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Abstract

The Resolution of the Identity approximation for the Coulomb (RI-J) energy in Density Functional Theory improves the
computational efficiency of large-scale calculations but requires the use of a second, or “auxiliary” basis set. We examine the
performance of some of the existing auxiliary basis sets with a variety of basis sets and molecules. We determine the accuracy
of the RI-J approximation for these basis sets and suggest criteria for the selection of combinations of basis set and auxiliary
basis set.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Density functional theory for large systems

Density Functional Theory (DFT) has been estab-
lished as a practical method for including electron
correlation effects in calculations on chemically
important molecular systems. While research into
finding improved functionals continues, there are a
large number of reasonably accurate functionals avail-
able. Many studies of chemical properties have been
carried out using those functionals. To this end, an
efficient computer program is essential, as the amount
of computation necessary is large. In the regime of the
size of molecules which are of practical interest to
many experimental chemists, the number of integrals
necessary for a DFT calculation is simply too large to
store in core memory or on disk [1].Direct SCFalgo-

rithms, first introduced by Almlo¨f et al. [2], are the
only possibility. This breakthrough in computational
chemistry was made possible by reducing the prohibi-
tive and unnatural cost of such a calculation, which
appeared to be proportional toN4

BF; whereNBF is the
number of basis functions, a quantity proportional to
the size of the molecular system. In the Direct
methodology, the integrals are calculated afresh in
every SCF cycle and tests are used to skip the evalu-
ation of integrals, which are predicted to make zero
contribution to the Fock matrix. As a result, the cost of
the calculation scales quadratically for sufficiently
large systems. Refinements to this procedure were
developed by Ahlrichs and coworkers [3,4]. The
direct SCF developments were originally applied in
Hartree–Fock calculations. They are however readily
transferable to Kohn–Sham theory and in fact easier
to implement due to the lack of exchange integrals.

In Kohn–Sham theory, the contributions to the
electronic interaction energy are expressed as func-
tionals of the electronic density. These are the
exchange correlation termEXC and the Coulomb
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term EJ

EXC�r� �
Z

f �r;7r;…�dv �1�

EJ�r� � 1
2

ZZ
r�r1� 1

r12
r�r2�dv1 dv2 �2�

The evaluation ofEXC is typically carried out with
numerical integration. Its computational cost is a
small percent of the whole cost of a DFT calculation
for medium sized molecules (,50 atoms) and it has
been shown that it can be made to scale linearly with
NBF [5]. It is the evaluation of the Coulomb term
which dominates the computational procedure as
soon as molecules of reasonable size are encountered.
Methods for calculating this term, which scale linearly
asymptotically, have been invented [6,7]. However,
their breakeven point with conventional methods has
been demonstrated to be of the order of hundreds of
basis functions and this for cases of molecules of light
atoms with extended geometries, such as linear hydro-
carbons, graphite sheets and water clusters. It is there-
fore reasonable to expect that in large complexes
containing heavy atoms or three dimensional metal
clusters the breakeven point will be located at a pro-
hibitively large number of basis functions. This
renders current linear scaling methods unsuitable for
practical, every day calculations on such compounds.
The complexity of the implementation of such
methods, without any optimum “recipe” available in
the literature, is another drawback. Quantum chemistry
programs such asmagic [8] are mainly intended for the
study of inorganic compounds containing heavy
elements [9]. Methods of reducing the cost of the calcu-
lation by having a small prefactor though they still
scale quadratically would lead to significant benefits
in this case.

