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ABSTRACT: Density functional theory molecular dynamics
(DFT-MD) provides an efficient framework for accurately
computing several types of spectra. The major benefit of DFT-
MD approaches lies in the ability to naturally take into account
the effects of temperature and anharmonicity, without having
to introduce any ad hoc or a posteriori corrections.
Consequently, computational spectroscopy based on
DFT-MD approaches plays a pivotal role in the understanding
and assignment of experimental peaks and bands at finite
temperature, particularly in the case of floppy molecules.
Linear-scaling DFT methods can be used to study large and complex systems, such as peptides, DNA strands, amorphous solids,
and molecules in solution. Here, we present the implementation of DFT-MD IR spectroscopy in the ONETEP linear-scaling code.
In addition, two methods for partitioning the dipole moment within the ONETEP framework are presented. Dipole moment
partitioning allows us to compute spectra of molecules in solution, which fully include the effects of the solvent, while at the same
time removing the solvent contribution from the spectra.

1. INTRODUCTION

Time-correlation functions (TCFs) have been extensively used
to unveil the dynamical and structural properties of molecular
systems.1,2 Unlike in the past, where TCFs were derived from
experimental spectra, currently, we are able to generate TCFs
from molecular dynamics simulations.
Molecular mechanics (MM) simulations3−6and, more

recently, ab initio molecular dynamics (AIMD) simula-
tions7−10have been proven to be a powerful tool in achieving
this goal. However, in MM simulations, the interatomic
potential is defined in terms of a parametrized force field,
where parameters are obtained from experimental works or
from high-level quantum-mechanical calculations. Conversely,
AIMD simulations do not rely on any external parameter, and
forces are computed “on-the-fly” directly from first-principles
electronic structure calculations. This endows AIMD simu-
lations with a higher predictive power over MM simulations,
especially when dealing with solvent interactions, hydrogen
bonding and polarizability, where the MM description is poor
or, in some force fields, missing altogether. Consequently,
AIMD simulations have been successfully used to study either
systems that are inherently dynamical, such as in conforma-
tional analysis of (bio)molecules at finite temperatures,
chemical reaction paths in gas and condensed phase, surface
(adsorption) processes, and solvation phenomena, or as an

alternative method to energy minimization techniques, for the
search of equilibrium structures of molecules, clusters, and
surfaces under different pressure and temperature conditions.
Therefore, from AIMD simulations, it is possible to construct
many TCFs for the calculation of several types of spectrain
particular, vibrational, (mid)IR, and Raman spectra.
Identifying the structure of biomolecules is a very relevant

matter, since it is widely accepted that the function of biological
molecules is deeply related to the three-dimensional domains
(central dogma of structural biology).11 Particularly, the
understanding of the IR signatures of the gas phase can be
help to interpret the less-obvious IR signatures in the
condensed phase, and the effect of vibrational couplings with
the solvent. However, in more realistic systems with a very large
number of atoms, such as in drug optimization applications or
other biomolecular problems, some approximations must be
made in the model. For example, when the role of the solvent is
crucial in determining the properties of the system, implicit
solvent models can be used. In ONETEP,12 the implicit solvation
model is based on a direct solution of the nonhomogeneous
Poisson equation in real space, and the implementation is such
that the linear-scaling regime is maintained.13 This has been

Received: April 24, 2015
Published: June 10, 2015

Article

pubs.acs.org/JCTC

© 2015 American Chemical Society 3321 DOI: 10.1021/acs.jctc.5b00391
J. Chem. Theory Comput. 2015, 11, 3321−3332

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.5b00391


successfully used to study protein−ligand complexes,14 as well
as the effect of nanoparticles on the binding of peptides in a
multiscale simulation.15

2. TIME-CORRELATION FUNCTION FORMALISM
Lineshape computation of vibrational, infrared, and Raman
spectra relies on the assumption that the external field used to
probe the system is weakly coupled to the system itself. The
energy dissipated in the interaction is of the same magnitude of
the energy of a thermal fluctuation. Under this assumption, it is
legitimate to use the results of the linear response theory and
time correlation functions of observables of the unperturbed
system. The aim of the next two sections is to gather known
results and present them in a concise but self-contained fashion.
In deriving the formulas of interest, we will mainly follow the
works of McQuarrie1 and Tuckerman.16

Let ̂
0 be the unperturbed time-independent Hamiltonian

of the ground state, for an N-body system, i.e. ̂ | ⟩ = | ⟩j E jj0 . If
the system now interacts weakly with an external electric field
of frequency ω, transitions from the initial states |i⟩ into other
quantum states |f⟩ (for final) will occur if the frequency of the
radiation is close to (Ef − Ei)/ℏ. For a monochromatic field, we
can write

ε ω=t E tE( ) cos( )0 (1)

where ε is the unit vector that defines the direction of the
incident radiation. Assuming a uniform field or a field with a
wavelength much larger than molecular dimensions, the
interaction between the field and the system can be written as

μ̂ = − ̂·t tE( ) ( )1 (2)

where μ̂ is the dipole moment operator. Hence, the new

Hamiltonian can be written as ̂ = ̂ + ̂t t( ) ( )0 1 , where the
explicit time dependence is due to the oscillatory external field,
and not to the operator itself (Schrödinger picture). According
to time-dependent quantum-mechanical perturbation theory, in
the first order in the perturbation, the probability per unit time
of a transition from the state |i⟩ to the state |f⟩ is given by
Fermi’s Golden Rule:

ω
π

ε μ δ ω ω δ ω ωΩ =
ℏ

⟨ · ̂ ⟩ × + + −→
E

f i( )
2

[ ( ) ( )]i f fi fi
0

2

2
2

(3)

where ωf i = ωf − ωi , and δ(x) is the Dirac delta distribution.
The rule states that the transition rate is dependent only on

the square of the matrix elements of the operator μ̂, where the δ
enforces energy conservation. We proceed by assuming,
without any loss of generality, that ωf i > 0. If also ω > 0, the
argument of the first δ-function in eq 3 is always nonzero, and,
consequently, δ(ωf i + ω) can be dropped:

ω
π

ε μ δ ω ωΩ =
ℏ

⟨ · ̂ ⟩ −→
E

f i( )
2

( )i f fi
0

2

2
2

(4)

The above expression corresponds to the transition rate for a
pure state system.
The transition rate for the ensemble is given by the ensemble

average of Ωi→f(ω) over initial states. In the canonical
ensemble, the probability of having an initial state that is an

eigenstate of ̂
0 with energy Ei , is given by the equilibrium

density matrix eigenvalue ρi ,

ρ = =
β β

β

− −

− ̂Q N V T
e

( , , )
e

Tr(e )
i

E Ei i

0 (5)

