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ABSTRACT: We report the development and implementa-
tion of an energy decomposition analysis (EDA) scheme in the
ONETEP linear-scaling electronic structure package. Our
approach is hybrid as it combines the localized molecular
orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102)
and the absolutely localized molecular orbital EDA (Khaliullin,
R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753−8765) to
partition the intermolecular interaction energy into chemically
distinct components (electrostatic, exchange, correlation, Pauli
repulsion, polarization, and charge transfer). Limitations
shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a
remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated
on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations
with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP
for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of
biomolecular problems, especially in the context of drug design.

1. INTRODUCTION

Intermolecular interactions are of key importance in determin-
ing the physical and chemical properties of molecular systems.
For example, the intermolecular forces that govern a hydrogen
bond are of great interest to chemists due to the role they play
in determining polymeric structures and macroscopic proper-
ties of structures.1,2 The effect of σ holes as observed in a
number of halogen-bonding complexes3 has implications for
drug−host binding, and therefore, this interaction is of key
pharmaceutical interest. Scientific fields that involve the study
of systems containing large numbers of intermolecular
interactions, such as the disciplines of biomolecular4,5 and
supramolecular chemistry6,7 and condensed matter physics,8,9

benefit from the insights gained from studies of intermolecular
bonding.
The interaction energy is defined in the supermolecular

approach as the difference between the ground-state energies of
a number of monomers in isolation and the ground-state
energy of the supermolecular complex that these monomers
form, and the energy value obtained from this approach can
provide for highly detailed and accurate studies of systems of
interest. However, chemical effects such as electrostatics, Pauli
repulsion, polarization, and charge transfer that each contribute
to the overall intermolecular interaction are hidden within this
value. Such bonding components are important from a
chemical stance as they provide valuable insight into the

synergy and nature of bonding. Additionally, these components
are also valuable pedagogically as they provide a link between
the world of ab initio quantum calculations and the familiar
picture of intermolecular forces known to chemists.
In recent times, many developments have been made in

gaining insight into these often complex interactions. As there
is no unique decomposition, a large number of perturbative and
variational energy decomposition analysis methods exist10−20

that seek to decompose the interaction energy ΔE into its
constituent chemical components. These include the symme-
try-adapted perturbation theory (SAPT) scheme19,20 based on
the perturbative treatment of fragment wave functions in which
chemically useful terms such as electrostatic, exchange
repulsion, induction, and dispersion are obtained. Many
variational schemes have been developed from the pioneering
Kitaura−Morokuma (KM) scheme.10,21,22 These include, for
example, the reduced variational space (RVS)11 approach, the
constrained space orbital variations (CSOV)12,23 energy
decomposition, and the natural energy decomposition analysis
(NEDA) scheme13,14,24,25 based on natural bond orbital
theory.15,26 Additionally, schemes have been proposed and
implemented for analyses of periodic extended systems
including the EDA of Raupach and Tonner,27 the CSOV
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EDA implementation in the CRYSTAL package,28 and the
EDA of Philipsen and Baerends29 within the BAND code.30

These methods have demonstrated varying degrees of
success in the study of protein−ligand interactions31 and
show that the problem of separating polarization and charge
transfer effects is approached in a variety of ways. For example,
schemes such as the localized molecular orbital (LMO)16 and
extended transition state (ETS)32−35 EDAs simply do not seek
to separate polarization and charge transfer effects at all. Other
schemes that attempt this partitioning consider the problem as
involving the optimization of molecular orbitals (MOs) subject
to conditions that impose localization to particular fragments.
Schemes that belong to this category include the KM, RVS,
CSOV, absolutely localized molecular orbital (ALMO),17 and
block-localized wave function (BLW)36,37 EDAs. The NEDA
scheme that involves a highly localized picture of bonding also
considers this to be an orbital localization problem; however, its
solution does not involve variational optimization of a polarized
state. The EDA of Wu et al.18 considers charge transfer to be
more appropriately partitioned by charge density using the
constrained density functional theory (CDFT)38 approach.
The use of these methods has generally been limited to

studies involving no more than a few tens of atoms.31

Exceptions to this include use of the fragment molecular
orbital (FMO) framework39−41 in schemes such as the
PIEDA.42 Recently, work has been published43 investigating
18 class A GPCR-ligand crystal structures using the FMO-MP2
(second-order Møller−Plesset perturbation theory)44 PIEDA
method with the 6-31G* basis set, demonstrating the
components of the interactions and hence the high suitability
of EDA to the field of drug design especially in the case of large
drug−protein systems. With the developments made in the
field of linear-scaling density functional theory (DFT)
methods45,46 a new opportunity to remove this size limitation
arises. The ALMO EDA scheme has been shown to give
reasonable polarization and charge transfer energies31 and
benefits from the use of a properly antisymmetrized state in
performing this partitioning. Notably, use of SCF-MI in
separating polarization and charge transfer offers improvement
upon the scaling of SCF calculations due to partitioning of the
diagonalization bottleneck.47 This has been demonstrated by
Mo and Gao48 in their quantum mechanical and molecular
mechanical coupled BLW EDA (of relation to ALMO EDA)
study of ionic system solvation with up to 32 water molecules
being treated quantum mechanically. The frozen density energy
component of the ALMO EDA decomposition provides
insights into the interaction of fragment densities; however,
also contained within this term are effects originating from
electrostatic, exchange, Pauli repulsion, and correlation
interactions. A rigorous treatment of the frozen density
component is possible that further decomposes the term into
its constituents via a modified LMO EDA16 analysis.
Within this paper, we provide a brief summary of the ALMO

EDA scheme of Head-Gordon et al.17 and the LMO EDA
scheme of Su and Li16 and describe our implementation of a
hybrid EDA scheme in the ONETEP49 linear-scaling DFT
package. The limitations of using the ALMO approach to
partition polarization from charge transfer effects is explored
and a solution proposed that exploits the strictly localized
property of the ONETEP orbitals. An assessment of the
method is provided through its application to a test set of small
complexes that display biomolecule-like bonding characteristics.
We then demonstrate the ability of our approach to be applied

on entire protein−ligand systems by performing EDA
calculations on a 4975 atom complex between thrombin and
one of its inhibitors.