1.2. Representation of the density by an auxiliary
basis set

A quadratically scaling method for calculating the
Coulomb energy, which is faster than the conven-
tional approach, is the fitted density approximation.
It was used in different forms in the early work of
Baerends [10] and Dunlap [11]. It is based on the
observation that the basis we use to describe the
molecular orbitals is more flexible than required to

describe the density. This can be more clearly under-
stood if we consider that the basis set is required to
describe all molecular orbitals. These are usually
quite different from each other and contain features
not present in the density (e.g. sign changes, different
levels of localisation). If {xi}

NBF
i�1 is the set of basis

functions we use to express the orbitals, the density
is represented as a quadratic form in the basis in terms
on the density matrixD:

r�r � �
XNBF

i�1

XNBF

j�1

xi�r �xj�r �Dji �3�

When the basis consists of Gaussian functions, then
according to the product rule,xi�r �xj�r � � xt�r �
wherext�r � is a linear combination of a few Gaussian
functions, centred on the line joining the centres of
xi�r � andxj�r � [12]. Consequently, the above expres-
sion for the density can equivalently be written as

r�r � �
XNBF�NBF 1 1�=2

t�1

xt�r �q0t �4�

where q0i�i21�=21j � �2 2 dij �Dij : As the space of the
xt�r � functions is nearly degenerate [13,14], it is
desirable to obtain an accurate representation of the
density in terms of a new basis set, especially tailored
for this purpose. This new basis set {ft}

NAUX
t�1 is

commonly called the auxiliary basis set. The density
is approximated by the auxiliary basis set as

r�r � . rAUX �r � �
XNAUX

t�1

ft�r �qt �5�

where the expansion coefficients, or “charges”qt

[15,16] are determined in some optimum way. The
approximate density is subsequently used to calculate
the Coulomb energy

EJ�r� .
1
2

ZZ
rAUX �r1� 1

r12
rAUX �r2�dv1 dv2 �6�

The above result would equal the exact Coulomb
energy only if the auxiliary set was a complete basis
with an infinite number of functions or the set of
NBF�NBF 1 1�=2 functions arising from all the distinct
products of pairs of the original basis functions. None
of these choices would result in any computational
savings, however. To have any significant savings,
NAUX has to be proportional toNBF. Indeed, Eichkorn

C.-K. Skylaris et al. / Journal of Molecular Structure (Theochem) 501–502 (2000) 229–239230



et al. [17,18] have constructed auxiliary basis sets
for every element (excluding the lanthanides and the
actinides) which satisfy the requirement

NAUX , 3NBF �7�

and it is claimed that this leads to an increase of the
speed of calculation ofEJ by an order of magnitude.
The absolute error introduced by these auxiliary sets is
expected to be smaller than the errors arising from the
incompleteness of the basis sets and the inexact treat-
ment of correlation. In fact, the relative error, which is
important for chemical properties, is expected to be
even less and should not hinder attempts to improve
our results in an effort to achieve “chemical accuracy”
of 1 mEh [19].

The magic quantum chemistry program, intended
for performing relativistic calculations on large
systems containing heavy atoms [20,21], is able to
calculate the Coulomb energy either by an auxiliary
basis fitted density, or with the “exact” density. In
agreement with the above, we have observed that
the fitting density approximation is markedly faster
than the exact calculation. We find however that
there are very few auxiliary basis sets available in
the literature [17,18,22]; and the method’s accuracy
has not been tested extensively. In this paper we are
attempting to test the robustness of some of the most
widely used auxiliary basis sets with respect to the
size of the basis set. We wish to examine their perfor-
mance for smaller and larger basis sets than the ones
they were meant to be used with and see if we can
establish criteria for judging the quality of the repre-
sentation of the fitted density without comparing with
the “exact” calculation. In general, every basis set is
not accompanied by a corresponding auxiliary set.
Therefore, though the auxiliary fit method is efficient,
it may not be of much practical value without general-
purpose auxiliary sets, accurate for a range of basis
sets.

In Section 2 we give a brief comparison of density
fitting procedures and the underlying theory including
the procedure implemented inmagic. In Section 3 we
describe the calculations we performed in order to
answer our question. Section 4 is a discussion and
rationalisation of our results. Finally, in Section 5
we reach some conclusions regarding the transfer-
ability of auxiliary basis sets and suggest ways of

predicting how well they will perform with a particular
basis set and molecule.