Hence, the ensemble average of the transition rate is given by

∑

ω ω

π
ρ ε μ δ ω ω

Ω = ⟨Ω ⟩

=
ℏ

⟨ · ̂ ⟩ × −
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E
f i
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i fi

0
2

2
,

2

(6)

where we must sum over all the final states that are connected
to the initial states by energy conservation.
So far, we have implicitly used the Schrödinger picture. We

can convert eq 6 to the interaction picture in a simple way, by
introducing the Fourier transform of the Dirac delta function
δ(x):

∫ ∑ω ρ ε μ ε μ

ω

Ω =
ℏ

⟨ · ̂ ⟩ ⟨ · ̂ ⟩

×
−
ℏ

−
⎡
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E
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it
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d
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i f
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,

(7)

where we have used the symmetry of the inner product in
complex vector space, and the hermicity of the operator μ̂.
The state vectors |i⟩ and |f⟩ are eigenstates of the

unperturbed Hamiltonian ̂
0. Accordingly, in the Schrödinger

picture, the time dependence of these states can be written as

⟩ = ⟩− ̂ ℏ − ℏi ie (0) e (0)i t iE t/ /i0 (8)

⟨ = ⟨̂ ℏ ℏf f(0) e (0) ei t iE t/ /f0 (9)

By substituting these expressions into eq 7, we can switch from
the Schrödinger picture to the interaction picture:

ε μ ε μ

ε μ

ε μ

⟨ · |̂ ⟩ = ⟨ · ̂ ⟩

= ⟨ · ̂ ⟩

= ⟨ · ̂ ⟩

− ℏ − ℏ ℏ

̂ ℏ − ̂ ℏ

⎡⎣ ⎤⎦( )i f i f

i f

i t f

e e e

e e

( )

E E it iE t iE t

i t i t

/ / /

/ /

f i i f

0 0

(10)

and eq 7 becomes

∫ ∑ω ρ ε μ ε μΩ =
ℏ

⟨ · ̂ ⟩⟨ · ̂ ⟩ω−E
t i f f t i( )

4
d e ( )i t

i f
i

0
2

2
, (11)

Since |f⟩ are eigenstates of the unperturbed Hamiltonian, they
form a complete basis of the Hilbert space; therefore, the
closure relationship ∑f |f⟩ ⟨f | = 1 holds. Substituting this
expression into eq 11, we find

∫ ∑ω ρ ε μ ε μΩ =
ℏ

⟨ · ̂ · ̂ ⟩ω−E
t i t i( )

4
d e (0) ( )i t

i
i

0
2

2
(12)

Finally, multiplying by ρi and summing over all the initial states,
we obtain an equilibrium ensemble average

∫ω μ μΩ =
ℏ

⟨ ̂ ̂ ⟩ω−E
t t( )

1
3 4

d e (0) ( )i t0
2

2 (13)

where the factor 1/3 is due to the assumption of an isotropic
system, for which any response is independent from the
direction of the incident radiation ε, and Crs(t) = ⟨μ̂(0)μ̂(t)⟩ is
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the right-sided quantum autocorrelation function of the dipole
moment operator.
Here, we note that the operators μ̂(0) and μ̂(t) are

individually Hermitian, but since they generally do not
commute, the autocorrelation function Crs(t) is an expectation
value of a non-Hermitian operator. As a consequence, Crs(t) is a
complex function. This fact creates a breach between the
quantum and classical formulation, and, in fact, the imaginary
part of the autocorrelation function can be used as a measure of
quantum effects.
A connection with the classical formulation can be recovered

through a complete analysis of the transition rate function in
the frequency spectrum, i.e., considering the case of ω < 0 as
well. In this case, the argument of the second δ in eq 3 is always
nonzero, which implies δ(ωf i − ω) can be dropped. This is
equivalent to substituting −ω for ω in eq 6, which corresponds
to an emission process.
By interchanging the indices i and f in eq 6 and using the

relation for ρf for a system in thermal equilibrium:

ρ ρ= = =
β

β

β ω

β
β ω

−

− ̂

− +ℏ

− ̂
− ℏe

Tr(e )

e

Tr(e )
ef

E E

i

( )f i

0 0 (14)

The ensemble transition rate for the emission process becomes

∑ω
π

ρ ε μ δ ω ω
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(15)

The expression in eq 15 represents the well-known detailed
balance condition for a system in thermal equilibrium. The
ensemble averaged absorption and emission rates, Ω(ω) and
Ω(−ω), respectively, do not obey the microscopic reversibility
condition.
If we carry out the same analysis that led from eq 6 to eq 13

for the transition rate Ω(−ω), the result is

∫ω μ μΩ − =
ℏ

⟨ ̂ ̂ ⟩ω−E
t t( )

12
d e ( ) (0)i t0

2

2 (16)

and since Ω(−ω) ≠ Ω(ω), the two correlation functions
⟨μ̂(t)μ̂(0)⟩ and ⟨μ̂(0)μ̂(t)⟩ are not equal.
The net energy absorbed per unit time at frequency ω is

given by

ω ω ω ω

ω ω

Π = Ω − Ω − ℏ

= ℏ Ω − β ω− ℏ

( ) [ ( ) ( )]

( )(1 e ) (17)

However, from the detailed balance condition, we can obtain
the following relation:

ω ω ωΩ + Ω − = + Ωβ ω− ℏ( ) ( ) (1 e ) ( ) (18)

Since taking an ensemble average is a linear operation, we can
rewrite Ω(ω) + Ω(−ω) as

∫

∫

μ μ μ μ

μ μ

ℏ
⟨ ̂ ̂ + ̂ ̂ ⟩
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ℏ
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12
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i t
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where {·,·} is the anticommutator. Finally, we can recast the
formula for the net energy absorption spectrum in eq 17 as

∫ω
ω β ω μ μΠ =

ℏ
ℏ × ̂ ̂ω−⎡

⎣⎢
⎤
⎦⎥

E
t t( )

2
12

tanh
2

d e
1
2

{ (0), ( )}i t0
2

(20)

where Csym(t) is the symmetrized autocorrelation function
(Csym(t) = ⟨1/2{μ̂(0),μ̂(t)}⟩). Unlike the function in eq 13,
Csym(t) is a real function. We have found a quantum analogue
candidate for the absorption spectrum, in terms of the
autocorrelation function of a Hermitian operator.
We can define an absorption cross-section α(ω) as the ratio