2. THEORY
In the following discussion of the theory, we have adopted the
Einstein convention of implicit summation over repeated Greek
indices only. We will use the word “fragment” to describe any
molecule which is part of a complex held together by
intermolecular interactions (i.e., no chemical bonds). All our
fragments in the following examples are closed shell, but it is a
straightforward task to extend the implementation to open-shell
systems.

2.1. Localized and Absolutely Localized Energy
Decomposition Analyses. In order to develop the equations
used in the EDA approaches, it is first necessary to formally
express the supermolecule interaction energy. This is given by

∑

∑
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Δ = −

∈

∈
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where Ψ represents an electronic wave function with the
subscripts A and X used to represent the fragments A that
compose the supermolecule X, with the superscript “0” used to
denote states optimized in isolation from the field of the
remaining fragments of the supermolecule and the superscript
“A” used to indicate optimization only in the fragment A basis
set, and where Nfrag is the number of fragments comprising the
supermolecule X. Here, E[ΨY] is the energy of system Y and
Enuc(Y) represents its nuclei−nuclei electrostatic energy. Also,
ΔEBSSE is included as a correction for the basis set
superposition error (BSSE).

2.1.1. Absolutely Localized Energy Decomposition Anal-
ysis. The ALMO EDA developed by Head-Gordon et al.17

decomposes the interaction energy ΔE into the frozen density
ΔEFRZ, polarization ΔEPOL, and charge transfer ΔECT
interaction terms as

Δ = Δ + Δ + ΔE E E EFRZ POL CT (2)

We define a number of key wave functions that are necessary
to allow a clear description of the EDA theory in this paper.
The electronic wave function ΨA

0,A is the wave function of the
arbitrary fragment A, and ΨX

0,orth is the properly antisymme-
trized wave function of the interacting X complex constructed
from the nonorthogonal frozen occupied MOs of the
fragments. Here, ΨX

ALMO is defined as the wave function of
the polarized state produced by relaxation of the nonorthogonal
frozen MOs while still ensuring localization of the MOs within
their corresponding fragments. This localization is imposed
through the constraint that the MOs are only expanded using
basis functions on a particular fragment and therefore prevents
charge delocalization between fragments. Also, ΨX is defined as
the wave function of a fully antisymmetrized and fully relaxed
state. Each energy component may be described in terms of
energy functionals of these intermediate wave functions as

∑Δ = Ψ − Ψ + Δ
∈

E E E E[ ] [ ]
A

N

A
A

FRZ X
0,orth

X

0,
nuc
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(3)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00272
J. Chem. Theory Comput. 2016, 12, 3135−3148

3136

http://dx.doi.org/10.1021/acs.jctc.6b00272


Δ = Ψ − ΨE E E[ ] [ ]POL X
ALMO

X
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(4)

Δ = Ψ − Ψ + ΔE E E E[ ] [ ]CT X X
ALMO

BSSE (5)

where Nfrag is the number of fragments comprising the
supermolecule X, and ΔEBSSE is calculated using the Boys−
Bernardi50 counterpoise correction (CP) approach. The
geometries of fragments A are defined as found in the
(geometry optimized) X complex (i.e., only the electronic
density is optimized in this calculation).
The ALMO EDA achieves the separation of polarization and

charge transfer effects using the ALMO state, ΨX
ALMO. This state

describes a system which is polarized but that has the restriction
of no charge transfer between the fragments. The optimization
of the ALMO state proceeds via a procedure termed locally
projected SCF for molecular interactions (SCF-MI).47,51 The
SCF-MI equations we use are those of Stoll et al.52 and are
further described in Section SI.1 of the Supporting Information.
We note that this approach of separating out polarization and
charge transfer effects is the same as that described within the
BLW36,37 EDA procedure. Specifically, the BLW state that is
identical to the ALMO state is optimized either by Jacobi
transformation53 or by the algorithm of Gianinetti and
Raimondi et al.54,55

2.1.2. Frozen Density analysis. In this section, we describe a
prescription for a frozen density analysis produced via the LMO
EDA theory of Su and Li,16 in which ΔEFRZ is further
decomposed into individual electrostatic (ΔEES), exchange
(ΔEEX), Pauli repulsion (ΔEREP), and correlation (ΔECORR)
terms as

Δ = Δ + Δ + Δ + ΔE E E E EFRZ ES EX REP CORR (6)

Combining the classical-like terms of the Kohn−Sham (KS)
energy (by excluding the exchange and correlation contribu-
tions) as

∑ ∑σ σ σ= + ⟨ | ⟩ × +
ψ ψ

E h ij kl E2
i j

N

ij
ij

i j k l

N
ij kl

cl
, , , ,

nuc

(occ) (occ)

(7)

where Nψ(occ) is the number of occupied MOs, kinetic energy
effects are included by the presence of the full core Hamiltonian
matrix hij, and where the contravariant metric tensor σij is the
inverse of the MO overlap matrix σij

∫σ ψ ψ ψ ψ= * = ⟨ | ⟩dr r r( ) ( )ij i j i j (8)

σ σ≡ −( )ij
ij

1
(9)

the components of the frozen density interaction may be
expressed using intermediate wave functions as
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where EX[n(r)] and EC[n(r)] are the DFT exchange and
correlation energy functionals, respectively, of the electronic
density n(r) associated with the wave function Ψ(r) and where
we note that the kinetic energy contribution to ΔEES is zero
due to the kinetic energy of the fragment states ΨA

0,A canceling
with the kinetic energy of the frozen supermolecule state ΨX

0 as
σij is the identity matrix for Ecl[ΨX

0], while it is as in eqs 8 and 9
for Ecl[ΨX

0,orth].
The components of this frozen energy decomposition are

formally similar to the components described in the LMO
EDA16 but with inclusion of a new component ΔECORR that
isolates the correlation energy change on orthogonalization
contained within the LMO EDA “polarization” term. It is also
noted that the electrostatic term of this decomposition is
formally similar to that within the BLW36,37 scheme. Addition-
ally, it is important to note the development of a number of
alternative approaches to the above theory such as the scheme
of Horn et al.56 for investigating (decomposing) the frozen
interaction in KS DFT calculations and the density-based
energy decomposition analysis (DEDA) of Wu57 that calculates
the frozen density interaction in a variational manner.