2. Density fitting procedures

We summarise briefly and compare the most
common density fitting procedures in the literature.
We follow the notation of earlier works in the field.
Both the basis set and the auxiliary basis set consist of
non orthogonal functions. The first step in fitting
procedures is to orthonormalise the auxiliary basis
set. Symmetric orthonormalisation is used for this
purpose. This leads to two broad classes depending
on the kind of metric used.

2.1. Inner product: overlap integral

The overlap integral

Sts �
Z

f p
t �1�fs�1� dv1 � k ftu fsl �8�

is used as a metric. Then symmetric orthonormal-
isation

f 0 � fS21=2 �9�
yields the auxiliary basis set {f 0t}

NAUX
t�1 which is ortho-

normal in the linear vector space with metricS. The
density can be fitted now by simply projecting it onto
the orthonormal auxiliary basis.

r . ~r � f 0kf 0url � fS21=2kfS21=2url � fS21kf url � f ~q
�10�

The Coulomb energy can therefore be represented by

2EJ . � ~r u ~r� � �fS21kf urlufS21kf url�

� kruf lS21�f uf �S21kf url � kruf lS21VS21kf url
�11�

where V is the matrix of two centre two electron
integrals in the auxiliary basis, see Eq. (14) below.
Eq. (11) was originally derived by minimising the
mean square deviation of the fitted density [10]:Z

ur�r �2 ~r�r �u2dv �12�
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2.2. Inner product: electrostatic interaction integral

The electrostatic interaction integral

Vts �
ZZ

f p
t �1� 1

r12
fs�2�dv1 dv2 � � ft u fs� �13�

can serve as another definition of inner product and be
used as a metric. Symmetric orthonormalisation in a
similar fashion as before

f 00 � fV21=2 �14�
yields the auxiliary basis set {f 00t }

NAUX
t�1 which is ortho-

normal in the linear vector space with metricV. The
density is again expanded in the orthonormal auxiliary
basis

~~r � f 00�f 00ur� � fV21=2�fV21=2ur� � fV21�f ur� � f ~~q
�15�

The expression for the Coulomb energy in this case is

2EJ . � ~~r u ~~r� � �fV21�f ur�ufV 21�f ur��

� �ruf �V21�f uf �V21�f ur� � �ruf �V21VV21�f ur�

� �ruf �V21�f ur� �16�
By noting that�ru ~~r� � � ~~r u ~~r�; a variational principle
can be written, which shows that the error in Coulomb
energy due to auxiliary basis set incompleteness is
negative

2EJ $ � ~~r u ~~r� �17�
The result of Eq. (16) was originally derived by mini-
mising the Coulomb energy of the residual of the
fitted density [11]:

1
2

ZZ �r�r1�2 ~~r�r1���r�r2�2 ~~r�r2��
ur 1 2 r2u

dv1 dv2 �18�

2.3. Combination of the two methods

If the two ways of fitting the density are combined
the following expression results.

2EJ . � ~r u ~~r� � kruf lS21�f ur� �19�
As will be seen in Section 2.4, this expression is a
compromise in computational cost between Eqs.
(11) and (16). When used in a direct SCF scheme it
requires the evaluation of three-index two-electron

integrals and three-index overlap integrals in every
SCF cycle.