Π(ω)/(V∥S∥), where V is the volume of the system, and ∥S∥
the magnitude of the incident flux of the radiation, the Poynting
vector. Different formulas for α(ω) are possible, depending
ultimately on which autocorrelation function one adopts. It is
also useful to define an absorption line shape I(ω), as

∫ω
π

≡ ω−I t C t( )
1

2
d e ( )i t

(21)

where C(t) is the generic autocorrelation function, such that
the cross-section function can be written, more generally, as

α ω π ω
ω

β ω ζ ω ω=
ℏ

− − ℏ ζ

Vcn
I( )

4
3 ( )

(1 exp[ ]) ( ) ( )
2

(22)

where V is the volume of the system, n(ω) is the refractive
index, c the speed of light, and ζ(ω) is implicitly defined by
defining the autocorrelation function C(t). In the next section,
we will show that many physically equivalent quantum
autocorrelation functions can be defined. The formula in eq
22 represent the main result of our derivation, that is that the
cross-section function α(ω) can be expressed in terms of the
Fourier transform of a given dipole moment autocorrelation
function C(t) of the absorbing system, in the absence of any
external field.

3. DETAILED BALANCE CONDITIONS AND QUANTUM
CORRECTION FACTOR

The formulas in eqs 21 and 22 are derived directly from first-
principles, with the assumption of a weak coupling between the
system and the external field. Under this assumption, the linear
response theory1 can be used to predict many dynamical
properties of the system.
However, in Born−Oppenheimer molecular dynamics

(BOMD), the trajectories of nuclei are generated by integrating
the classical laws of motion, with the forces computed “on-the-
fly” from electronic structure calculations. Consequently, the
observables that are dependent on nuclear positions, such as
the total dipole moment, must be considered as semiclassical
objects. Obviously, the BOMD approach does not satisfy the
assumptions made in the previous section. Nonetheless, we can
formally maintain the formulas in eq 21 by replacing the
quantum operators with classical vectors μ̂ (t) → μ(t). When
dealing with classical systems, there exists only one
autocorrelation function, Ccl(t) = ⟨μ(0)·μ(t)⟩, where ⟨·⟩ is a
classical ensemble average and μ(t) is a vector in Euclidean
space. Hence, by simply replacing the classical autocorrelation
function in eq 21, we obtain the classical line shape function
Icl(ω), and the cross-section function

α ω π ω
ω

β ω ω=
ℏ

− − ℏ
Vcn

I( )
4

3 ( )
(1 exp[ ]) ( )

2
cl

(23)

which is the classical analogue of eq 22.
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However, the classical and quantum lineshapes have different
symmetry. In fact, Icl(ω) is an even function of ω and does not
satisfy the more-complicated expression I(−ω) = exp[−βℏω]
I(ω) required by the quantum counterpart (which is,
essentially, a restatement of the detailed balance condition in
the frequency domain). This breaks the symmetry of the cross-
section function α(ω) = α(−ω). The failure of the classical
approach in fulfilling the detailed balance condition is at the
heart of the problem. A standard procedure to force Icl(ω) to
satisfy the detailed balance condition is to introduce a
frequency-dependent quantum correction factor, such that the
symmetry enclosed in eq 22 is restored. Alternatively, more-
sophisticated approaches could be used, such as path integral
molecular dynamics (PIMD).
In addition to Crs(t) and Csym(t) defined in the previous

section, we can define other quantum autocorrelation functions,
such as the symmetric Casym(t), the shifted Cshift(t), and the
Kubo autocorrelation functions CKubo(t).17 The only difference
between Crs(t) and the other correlation functions appears in
the quantum limit, limβ→∞, where there is a loss of dynamical
information, as pointed out in ref 18.
The physical information carried by the different autocorre-

lation functions is the same, in the sense that if any of these
functions is known, we can immediately derive the others, since
their Fourier transforms are interrelated by simple expres-
sions.17 This also implies that Csym(t) and Casym(t) are not
independent functions, which is a consequence of the
Kramers−Kronig relation. Among all the possible correlation
functions, the Kubo autocorrelation function is particularly
important:

∫β
λ μ μ λ

μ μ

= ̂ ̂ + ℏ

= ⟨ ̂ ̂ ⟩∼

β
C t t i

t

( )
1

d (0) ( )

(0) ( )

kubo

0

(24)

which, in the frequency domain, is related to the right-sided
lineshape through

ω β ω
β ω

ω= ℏ
− − ℏ

I I( )
1 exp[ ]

( )rs Kubo

(25)

In fact, it can be shown that CKubo(t) is a real and even
function of time, as is Ccl(t), and since the Fourier transform
conserves parity, it follows straightforwardly that IKubo(ω) =
IKubo(−ω).
Moreover, in the classical limit, β→ 0, the prefactor in eq 25

approaches to unity, which implies Irs(ω) = IKubo(ω), which, in
turn, implies the equality of the respective autocorrelation
functions. This suggests that Ccl(t) be replaced with the Kubo
autocorrelation function, and it also suggests that the
corresponding prefactor be used to restore the symmetry in
eq 22. The lineshape function with the correct symmetry can be
written as

ω ω ω=I Q I( ) ( ) ( )QC cl
(26)

In the literature, the Kubo correction factor is also known as
the harmonic correction factor and is widely used to correct
classical molecular dynamics results for detailed balance, since it
systematically gives results in better agreement with exper-
imental works for the mid-infrared range, compared to other
correction factors.8 By testing the different prefactors, we
arrived at the same conclusions; therefore, this is the only
prefactor used in our results.

4. POLARIZATION IN ONETEP

The BOMD trajectories were generated using the ONETEP

linear-scaling code. In ONETEP, Kohn−Sham (KS)-like
equations19 for the single-particle density matrix P are solved
self-consistently, through direct energy minimization scheme,
under periodic (Born−von Kaŕmań) boundary conditions
(PBC).
The linear scaling regime can be achieved by exploiting

Kohn’s principle of “nearsightedness” of electronic matter.20,21

In fact, for systems with a nonzero band gap, the density matrix
decays exponentially:

ρ γ′ = ⟨ ′⟩ ∝ − − ′Pr r r r r r( , ) exp( ) (27)

where γ is a positive constant that can be related heuristically to
the physics of the system. However, quantifying the degree of
spatial localization, by relating γ to a property of materials,
remains an open issue. A functional form of γ, in terms of the
direct band gap, has been proposed by many authors.22−25 On
the other hand, analytical results have supported the idea that γ
can be related to the ratio between kBT and Fermi velocity in
metals at finite temperature.26

By assuming the functional form in eq 27, it becomes
possible to apply a truncation, such that the resulting density
matrix has a sparse band-diagonal form. This is achieved by
imposing