2.2. Combined ONETEP Approach. Our aim has been to
implement within the ONETEP49 package a combination of
the ALMO EDA approach17 and the frozen density component
analysis based upon the LMO EDA theory of Su and Li16

above. Our prescription includes the electrostatic, exchange,
Pauli repulsion, and modified correlation terms of the LMO
EDA of Su and Li16 in the frozen density component of the
ALMO EDA, with the ALMO EDA polarization and charge
transfer components remaining as in their original form. By
substitution of eq 6 into eq 2, we obtain the fully decomposed
ΔE as

Δ = Δ + Δ + Δ + Δ + Δ

+ Δ

E E E E E E

E
ES EX REP CORR POL

CT (14)

The implementation of this EDA scheme within a linear-
scaling DFT code such as ONETEP that aims to achieve large
basis set accuracy in routine calculations is an important
capability. By decomposing the frozen density component into
its substituents and expressing the interaction energy in terms
of six rigorously defined energy terms, our EDA scheme
provides a detailed analysis of the interaction energy that allows
understanding of the key chemical components of binding. In
what follows, we describe the ONETEP EDA implementation
and provide examples of calculations using this.

3. IMPLEMENTATION OF EDA IN ONETEP
3.1. ONETEP Formalism. In the ONETEP formalism, the

set of KS orbitals {|ψi⟩} can be considered as linear
combinations of a set of localized orbitals {|ϕα⟩} known as
nonorthogonal generalized Wannier functions (NGWFs)58 as

ψ ϕ= α
αMr r( ) ( )i i (15)

where { αM i } are the KS MO expansion coefficients. The
NGWFs {|ϕα⟩} are expanded in a basis of Np periodic cardinal
sine (psinc) functions59,60 {Dp} as
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∑ϕ =α α
=

D cr r( ) ( )
p

N

p p
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p

(16)

where cpα are the expansion coefficients. The psinc functions
are centered on a regular grid that spans the whole simulation
cell. The grid point each psinc function is centered on is given
by the index p. The information on the KS states is contained
within the density matrix given by

∑ρ ψ ψ′ = * ′
ψ

r r r r( , ) ( ) ( )
i

N

i i

(occ)

(17)

and the electronic density is obtained from ρ(r,r′) as
ρ=n r r r( ) 2 ( , ) (18)

Orthonormality of {|ψi⟩} is a necessary physical constraint for
the Pauli principle to be respected, which can be expressed as

σ ψ ψ δ= ⟨ | ⟩ = =α
αβ

β†M S M( )ij i j i j ij (19)

where the NGWF overlap matrix Sαβ is given by

ϕ ϕ= ⟨ | ⟩αβ α βS (20)

By substitution of eq 15 into eq 17, we introduce the density
kernel Kαβ as the representation of the density operator in
terms of NGWFs

ρ ϕ ϕ′ = * ′α
αβ

βKr r r r( , ) ( ) ( ) (21)

where the density kernel Kαβ is given by

∑=αβ α β†
ϕ

K M f M( )
i

N

i i i
(22)

where f i are the MO occupancies which are equal to 1 for the
doubly occupied MOs ψi(r).
3.2. Construction of Frozen Density Kernels. In the

frozen density analysis, we seek expressions of the kernel and
set of NGWFs that represent the two intermediate wave
functions ΨX

0 and ΨX
0,orth. The NGWF set of these wave

functions, {ϕAα(r)}, is constructed by superposition of the
NGWFs of the isolated fragments A onto the supermolecule X.
We now define the two density kernels K0

Aα,Bβ and Korth
Aα,Bβ that

are used to represent ΨX
0 and ΨX

0,orth in this “frozen” NGWF set.
The density kernel of the frozen state, K0

Aα,Bβ, is constructed
by superposition of the occupied states of the fragments onto
the supermolecule. This is constructed from the fragment
density kernels (KA)

αβ as

=

= |

α β αβ

α β
≠

K K

K

( )

0

A A
A

A B
A B

0
,

0
,

(23)

The density kernel Korth
Aα,Bβ is the properly antisymmetrized

form of K0
Aα,Bβ. The construction of this kernel requires the

coefficients (MA)i
α of the isolated fragments. From eq 22 for the

density kernel, we can write a generalized eigenvalue problem
as

=αβ
βγ

γ αK S M M fi i i (24)

This eigenvalue equation may be expressed for the fragment
problems as

=αβ
βγ

γ αK S M M f( ) ( ) ( ) ( ) ( )A A A i A i A i (25)

where the subscript A is used to denote a fragment quantity.
The vectors of the fragment matrices MA that are obtained for
unoccupied MOs are discarded at this point. This is achieved
by ordering the MOs by decreasing orbital occupancy and
retaining only (MA)βi|i≤Nψ(occ,A)

, where Nψ(occ,A) is the number of
occupied MOs on fragment A.
The block-diagonal MO coefficient matrix MBi

Aα of the frozen
supermolecule is constructed from the fragment coefficient
matrices αM( )A i as

=

= |

α α

α
≠

M M
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Finally, the density kernel Korth
Aα,Bβ of the properly antisymme-

trized state is expressed using these MO coefficients as
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where we have exploited the block-diagonal structure of M
described in eq 26, where i and j run over the occupied MOs of
the fragments, and where the inverse MO overlap matrix σAi,Bj is
constructed from the quantity σAi,Bj

∑σ = α
α β

β

∈

†M S M( )Ai
C D

N

Ai
C

C D Bj
D

,Bj
, X

,

frag

(28)

where SCα,Dβ is the full NGWF set overlap matrix for the
supermolecule.
For clarity, the structures of the quantities αM Bi

A and σAi,Bj
involved in constructing Korth

Aα,Bβ are shown diagrammatically in
Figure 1.