2.4. Comparison of the three approximations

In order to use Eq. (11) in a direct SCF calculation,
one would have first to calculate theS21VS21kf url
column vector and then contract it with thekruf l
row. These two steps require the calculation of
three-index overlap integrals twice per SCF cycle.
In a similar way we can show that for Eq. (16) it is
necessary to calculate three-index two-electron inte-
grals twice per SCF cycle. The three schemes there-
fore have substantially different computational costs.
They also differ substantially in their performance in
fitting the density. By intuition, we would expect the
use of the electron repulsion integral as a metric to
yield better results since the reason we are fitting the
density is to approximate such an integral. Or in other
words, minimising directly the Coulomb energy of the
density residual should lead to better results as far as
energy is concerned. This assumption was verified by
Vahtras et al. [23] through a series of simple tests.
They found that for every auxiliary basis set they
tried, Eq. (16) (the “V approximation”) was far
more accurate than Eq. (11) (the “SVS approxi-
mation”) while the results owing to Eq. (19) (the “S
approximation”) were in between. The variational
principle of Eq. (17) is an added benefit of the V
approximation. It applies strictly forr being the
density of the RI-J calculation. However under the
assumption that the densityr “exact” of the non fitted
calculation is almost equal tor one can deduce that
the RI-J error in energy should be negative. When this
subtle generalisation is valid, it leads to some cancel-
lation of systematic errors in energy differences. As a
consequence, the V approximation has become the
most widely used today. It is also referred to as the
RI-J approximation (Resolution of the Identity for
the Coulomb energy). Some results of accuracy as a
function of auxiliary basis set size have been given by
Van Alsenoy [24] for the S approximation with the
added constraints of preserving charge and dipole
moment. However, the auxiliary basis sets used
were far from optimised and explicit corrections to
the Coulomb energy in terms of four-index electron
repulsion integrals had to be included. (We should
note at this point that in the case of hybrid
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exchange-correlation density functionals, the auxiliary
basis set approximation is not as efficient since four
index integrals are necessary for the exchange energy
and have to be calculated as well.)

magic approximates the Coulomb energy using the
V approximation. We chose this method because of its
accuracy. Furthermore, calculation of the gradient or
higher derivatives is not much more complicated than
the conventional approach [25]. One should be care-
ful, however, when determining the charges~~q as theV
matrix can very often be nearly singular. Numerical
algorithms stable to contamination from nullspace
solutions ofV are readily available [17,26] and should
be used when solving the system of linear equations
V ~~q � �f ur�:

3. Calculations and results

The computational efficiency as well as the quality
of the V approximation depend on the auxiliary basis.
There is little justification for using RI-J DFT unless
the auxiliary basis is optimised for both speed and
accuracy. This is achieved by requiring the auxiliary
sets to represent the density of the isolated atom in
such a way as the error that results in the atomic
energy is below a certain threshold. It is important
to note however that the optimization procedure of
the auxiliary basis is carried out for a particular kind
of basis. There is therefore no a priori guarantee that
they are going to perform equally well for basis sets
other than the one for which they were optimised. On
the other hand, the construction of an auxiliary basis is
not a trivial task and is certainly not one that can be
performed on a daily basis for each basis set we
encounter. Consequently, the practice of considering
the available auxiliary basis sets more or less as
“universal” has prevailed. They are thus used with
little regard to the basis set selected. We wish to
examine the validity of this assumption for a variety
of basis sets and molecules. Furthermore, we wish to
gain some insight into the quality of the RI-J approxi-
mation for a particular auxiliary basis set as a function
of the basis set and the type of molecule.

For this study, we decided to use the auxiliary basis
sets of Eichkorn et al. [17,18], which were designed
specifically for basis sets of SVP and TZVP quality by
the same group [27,28]. These auxiliary sets are

available for almost all the elements, apart from the
actinides and lanthanides and are meant to produce an
error of less than 0.2 mEh per atom. We decided to
treat these auxiliary basis sets as standard “universal”
auxiliary basis sets.

