the next step was the perturbation to the fully
quantum system (see cycle II in Figure 2). This was performed
in two ways: first by using the difference in total potential
energies (eq 17) and second by using the difference in
interaction energies (eq 18). In both cases, this perturbation
was performed by using the Zwanzig equation (eq 1).

Δ = − +U U Utotal
QM MM QMCoul

int (17)

Δ = − +U U Uint
QM
int

MM QM
int

Coul
int (18)

where UQM
int is the interaction energy at the full QM level and

UMM+QMCoul
int

int is the interaction energy at the QM/MM level.

3.4. Total Energy Perturbation. The final calculated free
energy when using total energies (eq 17) shows no consistency
between the two runs which demonstrates lack of convergence
of the exponential average of the Zwanzig equation. This is
demonstrated for three of the ligands in the left panel of Figure
5. Figure 5 shows the free energy as a function of the number of
snapshots, i.e., a running exponential average as the number of
snapshots is increased. These graphs show that the free energy
is affected dramatically by individual snapshots. The graphs
show a large variation between the two runs for each ligand.
For example, for ethylene glycol, a difference of 35.17 kJ/mol is
present after 500 snapshots, while for dimethyl ether the
difference between the runs is 0.33 kJ/mol. The small
difference for dimethyl ether suggests convergence; however,
if Figure 5 is examined, it is clear that large “jumps” in the free
energy are present and there is no guarantee that they will not
affect the results if we were to run more than 500 snapshots.
This is described as “sawtooth” sampling and is characteristic of
a lack of overlap between the configuration space.18 This
observation has also been made when moving between a purely
classical ensemble and a quantum ensemble by Cave-Ayland et
al.47 They explain that this lack of configuration space overlap is
due to differences in the intramolecular degrees of freedom.
Therefore, by excluding all intramolecular terms (i.e., using
interaction-energy-based corrections), convergence can be
achieved. Indeed, this is what is observed here and will be
covered in more detail in the next section.
To complete the three-step thermodynamic cycle when using

total energies, an additional calculation must be performed of
the ligand in the vacuum. This is displayed in the lower half of
cycles II and III in Figure 2. However, the initial MM+QMCoul

int

correction required for the ligand in the vacuum (cycle II)
would essentially be a standard classical MD, as the interaction
energy in the vacuum is zero, and with the system size being
relatively small, the fluctuation in the total Hamiltonian energy
would be small, leading to a high acceptance. The ligand energy
differences required for the mutation from MM to QM/MM in
the Zwanzig equation (cycle III) were taken from values already
calculated within the top section of cycle II. For each ligand, the
calculated free energies converge to less than 0.2 kJ/mol
between the two runs. This result combined with the fact that
our water molecules are rigid leads to the conclusion that the
lack of overlap between the configuration space should be
attributed to the intermolecular interactions between the water
molecules. While this appears to be the case for the small rigid
ligands we use in this study for larger ligands, with more

Table 3. Free Energy of Changing from UMM to UMM+QMCoul
int a

run 1 run 2 run 3 difference

ethanol −11.29 −10.62 −10.45 0.84
ethane −2.78 −2.61 −2.35 0.43
ethylene glycol −17.97 −19.82 −19.38 1.86
dimethyl ether −8.60 −7.72 −8.99 1.27
propane −7.67 −7.45 −7.35 0.32

aAll values shown are in kJ/mol. The difference is the largest
difference between the three runs.

Table 4. Relative Hydration Free Energies Using the Experimental Value for Ethanol (−20.92 kJ/mol) as a Reference45 a

free energy (kJ/mol)