The energies of the two intermediate wave functions ΨX
0 and

ΨX
0,orth are expressed in terms of energy functionals of the

quantities K0
Aα,Bβ, Korth

Aα,Bβ, and {ϕAα(r)} as

ϕΨ ≡ α β
αE E K r[ ] [{ }, { ( )}]A B

AX
0

0
,

(29)

Figure 1. Diagrammatic representation of the quantities involved in
the construction of the frozen density kernel Korth

Aα,Bβ for a system
comprising two fragments “frag1” and “frag2”. Empty matrix sub-
blocks represent zero blocks, and sub-blocks containing dots represent
nonzero blocks. The diagonal intrafragmental MO overlap sub-blocks
of σAi,Bj are identity due to orthonormality of the KS states within
fragments and nonzero for the sub-blocks representing interfragment
MO overlaps due to lack of orthonormality.
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ϕΨ ≡ α β
αE E K r[ ] [{ }, { ( )}]A B
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(30)

3.3. Calculation of Polarized Density Kernel. A brief
overview of the ALMO polarization procedure as implemented
within the ONETEP package is now described. As discussed in
Section 3.1, the problem of obtaining the ground state of a
system in ONETEP involves the optimization of the NGWFs
and the optimization of the density kernel for each current set
of NGWFs. In ONETEP, the Stoll eigenvalue problem is not
solved directly by diagonalization, but the ground state is
obtained by a conjugate gradient minimization of the energy.
An overview of the Stoll equations on which this procedure is
based in terms of the quantities used in ONETEP is provided
in Section SI.2 of the Supporting Information.
To describe the optimization of the density kernel in the

SCF-MI equations within ONETEP, we begin by introducing
the density kernel corresponding to the nonantisymmetrized
wave function at SCF-MI iteration m as K0(m)

Aα,Bβ. At m = 0, this
kernel is simply set to the kernel K0

Aα,Bβ constructed in the
previous frozen density analysis by direct summation of the
fragment density kernels. Having obtained this kernel, SCF-MI
loops are performed in order to optimize the total energy with
respect to the density kernel. The electronic energy is evaluated
at each iteration using the antisymmetrized representation of
this kernel, Korth

Aα,Bβ. This electronic energy is expressed in terms
of the quantities used in ONETEP as

∑ ∑ ∑

∑
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where EDC is the double-counting correction
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where EH and Exc are the Hartree and exchange and correlation
energies, respectively, and where

∑ ϕ ϕ= α
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β
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A single iteration of the SCF-MI kernel loop contains the
following steps:

1. The fragment eigenvalue problems described in eq 25 are
solved to obtain the isolated fragment MO coefficients

αM( )A i and subsequently αM Bi
A .

2. The MO overlap matrix σAi,Bj is constructed using eq 28
and inverted to obtain σAi,Bj.

3. The kernel Korth
Aα,Bβ is constructed from αM Bi

A using eq 27
and σAi,Bj.

4. The unprojected Hamiltonian Hαβ is calculated and the
energy of the ALMOs evaluated as

∑= −α β
β α

∈

E K H E
A B

N
A B

B Aorth
, X

orth
,

, DC

frag

(34)

If variations in the density kernel are less than a specified
tolerance, then exit.

5. The locally projected Hamiltonian (HS
A)Aα,Aβ is con-

structed from HAα,Bβ, SAα,Bβ,
αM Bi

A , and σAi,Bj using eq S9
provided in the Supporting Information.

6. (HS
A)Aα,Aβ and K0(m)

Aα,Bβ are used in a conjugate gradient
minimization of the Stoll locally projected energy of the
fragments ES

∑= −α β
β α

∈

E K H E( )
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N

m
A A A

A AS
X

0( )
,

S , DC

frag

(35)

where EDC is evaluated using the associated fragment
densities of K0(m)

Aα,Bβ (eq 33) to obtain the new density
kernel K0(m+1)

Aα,Bβ . The minimization approach used61 is the
method of Li, Nunes, and Vanderbilt;62,63 wherein, the
density kernel K0

Aα,Bβ is defined in terms of an auxiliary
density kernel L0

Aα,Bβ by the McWeeny purifying
transform64

= −α β α β α βK L S L L S L S L3( ) 2( )A B A B A B
0

,
0 0 0

,
0 0 0 0 0

,

(36)
where S0 is the fragment overlap matrix constructed from
the fragment overlap matrices SA as

=

= |

α β α β

α β ≠

S S

S

( ) ( )

( ) 0

A A A A A

A B A B

0 , ,

0 , (37)

This purification transformation is iterated as required
within the LNV subroutine to yield a fully idempotent
K0
Aα,Bβ, equivalent to orthonormalization of the KS states

within the fragments. The gradient of the total energy
with respect to the auxiliary density kernel L0

Aα,Aβ is
calculated as

∂
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− + +

∂
∂

= |

α β β α

β α

α β ≠

E
L

S L H H L S

S L S L H S L H L S H L S L S

E
L

6( )

4( )

0

A A
A A

A A

A A A
A A

A B A B

S

0
, 0 0 S S 0 0 ,
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S

0
,

(38)
and minimization of ES is equivalent to minimization of
Eorth with the ALMO constraint.

Having obtained the SCF-MI optimized density kernel
Korth
Aα,Bβ, the optimization of the NGWFs proceeds as described

in Section SI.3 of the Supporting Information. Once the
solution to the minimization of both the NGWFs and density
kernel is found and the final polarized ALMO state energy
obtained, the polarization energy is then calculated using eq 4.
Charge transfer is calculated using eq 5 but with omission of
the ΔEBSSE contribution, i.e.,

Δ = Ψ − ΨE E E[ ] [ ]CT X X
ALMO

(39)

where

ϕΨ ≡ α β
αE E K r[ ] [{ }, { ( )}]A B

X
,

(40)

ϕΨ ≡ α β
αE E K r[ ] [{ }, {( ) ( )}]A B

AX
ALMO

orth
,

ALMO (41)

where {KAα,Bβ} and {ϕα(r)} are, respectively, the fully
optimized density kernel and NGWFs of the supermolecule
without the ALMO constraint (i.e., the quantities obtained
from a standard singlepoint calculation); {(ϕALMO)Aα(r)} are
the NGWFs determined by the minimization of eq S10
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provided in the Supporting Information and where {Korth
Aα,Bβ} is

the optimized ALMO-constrained kernel (not equal to {Korth
Aα,Bβ}

of eq 27). The exclusion of ΔEBSSE in the ONETEP
implementation is justified as it is zero due to the fact that
the psinc basis set is independent of atomic positions.