ρ ′ = | − ′| >r r r r R( , ) 0, cut (28)

Moreover, the density matrix can be expanded in separable
form,27 in terms of localized functions, and when considering
large systems for which Γ-point only sampling is sufficient, this
yields

ρ ϕ ϕ′ = * ′α
αβ

βKr r r r( , ) ( ) ( ) (29)

Henceforth, the Einstein summation convention for repeated
Greek indices is used. The spatially localized functions are real
functions and are known as nonorthogonal generalized
Wannier functions (NGWFs).28 NGWFs are centered on
atoms and are constrained to fixed localization regions Vloc

α (RI),
with RI denoting the center of the Ith atom. Nonorthogonality
enhances localization and promotes the use of sparse algebra, at
the price of a nonunit metric tensor Sαβ = ⟨ϕα|ϕβ⟩. The matrix
K is known as the kernel of the density matrix; it is a
generalization of the occupation numbers to the case of
nonorthogonal functions.
In ONETEP the NGWFs are optimized in situ, as part of the

energy minimization procedure, allowing the use of a minimal
set of functions and, therefore, a minimal size for the
Hamiltonian matrix. For a more detailed description of the
energy minimization technique, sparse algebra, and scaling in
ONETEP the reader is referred to the works of Skylaris et al.12

and Hine et al.29

In this framework, the electronic dipole moment for an
isolated system is given by

μ = = αβ
βαK RKR2Tr( ) 2el (30)

where the factor 2 comes from considering a closed shell
system, with doubly occupied NGWFs, and R represents an
array of three matrices R = (X, Y, Z), whose elements are given
by

ϕ ϕ= ⟨ | ⟩βα β αX x (31)
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for X and similarly for Y and Z.
A comparison between NGWFs and maximally localized

Wannier functions (MLWFs)30 has been presented in ref 31,
showing the accuracy of our approach in computing electric
dipole polarizabilities comparable to MLWF methods, with the
advantage that NGWFs are computed “on-the-fly”, obviating
the need for post-processing.
For the electronic dipole moment of a nonisolated system A

within a larger system A′ = A + B, a density partitioning scheme
is required. Different methods for partitioning the density
matrix into atomic/pointwise,32,33 or fragment34 contributions
are known. Within MLWF approaches, partition of the density
emerges naturally,30 as a consequence of the orthogonality and
localization constraints of the MLWFs: the density matrix ρA
corresponding to system A can be built from MLWFs
belonging to A only, and the number of electrons in A is
correctly given by NA

elec = Tr(ρA).
In the ONETEP framework, on one hand, NGWFs are more

easily assigned to a given system, as they are centered on atoms,
while MLWFs are not. On the other hand, nonorthogonality of
NGWFs plays an important role: the density matrix ρA cannot
be built only from NGWFs centered on atoms in A. In the
following discussion, we outline two approaches to overcome
this obstacle: density kernel partitioning (DKP) and distributed
multipole analysis (DMA). Both methods have been
implemented in ONETEP, and they are now part of its academic
distribution.
4.1. Density Partitioning by Kernel Partitioning. The

density kernel partitioning (DKP) method that we present
computes the dipole moment of a subsystem A directly from
the matrix elements of K and R of the total system A′.
To properly describe the electronic dipole of A, contributions

originating from the NGWFs centered on atoms in B, whose
overlap SBA with NGWFs centered on atoms in A is nonzero,
must be included. In our method, we consider K and X, Y, Z of
the entire system A′, which are real and symmetric matrices by
construction. They can be rearranged into block matrices: two
square, diagonal blocks AA and BB, whose elements originate
from NGWFs centered only on atoms in A or B, respectively,
and two rectangular, off-diagonal blocks AB and BA, where AB
= BAT, with the obvious meaning of symbols. The double
tensor contraction in eq 30 represents a matrix multiplication
M = K·R, followed by taking the trace of the resulting matrix.
The block structure is preserved under matrix multiplication.
Therefore, the trace of the block AA in M gives the electronic
dipole of the subsystem A (see Figure 1). This is equivalent to
adding the trace of the matrices obtained from the multi-
plication of the AA blocks in K and R components and the
trace of the matrices obtained from the multiplication of the BA
block in K and AB block in the R components (or the
transpose of the BA block since the R components are
symmetric), which is half of the total contribution from off-
diagonal blocks:

∑ ∑
μ = +

= +
α β

αβ
βα

γ δ

δγ
γδ

∈ ∈
K R K R

KR KR2[Tr( ) Tr( ) ]
2[ ]

el
A

AA BA

, AA , BA (32)

We end this section by stressing that the density kernel
partitioning does not retain the exact number of electrons for
the subsystems. However, in numerical tests that we performed,
the electronic charge of the subsystem Tr(MAA) was within
0.05% of the expected number of valence electrons.

4.2. Density Partitioning by Distributed Multipole
Analysis. Another approach to partitioning the density
between the two subsystems relies on distributed multipole
analysis (DMA). Here, the charge distribution of the entire
system is represented in terms of a multipole expansion. Atomic
centers are usually, although not universally, used as the centers
for the multipoles. The DMA approach, first proposed by
Rein,35 has been pioneered and made popular by Stone32 and
Alderton.33 DMA is typically performed in a Gaussian basis
set;36,37 below, we outline how electronic densities represented
in a localized (NGWF) basis can be similarly expanded.
We begin by decomposing the total electronic density n(r)

into on-site and off-site contributions:

∑ ∑ ∑ ∑ ∑ ∑ϕ ϕ ϕ ϕ= +
∈ ≠ ∈ ∈
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I i i I
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I J I

S

IJ

0IJ (34)

In eq 34, we have explicitly separated density contributions
from NGWFs on the same atomic center I and those on
different atomic centers I and J with nonzero overlap SIJ. By
construction, NGWFs that do not overlap do not contribute to
density. We denote with i or i1, i2, ... (and correspondingly with
j, j1, j2, ...) the NGWFs belonging to the atom I (J).
Our next goal is to approximate each of the off-site

contributions to density as a sum of on-site contributions,
represented in an auxiliary basis set, i.e.,

∑̃ =n f cr r( ) ( )IJ
s

N

s IJ
s

f

(35)

where cIJ
s are the sought coefficients in the expansion, and

{fs(r)}s=1
Nf are the functions comprising our auxiliary basis set,

Figure 1. Schematic representation of the density kernel partitioning
(DKP) method for the partitioning of the dipole moment.
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Nf/2 of which originate on center I, and the remaining Nf/2
originate on center J.
We subsequently define an electrostatic metric V:

=V f f( )st s t (36)

where, for the sake of brevity, we introduced the notation

∫ ∫= ′ *
| − ′|

′g h g hr r r
r r

r( ) d d ( )
1

( )
(37)

Minimization of the electrostatic self-energy of the difference
between the exact and approximate (interpolated) density, i.e.,
of the quantity

− ̃ − ̃n n n n
1
2

([ ] [ ])IJ IJ IJ IJ (38)

yields the expansion coefficients as

∑=c n f V( )IJ
s

t

N

IJ t
ts

f

(39)

where t similarly indexes auxiliary basis functions originating on
centers I and J, and Vts are elements of the inverse electrostatic
metric matrix. The electrostatic overlaps (nIJ|f t) are equivalent
to standard overlaps ⟨nIJ|ut⟩, where the auxiliary basis function f t
has been replaced by its Coulombic potential ut, i.e.,

∫= ′
′

| − ′|
u

f
r r

r

r r
( ) d

( )
t

t
(40)

In practice, the overlaps are evaluated numerically on a
Cartesian grid, and the auxiliary basis functions are chosen such
that their potential can be obtained analytically. For a detailed
description of the procedure, with a discussion of the
practicality of using truncated spherical waves as the auxiliary
basis set, the reader is referred to ref 38.
We note that the above expressions retain validity for the

case of I = J, which lets us use the same formalism to expand
on-site products for consistency. [Note that, when on-site
densities are expanded, only one center is used, and the number
of functions Nf in the auxiliary basis set is halved accordingly.]
We have now decomposed the electronic density of the

system into a sum of atom-centered contributions, with each
contribution being a linear combination of auxiliary basis
functions. As each atomic center I participates in the expansion
of a number of pairs (I,J), the total number n(I) of coefficients
associated with each center I is n(I) = 1/2∑J,SIJ ≠ 0 Nf, while the
number of auxiliary basis functions on each center is Nf/ 2.
For the sake of concreteness, in the text that follows, we

explicitly assume the auxiliary basis functions to be truncated
spherical waves (SWs),38−40 i.e.,

≡ =
̂ <

≥⎪

⎪⎧⎨
⎩

f f
j qr Z r a

r a
r r

r
( ) ( )

( ) ( )

0s lmq
l lm

(41)

where jl(qr) is a spherical Bessel function and Zlm(r)̂ is a real
spherical harmonic. Values of q are chosen so that the
truncation does not introduce a discontinuity, i.e., jl(qa) = 0.
The radii of localization of the SWs (a) and of the NGWFs
coincide. For the purpose of calculating dipole moments, we
limit the values of the angular momentum quantum number to
l ≤ 1 (although the approach is general), the magnetic quantum
number m∈ [− l,l], and the number of distinct values of q in
the auxiliary basis set (typically ∼10) is dependent on the psinc

(periodic cardinal sine function) kinetic energy cutoff used in
the calculations.
We now turn to the calculation of the dipole moment. The

multipoles associated with an atomic center I can be calculated
as

∫∑ ∑= | | ̂
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where the subscript I that is applied to s reminds the reader that
only the SWs originating on atom I participate in the second
sum. Because of the localization of truncated spherical waves,
the integral only runs over a spherical volume I a, of radius a
centered at RI. Clm are spherical harmonics with Racah
normalization, i.e.,

π̂ =
+

̂C
l

Yr r( )
4

2 1
( )lm lm (43)

where Ylm denote complex spherical harmonics.
For the sake of facilitating subsequent discussion, we will

now switch to explicitly labeling the SWs with the indices l(sI),
m(sI), and q(sI), i.e.,

≡f fr r( ) ( )l s m s q s s( ) ( ) ( )I I I I (44)

We separate the angular and radial parts in the integrals in eq
42, and employ the properties of spherical harmonics, obtaining

∫ | | ̂C fr r r rd ( ) ( )l
lm l s m s q s( ) ( ) ( )
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I I I

, (45)
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is a radial integral that can be computed analytically.
The atom-centered multipoles obtained from eq 42 are

already suitably normalized; atom-centered, Cartesian dipoles
are obtained as

μ = ̅I I I I( ) [ ( ), ( ), ( )]el 11 1 1 10 (48)

The total electronic dipole moment of subsystem A, with
respect to a chosen origin O, is computed by vector addition of
atom-centered multipoles, following a suitable change of frame
of reference:

∑μ μ= − −
∈

I IO O R( ) ( ) ( ) ( )
I

Iel
A

A
el 00

(49)

We note that the procedure described above minimizes the
quantity given in eq 38, with no constraint on the total charge
of the entire system ∑ I( )I 00 , let alone any of its subsystems.
In the numerical tests that we performed, the total monopole
obtained from the expansion was within 0.05% of the expected
number of valence electrons for reasonable qualities of the
auxiliary basis set.

5. CALCULATION DETAILS
All the BOMD calculations and post-processing were carried
out in ONETEP, whereas the classical MD trajectories were
generated with the AMBER12 MD engine SANDER.41 In the
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ONETEP BOMD engine, Newtonian equations of motion for the
nuclei are integrated by adopting the well-known velocity-
Verlet scheme, where forces are generated “on-the-fly” from the
ground-state electronic configuration. Hybrid parallelism42 and
extrapolation schemes were exploited to minimize the walltime
per MD step.
For all the ab initio calculations, we ran microcanonical

BOMD with periodic boundary conditions. A time step of 0.5 fs
was used, this value is a compromise between energy
conservation, minimization of error due to time discretization,
and computational cost. We employed a kinetic energy cutoff of
800 eV, with the PBE exchange-correlation functional and the
D2 Grimme dispersion correction.43,44 The radius for the
NGWFs localization regions has been set to 8.0a0. For the
valence states, we required 4 NGWFs for all the atoms but
hydrogens, where only 1 NGWF was sufficient; norm-
conserving pseudopotentials were adopted for dealing with
core states. The total energy was minimized self-consistently
through the LNV scheme.45−47 At every time step, the starting
set of NGWFs and density kernel fed to the LNV minimization
scheme were obtained from a linear combination of the
previous MD steps NGWFs/density kernels

χ χ χ= −− −2i i i
init

1
scf

2
scf

where χscf represents a converged NGWF/density kernel. The
expressions in eqs 30 and 32 were used to compute the dipole
moment of single molecules in the gas phase, and the dipole
moment of the solute when considering a molecule in solution,
respectively. Unless stated otherwise, the parameters summar-
ized in Table 1 were used in all BOMD simulations.