We selected six types of basis sets1 which we
describe in order of increasing size. First, we use the
STO3G minimal basis set of Hehre et al. [29,30].
Calculations with a minimal basis are essentially
semiempirical as a result of its incompleteness and
lack of polarization functions. The second basis set
that we use is the double zeta basis of Dunning et
al. [31,32]. This is certainly an improvement over
the STO3G but still lacks polarisation functions.
Next in the series come the SVP and TZVP bases of
Ahlrichs et al., the ones for which the auxiliary basis
sets were designed. These were therefore expected to
perform better than the rest of the basis sets. These
sets are fully optimised (exponents1 contraction
coefficients) and describe well, both the core area
with large contractions and especially the valence
area. The fifth basis set we tried is the cc-pVTZ
basis of Dunning et al. [33,34]. This basis, like the
TZVP, deals with the core orbitals with large fixed
contractions and puts the emphasis on the valence
region which is mainly responsible for most molecu-
lar properties, especially the ones related to the ener-
getics of bond breaking and bond forming. It is
substantially larger than the TZVP and contains polar-
isation functions with angular momentum up to and
including d for hydrogen and f for second and third
row atoms. The sixth and final basis that we employed
was the cc-pVQZ, again by Dunning et al. [33,34].
This basis further extends cc-pVTZ with its four zeta
description of the valence region and is probably suffi-
cient for the most demanding of DFT calculations. It
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oped and distributed by the Molecular Science Computing Facility,
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Washington 99352, USA, and funded by the U.S. Department of
Energy. The Pacific Northwest Laboratory is a multi-programme
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Department of Energy under contract DEAC06-76RLO 1830.
Contact David Feller, Karen Schuchardt or Don Jones for further
information. The database is accessible via the URL http://
www.emsl.pnl.gov:2080/forms/basisform.html.



contains polarisation functions up to and including f
for hydrogen and g for first and second row atoms.

In order to determine the effect of the functional, if
any, on the accuracy of the RI-J method, we ran some
of the calculations with the Local Density Approxi-
mation exchange-only (LDAX) functional [35] and
some with the Becke 88 gradient corrected exchange
functional [36] plus the correlation contribution by
Lee, Yang and Parr [37] (BLYP). The LDAX func-
tional is equivalent to the Xa exchange functional
whose adjustable parametera can be determined
according to different criteria [38,39]. We use the
value a � 2=3; which comes from the uniform

electron-gas approximation for the exchange energy
[35].

As we are interested in ways of evaluating the
quality of the RI-J approximation we assess here the
usefulness of the Weighted Root Mean Square
deviation of the fitted Density (WRMSD) from the
“exact” density for this purpose. The WRMSD test
computes the following quantity at the end of an
RI-J calculation:�������������������������������XNGRID

i

wi ur�r i�2 rAUX �r i�u2
vuut �20�
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Table 1
Errors in total energy (E) and atomisation energy (EA) and WRMSD values (Eq. (20)) for the RI-J method. The number of auxiliary basis
functions for each molecule is given in parentheses. Also given are the functional and the method for obtaining the geometry (e.g. BLYP//MM
means that the BLYP functional was used and the geometry was obtained by molecular mechanics)

Molecule Basis set NBF E 2 ERI-J

(mEh)
EA;RI-J 2 EA

(mEh)
WRMSD
( × 107)

RbCl (74) BLYP//MM STO3G 39 8.110 0.249 3.33
DZ 48 0.602 0.533 1.09
SVP 49 0.567 0.546 0.99
TZVP 53 0.643 0.611 1.01
cc-pVTZ 69 0.736 0.705 1.01
cc-pVQZ 104 0.892 0.801 1.27

K[PtCl3(C2H4)] (439) LDAX//LDAX(SVP) STO3G 106 55.259 1.304 9.83
DZ 147 31.943 0.034 8.12
SVP 172 31.753 0.101 8.09
TZVP 198 31.856 0.186 8.12
cc-pVTZ 312 32.018 0.342 8.12
cc-pVQZ 567 32.276 0.281 8.20

CH2FCOO2 (256) BLYP//MM STO3G 27 2.288 3.567 2.40
DZ 54 0.301 0.267 1.72
SVP 85 0.400 0.374 2.08
TZVP 112 0.464 0.444 2.06
cc-pVTZ 205 0.484 0.451 2.12
cc-pVQZ 420 0.522 0.499 2.21

CH3C6H5 (428) LDAX//MM STO3G 43 2.155 6.308 1.83
DZ 86 0.255 0.205 1.56
SVP 145 0.463 0.428 2.13
TZVP 188 0.552 0.520 2.18
cc-pVTZ 365 0.666 0.633 2.38
cc-pVQZa 525 0.672 0.627 2.39