4. RESULTS AND DISCUSSION
4.1. Validation of the Method. We have applied our EDA

to a number of small test systems which model interactions
relevant within the field of drug design in order to validate the
accuracy of the ONETEP EDA against its ALMO and LMO
EDA counterparts in the Q-Chem65 and GAMESS-US66 ab
initio packages, respectively. These systems have been selected
as they provide examples of important interactions such as
hydrogen bonding, π−π, and dispersion.67,68 The test systems
are derived from those of our earlier work31 in which we
present a benchmark study of a selection of EDA method-
ologies using six test sets of small interacting molecules of
biomolecular relevance.
4.1.1. Calculation Setup. Geometry optimization was

performed at the PBE-D2/aug-cc-pVTZ level of theory69,70

on all structures using the Q-Chem ab initio package.65 The D2
correction for dispersion of Grimme et al.70 was used in order
to properly model the dispersion interactions especially
observed in the case of the π−π interacting systems. The
optimized geometries of the systems studied are shown within
Figures 2 and 3.

EDA was performed on the geometry-optimized structures at
the PBE-D2/aug-cc-pVTZ level of theory in the case of the
LMO and ALMO EDAs and at the PBE-D2 level with a 1200
eV psinc basis set cutoff energy and 8 Bohr NGWF radii in the
case of the ONETEP EDA. [For all calculations, excluding the
benzene−ammonium system, the polarization stage NGWFs
were initialized to the converged fragment NGWFs. For the
benzene−ammonium system, reinitialization to guess NGWFs

at the polarization stage was required in order to prevent
underconvergence of the polarization energy component.]
[Grimme D3 correction results are also included for
comparison in Section SI.4 of the Supporting Information.
The D3 contributions were calculated using the DFT-D3
program as only the D2 correction is currently implemented in
ONETEP.] Additionally, the Martyna−Tuckerman approach
was used71,72 in the ONETEP calculations to prevent
interactions with periodic system images. Evidence of
convergence of the calculations with respect to psinc basis set
kinetic energy cutoff is provided in the Supporting Information.

4.1.2. Test Set 1: Hydrogen-Bonding Interactions. In this
test set, we assess the bonding components of important
hydrogen-bonded systems such as the water dimer, methanol−
methanol, water−ammonia, and water−ammonium (geo-
metries shown in Figure 2). Studies were published that
investigate the covalency of hydrogen bonding in water,73−80

and this covalency may be further analyzed by considering the
strength of the charge transfer component through EDA.
The ALMO EDA frozen density component ΔEFRZ, further

partitioned into its constituent electrostatic, exchange, and Pauli
repulsion parts, is shown in Figure 4. These constituent
components follow the same definitions as in the LMO EDA
and are in good agreement throughout the set. Additionally
included in the ONETEP EDA is the correlation component
that is required to form ΔEFRZ as shown in eq 6.
We observe that the net effect of these frozen density

components is almost negligible for all systems excluding the
ammonium interacting case as shown by the small magnitudes
of the ΔEFRZ component values (+0.1 kcal/mol > ΔEFRZ >
−0.9 kcal/mol). Intuitively, a more favorable ΔEFRZ component
is expected for the water−ammonium system due to the strong
electrostatic interaction of the charged ammonium molecule
with the dipole of the water molecule. Our expectations are

Figure 2. Test set 1 of PBE-D2/aug-cc-pVTZ geometry-optimized
systems for EDA (intermolecular distances are given in Å).

Figure 3. Test set 2 of PBE-D2/aug-cc-pVTZ geometry-optimized
systems for EDA (intermolecular distances are given in Å).
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confirmed by assessment of the electrostatic energy: For this
system, we observe electrostatic contributions of −25.3 and
−25.5 kcal/mol through the ONETEP and LMO EDAs,
respectively, whereas in the case of the uncharged systems we
observe ΔEES ≤ −13.5 kcal/mol. The increased effect of
electrostatics in the water−ammonium system is also
moderated significantly by a 9.9 kcal/mol (ONETEP) and
9.1 kcal/mol (LMO) increase in the Pauli repulsion term
compared to the water−ammonia system.
Exchange in the ONETEP EDA is observed to increase

through the test set from −3.9 kcal/mol for the water dimer to
−6.6 kcal/mol for the ammonium interacting system, in good
agreement with the LMO EDA results. The correlation term is
also observed to increase in magnitude through the test set
from −2.3 kcal/mol for the water dimer to −3.4 kcal/mol for

the ammonium interacting system. This observation is
rationalized through the increasing electron counts of the
systems through the set and decreasing intermolecular
separations.
Polarization and charge transfer energies obtained through

the ALMO and ONETEP EDAs are shown in Figure 5. The
LMO EDA does not attempt to distinguish polarization from
charge transfer effects and instead simply describes both as an
inter- and intramolecular polarization term. Again, the ALMO
and ONETEP schemes show generally good agreement of the
polarization term, with the strength of polarization increasing
through the set to the ammonium interacting system [−10.2
kcal/mol (ONETEP) and −10.8 kcal/mol (ALMO)]. Polar-
ization is shown to be similar in magnitude to the charge
transfer contribution in the ONETEP EDA of the water dimer

Figure 4. Frozen density analysis energy components for test sets 1 and 2. EDA component values are given in kcal/mol and were calculated with
the PBE-D2 functional. ONETEP EDA calculations (yellow) were performed with a psinc basis set with a kinetic energy cutoff of 1200 eV. Q-Chem
ALMO EDA calculations (blue) and GAMESS-US LMO EDA calculations (green) were performed with an aug-cc-pVTZ Gaussian basis set. The
ALMO frozen density component is the sum of the electrostatic, exchange, Pauli repulsion, and correlation energy components as shown in eq 6.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00272
J. Chem. Theory Comput. 2016, 12, 3135−3148

3141

http://dx.doi.org/10.1021/acs.jctc.6b00272


system, with a polarization energy of −2.2 kcal/mol and a
charge transfer energy of −2.0 kcal/mol. In the case of the
ALMO EDA, charge transfer is observed to be much more
significant (−2.6 kcal/mol) than polarization effects (−1.8
kcal/mol). Despite these differences which are expected due to
the different basis sets used in the ONETEP and ALMO EDAs,
the values observed and inferences drawn for these components
are generally in good agreement between the schemes.
4.1.3. Test Set 2: π-Bonding Systems. In this test set, we

assess the energy components of a number of molecules
interacting with the π-electron cloud of a benzene molecule.
Specifically, we have investigated the interactions of benzene,
pyridine, dimethylacetamide (DMA), and ammonium with
benzene (geometries shown in Figure 3).
We note overall good agreement between the ONETEP and

LMO EDAs through the electrostatic, exchange, and Pauli
repulsion energy components as displayed in Figure 4. We also
observe good agreement for the ALMO EDA frozen density
component that is partially constructed from these terms.