In all the classical calculations, we used the general AMBER
force field (GAFF). A time-step of 0.5 fs was chosen for
consistency with BOMD calculations. The parameter file and
the initial coordinates were generated with the LEAP graphical
user interface xLEaP. We followed this protocol: we performed
a geometry relaxation calculation for 2500 steps, where, in the
first 1500 steps, we used steepest descents for minimizing the
energy, and, in the remaining 1000 steps, we used the conjugate
gradient method. The bonds containing hydrogens were kept
fixed throughout, using the SHAKE algorithm. After the
geometry relaxation, we performed a heating calculation, where
we let the temperature increase from 0 to 300 K, using
Langevin dynamics with the collision frequency coefficient of γ
= 2.0 ps−1 for 10 ps with a cutoff for the electrostatic
interactions of 10.0 Å. A further equilibration calculation was
performed at a fixed temperature of 300 K for 10.0 ps, with the
other parameters unchanged. After this equilibration phase, a
production run was performed, where the SHAKE constraints

and the thermostat were removed, and the total simulation
length was set to 20.0 ps.
The IR spectra were then computed using eq 22, where the

dipole moments are simply given by

∑μ ν=t tR( ) ( )
I

I I
(50)

where νI are the total classical charges on each atom I, obtained
from the force field parameters, and RI are the atomic positions.
The parameters in Table 2 were used in all the classical
calculations.

Following Gaigeot,8 we applied a Gaussian filter window in
the time domain, such that each term of the correlation
function C(ti) was multiplied by a Gaussian function exp-
(−0.5σ(ti/τ)2), where τ is the length of the simulation, and σ =
10 for the gas phase and σ = 40 for the aqueous phase.

5.1. Gas Phase. 5.1.1. Water. For water in the gas phase,
we used a cubic cell with a length of a = 15.0 Å. The water
molecule was originally placed at the center of the cell. The
initial geometry was obtained from a geometry optimization
calculation. The initial velocities were extracted from a
Maxwell−Boltzmann distribution at the imposed temperature
of 300 K. The total time was 8.0 ps. We let the system
equilibrate for 1.0 ps, and then performed a production run of
7.0 ps. To calculate the normal modes, we used the built-in
phonon module in ONETEP. In order to compute the normal
modes, the forces on the nuclei and their derivatives must be
evaluated with high accuracy, because the normal modes are
obtained from the diagonalization of the Hessian matrix of the
total energy. Thus, a geometry optimization calculation with a
well-converged density is required. The procedure requires an
energy of 3N and forces calculations and one Hessian
diagonalization.

5.1.2. Carbon Dioxide. For carbon dioxide, we used a cubic
cell with a length of a = 12.0 Å. As for the water molecule, we
placed the CO2 molecule at the center of the cell. The
simulation time was 8.0 ps, where we equilibrated the system
over the initial 1.0 ps. The initial velocities were extracted from
a Maxwell−Boltzmann distribution at the imposed temperature
of 300 K.

5.1.3. Ethanol. For the ethanol molecule in the gas phase, we
adopted the same procedure described above. We used a cubic
cell with a length of a = 18.0 Å. The temperature was fixed at
296.15 K for consistency with the experimental data. The
simulation length was 5.5 ps, and a time step of 0.75 fs has been
used. This slightly larger time step allowed the simulations to
be accelerated while still ensuring a good conservation of total
energy. As a consequence, we performed NVE-BOMD for
∼7300 steps. The systems was equilibrated for 1.5 ps, and the
length of the production run was 4.0 ps.

Table 1. Parameters Common to All BOMD Simulations

parameter value

time step 0.5 fs
temperature 300 K
thermostat none
kinetic energy cutoff 800 eV
XC functional PBE
NGWF radius 8.0a0
outer loop rms threshold 10−9

inner loop rms threshold 10−6

NGWF extrap. scheme linear
density kernel extrapolation scheme linear

Table 2. Parameters Common to All Classical Simulations

parameter value

time step 0.5 fs
force field GAFF
temperature 300 K
thermostat Langevin
frequency coefficient, γ 2.0 ps−1

electrostatic interaction cutoff 10.0 Å
pressure relaxation time, τ 2.0 ps
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5.1.4. 2-Ala. In order to test the accuracy of the DKP and
DMA methods of sections 4.1 and 4.2 in generating IR spectra
of systems in the condensed phase, we considered a well-known
system referred in the literature as alanine dipeptide (2-Ala).
2-Ala is the alanine amino-acid equipped with minimal peptide
bonds and with the C-terminal and N-terminal capped with
methyl groups, and constitutes one of the simplest system with
a peptide motif. This system has been extensively studied by
Gaigeot et al.,8,48−50 both in the gas phase and the aqueous
phase. The study of 2-Ala in the gas phase is crucial for
understanding the effects of the solvent in the aqueous phase.
However, addressing the issue of the preferred conformations
of 2-Ala in water is not the object of this work.
For 2-Ala in the gas phase, we used a cubic box with a length

of a = 20.0 Å. We ran a 2600-step NVE-BOMD simulation
(1.3 ps). The initial momenta were generated from a Maxwell−
Boltzmann distribution, in order to obtain an initial temper-
ature of 300 K. Prior to the MD, the initial geometry was
relaxed, by performing a geometry optimization in ONETEP.
[Note that the initial geometry was taken from the xLeap
coordinate file.]
5.2. Aqueous Phase. The 2-Ala-water system is not

interesting per se, but it is a prototype of larger and more-
complex peptides. Moreover, since 2-Ala represents a floppy
molecule of minimal size, it is a perfect candidate for testing our
methods within the BOMD approach. Studying 2-Ala
conformational changes in a polar solvent such as water can
help shed light on the complex dynamics of larger biomolecules
in vivo.
5.2.1. 2-Ala in AMBER. For 2-Ala in the aqueous phase, we

used periodic boundary conditions. We solvated the system
with 500 water molecules through the SOLVATEBOX
command in the xLEaP interface, using the TIP3P model for
the water molecules. Subsequently, the system was relaxed by
first relaxing the solvent for 1500 steps while keeping the
solute’s atomic positions fixed, and then relaxing the entire
system for an additional 3500 steps. We then continued to heat
the system from 0 to 300 K, followed by a constant pressure
calculation at pext = 1 atm for 10.0 ps to let the entire system
expand and obtain a density of 0.9847 g cm−3. We used an
isotropic position scaling barostat and a pressure relaxation
time of τ = 2.0 ps. The final cell volume was Vfin = 15373.4 Å3.
Finally, we performed an NVE production run for 40.0 ps,
where all the SHAKE constraints were removed.
5.2.2. 2-Ala in ONETEP. Both the DKP and DMA methods are