NO2 (132) BLYP//BLYP(SVP) STO3G 15 1.494 19.128 2.35
DZ 30 0.207 0.193 1.58
SVP 45 0.277 0.256 1.94
TZVP 60 0.313 0.302 1.80
cc-pVTZ 105 0.308 0.292 1.81
cc-pVQZ 201 0.340 0.329 1.86

a The cc-pVTZ basis set was used on the C atoms.



where r and rAUX are given by Eqs. (3) and (5),
respectively. Both of them are computed with the
density matrixD and the chargeq of the RI-J calcu-
lation. The pointsr i and the weightswi come from the
molecular quadrature grid thatmagic uses to calculate
the DFT exchange-correlation energy and matrix
elements [8,40–43]. We note that these grids are
extensive with 9060 grid points for every first row
element, increasing to 15 100 points per atom for
actinide elements. It would be reasonable to expect
that the WRMSD test should produce a good indi-
cation of the quality of the RI-J approximation for
results using the same molecule with different basis
sets.

magic is able to perform both “exact” and RI-J
(V approximation) DFT calculations. We have
selected a wide variety of molecules on which we
have run both types of calculations. Some of them
are inorganic compounds, and for their metal atoms
we have used Effective Core Potentials (ECP) [44] to
represent the interaction of the core electrons with the
valence. Therefore, for the metal atoms, the valence
basis set that accompanies their ECP is always used
regardless of what basis is used for the rest of the
atoms in the molecule. We use this practice very
often in applications because ECPs are a cheap and
simple way of taking into account the most important
of the relativistic effects. We selected the ECPs of the
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Table 2
Errors in total energy (E) and atomisation energy (EA) and WRMSD values (Eq. (20)) for the RI-J method. The number of auxiliary basis
functions for each molecule is given in parentheses. Also given are the functional and the method for obtaining the geometry (e.g. BLYP//MM
means that the BLYP functional was used and the geometry was obtained by molecular mechanics)

Molecule Basis set NBF E 2 ERI-J

(mEh)
EA;RI-J 2 EA

(mEh)
WRMSD
( × 107)

B2H6 (178) LDAX//LDAX(SVP) STO3G 16 0.556 5.507 1.32
DZ 32 0.049 0.017 0.80
SVP 60 0.049 0.042 0.78
TZVP 76 0.058 0.044 0.89
cc-pVTZ 160 0.074 0.057 1.01
cc-pVQZ 350 0.088 0.062 1.06

TiCl4 (294) BLYP//BLYP(SVP) STO3G 85 34.405 20.519 10.39
DZ 121 4.082 0.323 6.75
SVP 125 3.895 0.328 6.55
TZVP 141 3.944 0.336 6.61
cc-pVTZ 205 3.949 0.345 6.62
cc-pVQZ 345 4.228 0.383 6.91

(H3PAu)2S (439) BLYP//exp STO3G 111 25.078 22.727 7.90
DZ 144 0.227 0.092 1.13
SVP 165 0.209 0.139 1.03
TZVP 183 0.242 0.149 1.14
cc-pVTZ 285 0.285 0.185 1.14
cc-pVQZ 510 0.718 0.427 1.54

H3COSiH3 (229) LDAX//MM STO3G 25 10.158 4.754 7.64
DZ 50 0.333 0.241 1.58
SVP 79 0.342 0.312 1.82
TZVP 99 0.385 0.348 1.92
cc-pVTZ 199 0.402 0.358 1.93
cc-pVQZ 424 0.590 0.419 2.18

CH3NH3
1 (178) LDAX//MM STO3G 16 0.714 0.947 1.55

DZ 32 0.100 0.067 1.18
SVP 60 0.152 0.134 1.62
TZVP 76 0.178 0.161 1.64
cc-pVTZ 160 0.197 0.179 1.71
cc-pVQZ 350 0.216 0.187 1.77



Stuttgart group [45,46] as they have small cores and
large valence basis sets for maximum accuracy
and also because our auxiliary sets are optimised
especially for them.