Through the set, the contributions of electrostatics [−1.2 to
−12.1 kcal/mol (ONETEP)], Pauli repulsion [9.0 to 19.8 kcal/
mol (ONETEP)], polarization [−0.2 to −12.3 kcal/mol
(ONETEP)], and charge transfer [−0.4 to −4.6 kcal/mol
(ONETEP)] generally increase as expected with decreasing
intermolecular separation and the presence of charged or larger
molecules.
The largest correlation effects are observed for the benzene−

DMA system (−5.9 kcal/mol). This compares to correlation
energies of −3.5 kcal/mol for the benzene−benzene and
benzene−pyridine systems and −3.9 kcal/mol for the
benzene−ammonium interacting system. This difference likely
arises due to the small intermolecular separation (2.65 Å) of the
DMA molecule compared to the other systems within the set
(2.90 to 3.83 Å), and the larger number of interacting atoms. A
similar trend is observed in the contribution of exchange, and
this can also be rationalized through similar considerations.
ALMO and ONETEP polarization and charge transfer

contributions for test set 2 are shown in Figure 5 and also

Figure 5. EDA energy components for test sets 1 and 2. EDA component values are given in kcal/mol and were calculated with the PBE-D2
functional. ONETEP EDA calculations (yellow) were performed with a psinc basis set with a kinetic energy cutoff of 1200 eV. Q-Chem ALMO EDA
calculations (blue) were performed with an aug-cc-pVTZ Gaussian basis set. Values of Grimme’s D2 correction for dispersion are also provided
(gray).
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display good agreement. The ability of DMA to delocalize
charge through its structure appears to enhance polarization to
a degree, as shown by a polarization energy of −0.8 kcal/mol
for the ONETEP EDA and −1.2 kcal/mol for the ALMO EDA.
Interestingly, polarization is observed to increase markedly to
−12.3 kcal/mol (ONETEP) and −12.6 kcal/mol (ALMO) in
the case of the ammonium interacting system. This is likely the
result of the placement of a positively charged molecule directly
within the polarizable π-cloud of the partner benzene molecule.
Charge transfer is most significant in the DMA [−1.3 kcal/

mol (ONETEP and ALMO)] and ammonium [−4.6 kcal/mol
(ONETEP) and −4.8 kcal/mol (ALMO)] interacting systems.
This is expected due to the ability of the DMA molecule to
delocalize and stabilize incumbent charge and due to the high
favorability of the positively charged ammonium molecule to
accept electron density. Charge transfer is especially strong in
the ammonium interacting system, reflecting the consequence
of placement of a charged molecule directly within the π-cloud
of the partner benzene molecule as was also observed in the
case of polarization.
4.1.4. Basis Set Dependence. A notable weakness of using

the SCF-MI approach to separate polarization and charge
transfer effects is its significant basis set dependency. As the
basis set size increases, the polarized state increasingly becomes
described using basis functions that extend into the space of the
partner fragment, and therefore, this component increasingly
includes charge transfer contributions. This ill definition of the
energy components is similar to the sensitivity81,82 of Mulliken
charges83 to basis set size. Rigorous separation of the
polarization and charge transfer terms is of key importance
for obtaining an accurate chemical description, and the
presence of this ill definition presents an issue. Plots
demonstrating the basis set dependence of the frozen density,
polarization, and charge transfer components are provided in
Figure 6.
This effect may be countered, and chemically accurate

contributions can be obtained by adopting a consistent basis set
choice of carefully considered spatial extension. In previous
work, the use of the aug-cc-pVTZ basis set for ALMO EDA
calculations has been shown to offer a fair balance between
accuracy and stability of terms.80,84 Figure 6 shows that
adopting between 7.5 to 8.5 Bohr NGWF radii is approximately
equal to using the aug-cc-pVTZ basis set in the Gaussian code
ALMO EDA. We suggest the use of 8.0 Bohr NGWF radii
NGWFs in order to fairly balance the accuracy of ΔE with
accuracy in partitioning polarization and charge transfer effects.
Ascribing polarization and charge transfer contributions

using approaches based on the ALMO methodology is not
without challenge. Methods that seek to avoid this ambiguity
include the CDFT approach of Wu that exploit population
analysis calculations to partition polarization and charge
transfer by real space definitions18 and also the recent fragment
electric-field response functions (FERF) approach of Horn and
Head−Gordon85 that adopts the use of fragment polarization
subspaces for variationally defining the polarization contribu-
tion. These approaches have shown success in isolating energy
contributions with minimal basis set dependence, presenting
the opportunity for the development of new EDA schemes with
ever more chemically relatable energy components.
4.1.5. Exchange−Correlation Functional Dependence. It is

interesting to also compare the dependence of the EDA with
respect to exchange−correlation functional. We have compared
the results of the water−ammonium and benzene−DMA

Figure 6. ONETEP (6 to 9 Bohr NGWF radii) and ALMO (aug-cc-
pVDZ to aug-cc-pV5Z) EDA of PBE-D2/aug-cc-pVTZ geometry
optimized (a) water dimer, (b) methanol−methanol, and (c)
benzene−ammonium systems. The PBE/1200 eV level ΔE (green)
is partitioned into the frozen density (blue), polarization (red), and
charge transfer (yellow) energy components as described in eq 2. The
D2 correction for dispersion of Grimme et al.70 is independent of basis
set size and so was not included for clarity.
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systems using the PBE69 and BLYP86,87 GGA exchange−
correlation functionals and the LDA (with VWN correlation88)
functional using ONETEP with a 1200 eV basis set kinetic
energy cutoff. As Grimme’s correction for dispersion depends
upon the choice of exchange−correlation functional by a simple
applied scaling factor, we have omitted this correction from our
discussion. The results of this comparison are displayed in
Tables 1 and 2.