linear scaling and they can be performed “on the fly”. However,
the DMA method at this stage of the implementation is not
able to treat systems where the NGWFs span the boundary of
the simulation cell, i.e. when periodic images of NGWFs re-
enter the original cell. Moreover, the DMA method requires
computation of the electrostatic metric V (from eq 36) at every
MD step; although this can be very efficiently parallelized, it is
still very costly for large systems. Consequently, at every MD
step, we extracted, from the full system of 1522 atoms, a smaller
system containing the 2-Ala molecule and the closest 27 water
molecules whose NGWFs were all fully contained inside the
original simulation cell. The remaining water molecules of the
full system were transformed into embedding classical charges.
Therefore, for every MD step, we considered 109 quantum
atoms and 1413 embedding classical charges (see Figure 2).
Convergence tests were performed to ensure that the size of
the reduced quantum system was sufficient to obtain well-
converged values for the Cartesian components of the solute

dipole moment. The partial charges on classical hydrogen and
oxygen atoms were obtained from the TIP3P model, as
explained in ref 51. Specifically, the partial charge on classical
oxygens was −0.834e; for classical hydrogens, it was 0.417e.
The effect of embedding classical charges is to yield a smoother
profile for the 2-Ala electronic dipole moment, with respect to
the system size, and therefore to reach the converged full
quantum system value faster.
The initial atomic coordinates and velocities and the

simulation cell for the full quantum system were obtained
from the classical calculations described above, after the
equilibration procedure. We ran a 2080-step NVE-BOMD
simulation with 1522 atoms, using 2256 CPU cores to obtain a
trajectory ∼1.0 ps long.

6. RESULTS AND DISCUSSION
The results from the BOMD and classical simulations were
postprocessed to obtain the autocorrelation functions and the
IR spectra.
The water molecule in the gas phase vibrates in several ways,

involving combinations of the symmetric (exp. at 3657.1 cm−1),
and asymmetric (exp. at 3755.9 cm−1) stretching, and bending
of the covalent bonds (exp. at 1594.7 cm−1).53 The results for
the entire simulation and the final spectra with the Kubo
quantum correction factor are shown in Figure 3. As we can see
from Figure 3, we found a good agreement with the
experimental spectrum, where both the positions and the
intensities of the different bands are very well reproduced. The
breadth of the symmetric and asymmetric stretch bands is due
to the rotational fine structure of these bands.
The results for the carbon dioxide are shown in Figure 4. As

we can see, the intensities and positions of the asymmetric
CO stretch mode (exp. at 2249 cm−1) and the two
degenerate OCO bending modes (exp. at ∼660 cm−1)
are reproduced very well. As expected, the symmetric CO
stretch mode (exp. at 1338 cm−1) is not IR-active, because the
molecular dipole moment does not change under this
vibrational mode, and, therefore, is absent in the spectrum.
More interestingly, the combination bands at ∼3600 and
∼3700 cm−1, which originate purely from anharmonic effects,
are also recovered.
As we can see from Figure 5, also in the case of ethanol in the

gas phase, we obtain good overall agreement with the
experimental spectrum. The shapes, intensities, and relative
positions of the different bands are reproduced well. The two
strong peaks at ∼1100 cm−1 correspond to stretches of the
C−O bond, while the double bond CO signature

Figure 2. Reduction of the system size. Left panel shows the original
cell with all atoms treated quantum-mechanically. Right panel shows
the reduced-size system with 109 atoms treated quantum-mechanically
and the remaining 1413 atoms represented as embedding classical
charges. This transformation was applied to all the BOMD snapshots.
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corresponds to the bands in the region at ∼1600 cm−1. The
broad band in the 2800−3100 cm−1 region is known to be
characteristic of C−H bond stretching. Since ethanol has five
C−H bonds, no more than five bands should present in the
harmonic approximation results. Nonetheless, the experimental
spectrum, as well as the anharmonic one, can show more than
five bands, because of conformational changes (trans- and
gauche- conformers) and Fermi resonance effects.54 However,
the correct assignment of fine vibrational structure is outside
the scope of this work. It is worth mentioning that, in the IR
spectrum obtained from the BOMD calculation, the position of
the O−H stretch mode is observed at ω = 3500 cm−1, whereas,
in the experimental spectrum, it is observed at ∼3645 cm−1.
Intensity and broadness are also reduced. This is possibly a
consequence of using a larger time step, which affects the high-
frequency modes more. Interestingly, this band is completely
missing in the spectrum that was computed from the AMBER
calculation with the GAFF force field with all SHAKE

constraints removed (see Figure 5). This reinforces our
statement that spectra computed at finite temperatures from
an accurate molecular dynamics trajectory yield a better
description of the absorption bands, compared to classical
simulations or calculation with the harmonic approximation.
Because of the short length of the BOMD simulation, we are

only able to sample the fast vibrational modes of 2-Ala. In fact,
we are not able to properly compute a spectrum in the near-
infrared range. Instead, we focused on the 1000−2000 cm−1

range of the infrared spectrum, as it shows the contribution of
Amide I−III bands and it is the domain typically used to assess
the structural properties of peptides. In Figure 6, we show the
IR spectra calculated from the BOMD simulation in ONETEP

Figure 3. IR spectrum of water in the gas phase at 300 K calculated in
ONETEP through NVE-BOMD simulations, using the Kubo quantum
correction factor (red trace). Experimental IR spectrum of water in the
gas phase at 300 K from ref 52 (black trace). Frequencies from
normal-mode analysis obtained with ONETEP (denoted by dotted black
vertical lines). Inset shows the autocorrelation function of the total
dipole moment of water in vacuum, with and without Gaussian
convolution.

Figure 4. IR spectrum of carbon dioxide in the gas phase at 300 K
computed through NVE-BOMD simulations in ONETEP, using the
Kubo quantum correction factor (red trace). Experimental IR
spectrum of CO2 in the gas phase at 300 K from ref 52 (black
trace). Frequencies from normal-mode analysis obtained with ONETEP

are denoted by dotted black vertical lines).

Figure 5. IR spectrum of ethanol in the gas phase at 296.15 K
obtained from NVE-BOMD simulations in ONETEP, using the Kubo
quantum correction factor (red trace). Experimental absorption IR
spectrum of ethanol in the gas phase at 296.15 K from ref 52 (black
trace). Frequencies from normal-mode analysis generated in ONETEP

are denoted by dotted black vertical lines. Also shown is an AMBER-
generated IR spectrum for ethanol in the gas phase at 296.15 K (green
trace).