ligand experimental classical
MM+QMCoul

int

corrected Elstner force field disp Grimme D2 Grimme D3

ethane 7.6645 0.53 ± 0.23 8.71 ± 1.27 10.31 ± 0.18 7.52 ± 0.54 11.07 ± 0.58 10.79 ± 0.67
ethylene glycol −38.9146 −35.91 ± 0.20 −44.18 ± 2.70 −43.59 ± 1.52 −42.61 ± 3.20 −44.09 ± 1.67 −44.14 ± 1.60
dimethyl ether −7.9945 −7.93 ± 0.02 −5.58 ± 2.11 −5.83 ± 0.26 −7.76 ± 0.76 −5.17 ± 0.54 −5.39 ± 0.42
propane 8.2045 6.93 ± 1.18 10.22 ± 1.16 13.74 ± 0.16 6.47 ± 0.50 14.56 ± 0.74 14.06 ± 0.54
RMS error 3.93 3.11 4.04 2.05 4.66 4.42
max error 7.15 5.27 5.54 3.70 6.36 5.86

aThe specified standard errors in the classical calculation (column 3) correspond to the hysteresis of independent forward and backward classical TI
calculations of the corresponding systems. The specified standard errors in the QM calculations (columns 4−8) correspond to the standard error of
the mean resulting from the accepted HMC runs with QM corrections. The “RMS error” and “max error” correspond to the respective differences
between the calculated values and the experimental values.
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intramolecular degrees of freedom, we would expect that the
lack of configuration overlap would be caused also by ligand
intramolecular terms.
3.5. Interaction Energy Perturbation. Interaction

energies are commonly used when applying the Zwanzig
equation, as it has often been observed that convergence with
total energies is problematic.23 The smaller magnitudes of
interaction energies and the better overlap of the energies lead
to better convergence. This can be understood by the notion
that the free energy of binding is primarily delivered by the
interactions between the ligand and receptor and these are
improved by the quantum description.
When using interaction energies to go from QM/MM to full

QM (eq 18), a much higher degree of convergence is obtained.
This is shown in Figure 5. The largest difference between the
two runs is 1.25 kJ/mol (ethylene glycol), well within thermal
error (2.5 kJ/mol). These free energies can then be combined
with the cycle II free energies from the three-step
thermodynamic cycle (Figure 2). The final corrected free

energies can be seen in Table 4 under the column labeled
“Elstner”. In every case, the free energies do not improve.
Dimethyl ether and ethylene glycol stay essentially unchanged.
Thus, for the more polar ligands, where the main driving force
behind the binding energies is electrostatic (e.g., ethylene glycol
and dimethyl ether), the correction from QM/MM to QM is
small. This is in contrast with the nonpolar ligands, where
dispersion is the prominent interaction, where the corrections
increase the relative hydration free energies. Overall, the cycle
II corrections improve the correlation with the experimental
free energies; however, little to no improvement upon cycle II
is achieved when applying the final cycle (cycle III) in Figure 2.
We have further examined the method used to calculate the

dispersion. In our first attempt to implement cycle III
corrections, the Elstner method was used. We have then also
examined keeping classical dispersion (as calculated by the
force field) and alternatively using Grimme’s D2 correction. If
the dispersion calculated by the force field is used, it is
effectively canceled out within the Zwanzig equation. This is

Figure 5. Free energy calculated with the Zwanzig equation as a function of the number of snapshots included when perturbing between the MM
+QMCoul

int and QM ensembles for ethylene glycol, dimethyl ether, and ethane. The blue line represents run 1, and the red line represents run 2. For
clarity, we do not provide an absolute energy scale for the y axis, as only the relative energies between each run are important.
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because the interaction energy at the QM/MM level can be
divided into two components, the electrostatics and dispersion.

Δ = Δ + ΔU U Uint elec disp (19)

The electrostatic term came from the QM/MM correction,
and the dispersion term comes from the force field. Similarly,
the interaction energy at the full QM description can be split
into the intrinsic DFT terms (e.g., the Coulomb and exchange)
and the empirical dispersion correction. Thus, in the case where
we retain the force field dispersion in the QM description, it
will cancel out with the dispersion included in QM/MM, as the
two are the same.
The use of the force field dispersion significantly improves