As we may expect, the LDA results display generally poor
agreement of ΔE values with the GGA functionals. Analyzing
the EDA components, we observe that this is primarily due to
differences in the ΔEEX components; for example, this
component is 11.1 kcal/mol lower for the LDA functional
than the PBE functional in the case of the benzene−DMA
system. This disagreement is partially canceled by the ΔEREP
and ΔECORR components, giving a ΔEFRZ component energy
6.2 kcal/mol lower for the LDA functional with this system.
Polarization and charge transfer effects are captured with
surprising accuracy by the LDA functional for the two systems
studied, with ΔEPOL within 0.2 kcal/mol of the GGA
functionals’ values and ΔECT within 0.6 kcal/mol.
There is good agreement between the GGA results,

indicating that energy components within this class of
functionals could be expected to be comparable. As with the
LDA functional, differences using the PBE and BLYP
functionals are apparent within the ΔEFRZ components, with
the ΔEFRZ term 1.1 kcal/mol lower for PBE than BLYP in the
case of the water−ammonium system and 3.6 kcal/mol lower in
the case of the benzene−DMA system. Polarization and charge
transfer are in good agreement (0.4 kcal/mol) between the
GGA functionals.

4.2. Demonstration of the Method on an Entire
Protein with 4975 Atoms. 4.2.1. Calculation Setup.
Thrombin is a serine protease which plays a central role in
the blood coagulation cascade.89 Therefore, inhibition of
thrombin is an approach toward the treatment and prevention
of thrombosis. We have analyzed the bonding components of
thrombin-inhibitor complex models with varying degrees of
protein truncation using the ONETEP EDA. A brief
description of these systems’ preparation follows.
Four model systems were prepared from the structure of the

ligand C24 (shown in Figure 7) bound to thrombin (pdb:

1KTS).90,91 The initial thrombin-inhibitor crystal structure was
capped using COCH3 and NHCH3 groups and protonated
using the Protonate3d software.92 [Caps were placed at the
Glu1C, Tyr14J, Thr147, Gly150, and Leu264 residues.] The
protein side chains, caps, and hydrogens were then optimized
using the MMFF94x force field with the generalized Born
implicit solvent (GBIS) model. The hirudin and its waters were
subsequently removed from the system. This structure
(referred to as the untruncated system) was then truncated
to remove residues beyond various distances (3, 9, 15 Å) from
the ligand. Caps (COCH3 and NHCH3 groups) were then
added to the resulting protein fragments. The structures were
then reprotonated, and any bond clashes introduced by capping
were removed by further geometry optimization (MMFF94x,
GBIS) of the caps and the hydrogens. ONETEP EDA was
performed on the resulting thrombin−C24 systems using a 800
eV psinc basis set cutoff energy and 8 Bohr NGWF radii at the
PBE-D2 level of theory. A summary of the protein models and
EDA fragment definitions is given in Table 3, and visualization
of the protein binding pocket is in Figure 8.

Table 1. Water−Ammonium ONETEP EDA Energy
Components Using a 1200 eV Basis Set Kinetic Energy
Cutoff

energy term exchange−correlation functional

(kcal/mol) PBE BLYP LDA (VWN)

FRZ −4.5 −3.4 −8.3
ES −25.3 −25.7 −25.7
EX −6.6 −4.9 −12.9
REP 30.8 31.4 32.4
CORR −3.4 −4.2 −2.1

POL −10.2 −10.2 −10.4
CT −8.4 −8.0 −8.6
ΔE −23.1 −21.5 −27.4

Table 2. Benzene−Dimethylacetamide (DMA) ONETEP
EDA Energy Components Using a 1200 eV Basis Set Kinetic
Energy Cutoff

energy term exchange−correlation functional

(kcal/mol) PBE BLYP LDA (VWN)

FRZ 3.2 6.8 −3.0
ES −5.2 −5.4 −5.5
EX −4.5 −0.6 −15.6
REP 18.9 19.2 21.2
CORR −5.9 −6.5 −3.1

POL −0.8 −0.9 −0.8
CT −1.3 −1.3 −1.8
ΔE 1.2 4.7 −5.6

Figure 7. C24 ligand (pdb: 1KTS).

Table 3. Summary of Fragments of Thrombin−C24
Complexes Used in ONETEP EDAa

fragment atom count

protein truncation (Å) protein and solvent ligand supermolecule

3 374 (−1) 67 (+1) 441 (0)
9 1328 (−1) 67 (+1) 1395 (0)
15 2621 (+1) 67 (+1) 2688 (+2)
∞ 4908 (+2) 67 (+1) 4975 (+3)

a“∞” refers to the full, untruncated protein (charges given in
parentheses).
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4.2.2. Results and Discussion. Values of the ONETEP EDA
components and their convergence with respect to the
untruncated protein system are shown in Figures 9 and 10.

The EDA components show a significant electrostatic
contribution (−150.3 kcal/mol) to ΔE, reflecting the strong
influence of the charged Asp189 residue interacting with the
positively charged amidine of the ligand. The total contribution
of exchange (−53.7 kcal/mol) and correlation (−63.6 kcal/
mol) is shown to provide almost as much stability to binding as
electrostatics. Stabilization from electrostatics, exchange, and
correlation is however largely countered by steric Pauli

repulsion effects (+228.7 kcal/mol). Polarization (−33.1 kcal/
mol) is of similar magnitude to charge transfer (−31.2 kcal/
mol), reflecting the balanced contribution of these effects to
binding. A significant contribution to binding is provided by
Grimme’s D2 correction for dispersion (−79.9 kcal/mol),
which arises due to the many long-range contributions over the
large number of atoms in the protein.
Convergence of the exchange, Pauli repulsion, and

correlation components is reached between 3 and 9 Å
truncation, with full convergence of electrostatics observed
between 15 Å truncation and the full protein. The large
truncation radius required for convergence of electrostatics is
likely due to differences in the charge distributions within the
truncated proteins and the long-range nature of electrostatics
and is interesting to observe as molecular mechanics
descriptions electrostatics are often truncated at around 9−10
Å.93,94 Polarization and dispersion are shown to converge
smoothly with reduced protein truncation, with charge transfer
displaying a similar convergence profile to the frozen density
component and electrostatics. Again, the similar convergence
profile of charge transfer may be an indication of differences in
the protein charge distributions at the different truncation
levels. Overall, our results indicate heavy protein truncation to
have the potential to adversely affect the outcome of the EDA
values. Minimal truncation of protein models is therefore
shown to be necessary to ensure convergence of the EDA
components.
Qualitative descriptions of intra- and interfragment delocal-

izations are provided by electron density difference (EDD)
plots37 (Figure 11). EDD plots are constructed as electron
density differences between intermediate states of the EDA
procedure. The polarization EDD is calculated by subtracting
the electron density corresponding to the frozen density state
from the polarized state electron density. Similarly, the charge
transfer EDD is calculated by subtracting the electron density

Figure 8. Binding pocket of the untruncated (4975 atom) protein
system. The C24 ligand has been highlighted in orange.