The results we obtained for each molecule are given

in Tables 1 and 2. The geometry of RbCl was obtained
from a Molecular Mechanics (MM) optimisation and
the BLYP functional was used. The geometry of
K[PtCl3(C2H4)] was optimised bymagic using the
SVP basis set and the LDAX functional was used
throughout. The geometries of CH2FCOO2 and
CH3C6H5 were optimised by MM and the BLYP and
LDAX functionals were used, respectively. NO2,
B2H6 and TiCl4 were optimised bymagic with an
SVP basis and the BLYP, LDAX and BLYP func-
tionals were used, respectively. The geometry of
(H3PAu)2S was adopted from similar molecules in
the literature [47] and the BLYP functional was
used. Finally, the LDAX functional was used for
both H3COSiH3 and CH3NH1

3 whose geometries
were obtained by MM. The number of auxiliary
functions and the number of basis functions for each
basis set for each molecule are given. For each case
we performed an “exact” calculation with four-index
two-electron integrals and an RI-J calculation and we
present the error in total molecular energy, the error in
atomization energy and the WRMSD. Atomization
energy is the difference of the total energy of the
molecule from the sum of the energies of the neutral
isolated atoms comprising the molecule, both calcu-
lated either with or without the RI-J approximation.

Having obtained the above-mentioned results on
the RI-J approximation for different molecules and
basis sets, we performed calculations with the same
basis set but on molecules of increasing size. The
purpose here was to gain some insight into the effect
of the RI-J approximation as the molecules become
larger. We therefore ran calculations on crown ethers,
starting with 3c1 (C2H4O), to 6c2, all the way up to
21c7. The LDAX functional and the SVP basis set
were used and their geometries were obtained by
MM. Table 3 contains the results of these calculations,
which are again the errors in the energies and atom-
ization energies and the WRMSD. The energy error
and atomization energy error are plotted as functions
of the number of monomer units (3c1) in Fig. 1.

4. Discussion

Though the list of molecules we have studied is by
no means exhaustive, it contains many cases similar to
the ones we use in chemical applications with DFT.
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Table 3
The RI-J approximation for crown ethers of increasing size. The
values of WRMSD (Eq. (20)) and the errors in total energy (E) and
atomization energy (EA) are given. 3c1 is 3-crown-1 (C2H4O) and
contains 65 auxiliary basis functions

Ether
molecules

NBF E 2 ERI-J

(mEh)
EA;RI-J 2 EA

(mEh)
WRMSD
( × 107)

3c1 65 0.429 0.412 2.33
6c2 130 1.071 1.038 2.95
9c3 195 1.456 1.405 2.98
12c4 260 1.885 1.818 3.08
15c5 325 2.239 2.155 2.98
18c6 390 2.738 2.636 2.97
21c7 455 3.257 3.139 2.81

Fig. 1. Error in energy and in atomization energy for the RI-J
approximation as a function of increasing crown ether size.



We selected equilibrium, or near equilibrium
geometries where DFT is most commonly used. We
focus on energies, since our auxiliary basis sets are
optimised for them and therefore they are a direct
indication of how well the RI-J approximation
works. Furthermore, atomization energies are useful
for comparisons of stability between different
molecules and do not depend on errors in the descrip-
tion of the core region. Many molecular properties
have this characteristic.

From Tables 1 and 2, we can observe that the RI-J
energy is lower than the non fitted energy in accor-
dance with the generalisation of the variational prin-
ciple of Eq. (17). The atomisation energies of the RI-J
calculations are larger than the four-index results,
probably because the RI-J energies of the isolated
atoms are calculated more accurately than the
energies of the molecules. Only in TiCl4 and
(H3PAu)2S, both with the STO3G basis, the four-
index atomization energy is higher than the RI-J
atomization energy.

Our next observation is that our target accuracy of
less than 1 mEh has been achieved for the atomisation
energies for the SVP and TZVP basis sets for which
our auxiliary basis functions were designed. In most
molecules, this is true for the total energy that gives
errors of comparable magnitude. However, in
K[PtCl3(C2H4)] and TiCl4, which include third row
or lower elements, the errors in energy are much
larger and way above our threshold. These errors
can be attributed to the density of the core electrons
and cancel in the atomization energies, as they are
not affected by the chemical environment of the
atoms.