the free energies calculated for cycle II for every single ligand.
Grimme’s D2 correction causes the largest errors between the
different dispersion approaches, to the point that overall it is a
deterioration of accuracy compared to the classical and QM/
MM results. We have also tried the more advanced Grimme D3
approach, but the results obtained are essentially the same as
those with the D2 method. In order to have a single measure of
accuracy for each method, the RMS error for each method was
calculated and is shown in Table 4. This was calculated with
respect to the experimental values. It is clear that QM/MM and
QM with force field dispersion improve upon the classical
result, with the QM with force field dispersion producing
dramatic improvement with a RMS error of only 2.05 kJ/mol.
Finally, we investigate how our method depends on the

choice of exchange-correlation functional. For this purpose, we
have tried the LDA and BLYP exchange-correlation functionals
in addition to the PBE functional that we have used up to now,
for a single mutation (ethanol to ethane), and examined how
these changes affect free energies at the QM/MM and full QM
descriptions. The results are shown in Table 5.

These results indicate that, within the GGA approximation,
switching between PBE and BLYP plays a small role in
obtaining accurate corrections. This indicates similar behavior
between GGA functionals. For the LDA, the result for the QM/
MM description is 0.7 kJ/mol worse than the GGA functionals
but really erroneous for the full QM description with an error
of about 8 kJ/mol with respect to experiment. We should note
that we have not used any dispersion correction for the LDA
calculations, as the LDA method intrinsically includes spurious
attractive interactions that play a role of dispersion in this case
or in any case make the empirical dispersion corrections not
applicable to LDA.
Previously (Table 4), the results showed that using the force

field dispersion yields the best corrections, and here the same
trend can be observed again for PBE and BLYP.

4. CONCLUSIONS
We have presented a “stepping stone” approach for computing
QM corrections to MM free energies of binding that aims to
overcome the convergence difficulties of similar approaches
which are based on a single-step free energy perturbation from
the classical to the quantum system. Our approach includes two
stages: In the first stage, we gradually mutate the MM system to
QM/MM using thermodynamic integration (TI) on inter-
mediate ensembles generated via hybrid Monte Carlo
simulations. This stage accommodates most of the change in
polarization associated with the MM to QM mutation. As a
result, the second stage, which is a single-step QM/MM to full
QM mutation, actually converges well. Here, we validated our
method on the calculation of hydration free energies for a set of
ligands with different polarities. We found that the mutation
from MM to QM/MM is a definite improvement in the relative
hydration free energies with respect to classical TI results, and
the stage 2 correction where we mutate to the full QM
ensemble produces further and more substantial improvement,
reducing the classical max and RMS errors by a factor of 2. The
approach is quite sensitive to the choice of dispersion model
but less so in the choice of the GGA exchange correlation
functional. We would like to apply this method in future work
to compute free energies of binding between proteins and
ligands.
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Phys. Rev. B 2002, 66, 035119.
(40) Mostofi, A.; Haynes, P.; Skylaris, C.-K.; Payne, M. C. J. Chem.
Phys. 2003, 119, 8842−8848.
(41) Haynes, P.; Skylaris, C.-K.; Mostofi, A.; Payne, M. Chem. Phys.
Lett. 2006, 422, 345−349.
(42) Fox, S.; Pittock, C.; Fox, T.; Tautermann, C.; Malcolm, N.;
Skylaris, C.-K. J. Chem. Phys. 2011, 135, 224107.
(43) Elstner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. J.
Chem. Phys. 2001, 114, 5149−5155.
(44) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. J. Chem. Phys. 2010,
132, 154104.
(45) Abraham, M.; Whiting, G.; Fuchs, R.; Chambers, E. J. Chem.
Soc., Perkin Trans. 2 1990, 1, 1−300.
(46) Chambers, C.; Hawkins, G.; Cramer, C.; Truhlar, D. J. Phys.
Chem. 1996, 100, 16385−16398.
(47) Cave-Ayland, C.; Skylaris, C.-K.; Essex, J. J. Phys. Chem. B 2014,
119, 1017−1025.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.5b01625
J. Phys. Chem. B 2015, 119, 7030−7040

7040

http://dx.doi.org/10.1021/acs.jpcb.5b01625