Figure 6. IR spectrum of 2-Ala in the gas phase at 300 K computed
from NVE-BOMD simulations in ONETEP (red trace). Computed IR
spectrum of 2-Ala in the gas phase at 300 K from classical MD
simulation in AMBER (green trace). Frequencies from normal-mode
analysis as obtained from ONETEP are denoted by dotted black vertical
lines. Also shown is the IR spectrum of 2-Ala in the gas phase from
CPMD simulations (results from ref 49) (black trace).
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and from classical MD in AMBER in vacuum. The three bands
appearing in the spectrum obtained from BOMD, relative to
Amide I at ∼1675 cm−1, Amide II at ∼1515 cm−1, and
Amide III at ∼1263 cm−1 are in good agreement with the bands
reported in refs 8 and 49, which are observed at ∼1670−1680
cm−1, ∼1257 cm−1, and ∼1210 cm−1, respectively, even for the
shorter simulation length employed here. Interestingly, the IR
spectra in ref 8 were computed using Car−Parrinello MD, with
the need of a fictitious electronic mass and consequent shifting
of the final spectra. As explained in refs 8 and 49, of these three
bands, the shape and position of the Amide I band appears to
be a good candidate as the vibrational signature for 2-Ala at 300
K, when compared to larger and more-complex alanine peptide
chains.
6.1. 2-Ala in the Aqueous Phase. The spectra computed

with the DKP and DMA methods for 2-Ala in water are shown
in Figure 7. The spectrum from classical simulation is also

shown for reference. DKP and DMA methods are in good
agreement, especially in the 1200−1400 cm−1 range. In the
region between 1400 cm−1 and 1700 cm−1, the shapes and
positions of the bands are the same, but not the intensities. This
is likely to be due to the different way the density is partitioned
in the two methods. In our simulation, the 2-Ala explores
mostly the unfolded β and PII conformations, since the folded
αR exhibited a slightly higher free energy (∼1 kcal mol−1) at
room temperature, leading to a preference for PII/β population.
Consequently, a single peak in the region of ∼1590−1600 cm−1

is found. This is in good agreement with that found by Gaigeot
et al.50 The Amide II band is blue-shifted and merged into one
broader Amide I−II band. This property of folded 2-Ala in
water makes the Amide I−II band featureless.50 The
experimental spectrum also shows a single peak at ∼1635
cm−1. However, the solvent used in the experiment is D2O to
avoid vibrational mixing between H2O bending modes with
Amide I bands. In fact, mixing between Amide I and II modes
and the bending modes of H2O will broaden the Amide bands.
The difference between the computed spectra and the
experimental one can be potentially explained by the difference
in solvents used. Moreover, a non-negligible role is also played
by the exchange-correlation functional used. It is known that

GGA functionals, such as PBE, perform quite well for water in
the gas phase, whereas they tend to underestimate the binding
energy in the aqueous phase, leading to an enhancement of the
local structure.55 This unsatisfactory property of GGAs could
be due to a poor description of hydrogen bonds, which can be
mitigated with functionals that inherently include dispersion.56

In our case, the dispersion interactions are taken into account
through the D2 Grimme correction.43,44 The “softness” of
PBEs in describing vibrational modes affects mostly the
intermolecular modes, which in turn affects the 2-Ala-water
coupling and consequently the positions of Amide bands.
Finally, the combination of trajectories from folded and
unfolded configurations will also improve the Amide I−II
band position and shape.50 The strong hydrogen bonds formed
between 2-Ala and its surroundings yield to a red-shift of the
position of Amide I band of ∼80.0 cm−1, with respect to 2-Ala
in the gas phase. On the other hand, the Amide II band is blue-
shifted by ∼50 cm−1. The merging of the Amide I and Amide II
into one single peak is a clear effect of conformational changes
and couplings with the solvent, which strongly affect the final
spectrum.

7. CONCLUSIONS

We have presented two methods to compute the dipole
moment of selected atoms, such as single molecules, in a larger
environment, such as the solvent. Out methods are based on
density kernel partitioning (DKP) and distributed multipole
analysis (DMA), respectively. Both methods have been
implemented in ONETEP. Combining our methods with the
Fourier transform time-correlation function (FTTCF) formal-
ism and Born−Oppenheimer molecular dynamics, we are able
to compute fully anharmonic infrared spectra of molecules in
the gas phase and in solution at finite temperature. With this
approach, conformational dynamics and anharmonic effects
(anharmonicity of the potential energy surface) are naturally
taken into account within the molecular dynamics simulation
without the need of any a posteriori correction. Moreover, for
systems in solution, only the spectrum of the solute is
computed while retaining the effect of the vibrational coupling
of the modes of the solute with the surroundings. This feature
allows the rigorous study of molecules in solution, providing a
formidable tool for the understanding and the assignment of
bands from experimental spectra.
The theory for the FTTCF formalism is derived from first-

order time-dependent quantum perturbation theory. We stress
the point that the only approximation made here, from a
theoretical point of view, consists of treating the nuclei
classically. This approximation leads to the detailed balance
condition symmetry problem that is partially recovered by
introducing a theoretically derived quantum correction factor.
Several NVE-BOMD simulations at finite temperature on

benchmark molecules in the gas phase have been performed.
For all of the systems, very good agreement was found; when
compared with the corresponding experimental spectra
positions, the shapes and intensities of the bands were
accurately reproduced. Note that, even for small molecules,
the role played by the anharmonicity of the PESs at finite
temperature is important. This is evident in the case of CO2,
where combination bands naturally emerge in our spectrum,
whereas they are completely absent in the harmonic
approximation. Generally, we found that spectra computed
with our method are in much better agreement with the

Figure 7. IR spectrum of 2-Ala in the aqueous phase at 300 K,
obtained from NVE-BOMD simulations in ONETEP with the DKP
method (red trace) and DMA method (blue trace). IR spectrum of
2-Ala in AMBER (green trace). Experimental spectrum at 300 K of
2-Ala in deuterated water (D2O) has been taken from ref 48.
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experiments than those computed through normal-mode
analysis or a classical force field.
Finally, we performed an NVE-BOMD simulation to validate

the DKP and DMA methods on the 2-Ala peptide in 500 water
molecules (i.e., 1522 atoms). The spectrum for 2-Ala was
compared to similar calculations from Gaigeot et al., obtained
by performing CPMD with maximally localized Wannier
functions for the calculation of the dipole,8,49 and good
agreement was found with these methods and with the
experiment.
Schemes for accelerating BOMD in ONETEP, such as the

second generation Car−Parrinello scheme,57 are under
investigation. These schemes are promising for extending the
timescale of the dynamics, by reducing the number of self-
consistency cycles while retaining time reversibility and energy
conservation. By exploiting fast BOMD and linear scaling,
computational spectroscopy based on DFT-MD can be made
very competitive, even for large systems.
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