Figure 9. Frozen density analysis of the thrombin−C24 complexes
calculated at the PBE-D2/800 eV level of theory (component values
are given in kcal/mol). Error of the energy components is shown with
respect to the full, untruncated (4975 atom) protein system. The
frozen density component is formally equivalent to adding the
electrostatic, exchange, Pauli repulsion, and correlation energy
components as shown in eq 6.

Figure 10. EDA components of the thrombin−C24 complexes
calculated at the PBE-D2/800 eV level of theory (component values
are given in kcal/mol). Error of the energy components is shown with
respect to the full, untruncated (4975 atom) protein system. The full
interaction energy ΔE is equivalent to adding the frozen density
component, polarization, charge transfer, and Grimme D2 dispersion
energy components.
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corresponding to the polarized state from that of the fully
(electronically) relaxed state. Earlier work has demonstrated the
high value of these plots in drug design, for example, by
application to HIV-1 protease inhibitors by Hensen et al.95 and
to δ-opioid receptor binding models by Mo et al.96 using the
BLW EDA.
The EDD plots of the 3 Å truncated and untruncated

systems both display the key polarization and charge transfer
interactions. Overall, polarization is demonstrated as an
important effect with charge transfer interactions involved in
the formation of the many hydrogen bonds observed. Electron
density is observed to gather in the carboxylate of Asp189
through polarization effects with bond formation to the
amidine group of the C24 ligand being observed in the charge
transfer EDD plot. The Gly219 and Cys220 residues of the
protein are also shown to interact with the amidine group of
the ligand. For these two residues, minor differences are
observed between the 3 Å truncated and untruncated systems
in the nature of the charge redistributions through polarization
effects. In addition to interactions of the protein with the
ligand, notable interactions involving water molecules are also
observed, specifically with the ligand’s amidine and 1-methyl-
benzimidazole functional groups. These interactions highlight

the importance of solvent participation in ligand−protein
binding. Overall, the 3 Å and infinite cutoff EDD plots (for
both polarization and charge transfer) appear qualitatively very
similar. Thus, the 3 Å description is sufficient for qualitative and
visual interpretations. For accurate energy components,
however, the 15 Å description is needed as we saw in the
previous section.
EDD plots are shown to be an important tool for visualizing

the key interactions that are responsible for the polarization and
charge transfer energies and allow us to associate these energies
with particular functional groups. For example, it can be seen
that during the polarization stage charge is redistributed in
Asp189. Then, during charge transfer, charge delocalizes to the
amidine group of the ligand, clearly showing the formation of
bonding in this ion pair. Thus, the value of such plots can be
very high for assisting in the fine-tuning of drug−protein
interactions.

5. CONCLUSIONS

In this paper, we have presented a new energy decomposition
analysis (EDA) scheme based on the ALMO17 and LMO16

approaches that decomposes ΔE into chemically meaningful

Figure 11. EDD plots of polarization for the (a) 3 Å system and (b) untruncated system and of charge transfer for the (c) 3 Å system and (d)
untruncated system. The isosurface contour levels are displayed at 0.0175 electrons per Å3 with green surfaces representing electron gain and
magenta surfaces representing electron loss. The C24 ligand has been highlighted in orange. The EDD plots show the contributions of functional
groups to polarization and charge transfer.
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electrostatic, exchange, correlation, Pauli repulsion, polar-
ization, and charge transfer energy terms. This combined
method, implemented in the ONETEP linear-scaling electronic
structure package,49 is a fully additive scheme with the
advantage of decomposing the ALMO EDA frozen density
component into chemically distinct constituents and is the first
implementation of an EDA scheme in a psinc basis set code
with strictly localized orbitals and plane wave basis set accuracy.
With this new capability, we were able to present EDA
calculations performed on systems several thousands of atoms
in size, such as an entire protein−ligand complex.
We have validated the method in tests with hydrogen-

bonding and π-bonding systems and have shown good
agreement with the equivalent Q-Chem and GAMESS-US
energy components. The recognized sensitivity of partitioning
polarization and charge transfer with respect to basis set size
has been shown to be present in our EDA implementation
within ONETEP due to use of ALMOs. We suggest use of 8.0
Bohr NGWF radii when using the EDA within ONETEP to
mitigate this effect, which we show to be approximately
equivalent to use of the aug-cc-pVTZ basis set within the
ALMO EDA. At this radius, convergence of the interaction
energy ΔE with respect to basis set size is achieved, while also
ensuring reasonable separation of charge transfer from
polarization effects.
The ONETEP EDA is capable of handling large systems

many thousands of atoms in size, and we have demonstrated
application of the scheme to a whole biomolecular protein
system of thrombin with the C24 ligand with 4975 atoms. This
work has also shown that in order to ensure proper
convergence of the EDA values it is a necessary requirement
to have only minimal truncation of protein−ligand systems. We
found that truncation of the protein system has to be at a radius
of 15 Å or larger for converged EDA values. Truncation at this
cutoff distance leads to a system with 2688 atoms. Smaller
truncations are only useful for visual qualitative studies as we
show by EDD plots.
EDD plots are a powerful tool for identifying and visualizing

the key interactions that are responsible for polarization and
charge transfer energies and allow us to associate these energies
with particular functional groups. The combined EDA and
EDD analysis is able to provide accurate quantitative and
qualitative insights into the intermolecular bonding driving
forces within systems of very large scale, and therefore, the
method would be highly suitable for drug design applications.
Future extensions of the code for intramolecular energy

component partitioning may also be made possible through the
appropriate manipulation of fragment electron densities.
Isolating energy components in this manner has the potential
to provide individual functional group contributions to energy
components, in addition to the contributions of intermolecular
origin as described in this paper. Such an approach would be
particularly suited to fragment-based techniques for drug
design.
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