We now look at how the rest of our basis sets
performed. Surprisingly, STO3G, which is much
smaller than SVP and TZV and in some cases has
almost an order of magnitude fewer functions than
the auxiliary basis, performs rather poorly. It seems
that the auxiliary basis does not have the flexibility to
follow its inadequate description of the density, which
is substantially different from the density of a near-
complete basis. This causes errors in the core region
description for RbCl, K[PtCl3(C2H4)] and TiCl4, in the
valence region for NO2 and B2H6 and in both core and
valence for CH2FCOO2, CH3C6H5, (H3PAu)2S and
H3COSiH3. Only in CH3NH1

3 it seems to perform
well, probably as a result of its positive charge

which contracts its electron density; but it is still
worse than the rest of the basis sets.

DZ performs in most cases almost equally well or a
little better than the SVP and TZVP bases. This should
probably be the general trend for a basis set smaller
than the ones for which the auxiliary basis set was
optimised but larger than minimal.

The cc-pVTZ and cc-pVQZ basis sets perform
surprisingly well. They afford comparable errors to
the SVP and TZVP basis sets though they have almost
the same number or more (for the cc-pVQZ case)
functions than the auxiliary basis. This shows that
the auxiliary basis sets are quite robust towards the
complete basis set limit and can probably be con-
sidered as “universal” auxiliary basis sets as long as
the basis set has plenty of flexibility.

In evaluating the usefulness of the WRMSD as a
means of deciding the suitability of the auxiliary basis
for a particular calculation we observe the following.
First of all the WRMSD is not an absolute measure of
the quality of a calculation but it has to be compared to
some reference, “good” calculation for the molecule
in question. For example, in the (H3PAu)2S molecule,
if our reference result is the one with the SVP basis,
we can observe that DZ, TZVP and cc-pVTZ are
equally good, with similar values of WRMSD. On
the other hand, cc-pVQZ is not as accurate and yields
a slightly larger value of WRMSD, while STO3G is
much worse and this causes WRMSD to increase
substantially. This rationale holds for the rest of the
results apart from STO3G CH3C6H5. Overall, the
WRMSD seems to be fairly sensitive to changes in
errors. Its usefulness lies in the fact that it can give
(most of the time) some indication about the quality of
the RI-J approximation with a particular basis set if no
four-index program is available. However, it requires
an extra calculation with the reference basis set and
gives no a priori indication of the magnitude of the
error caused by an unsuitable basis set.

Table 3 presents the variation of the energy error,
atomisation energy error and WRMSD with increas-
ing molecular size for the SVP basis set. We observe
that the WRMSD is almost constant, as should be
expected for the same basis set and class of molecules.
The error in energy and atomization energy however
grows proportionally with the size of the molecule as
shown more clearly in Fig. 1. This was to be expected,
since the auxiliary basis sets were expected to produce
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errors of less than 0.2 mEh per atom. It is worrying
however to observe that our target of 1 mEh is missed
even for the atomization energy of 6c2. Since the RI-J
method is meant for much larger molecules than this,
we must hope that this increasing error with molecular
size will not render the chemical information we can
obtain from a large molecule useless, although this
has to be tested. At least we can take advantage of
this regular increase of the error with molecule size
and use it in a more direct approach to predict the
performance of a particular basis set for an auxiliary
basis: RI-J and four-index calculations on a molecule
much smaller than the one of interest should provide
an error from which we can estimate the error on the
large molecule by extrapolation.

In all the RI-J calculations, we observed that the
convergence of the SCF procedure was either as good
as the four-index case or better for some cases, in the
sense that it required less iterations. There seems to be
no observable trend in RI-J accuracy related to the
type of functional that we used. BLYP which is a
gradient corrected functional is not more demanding
in terms of auxiliary basis set requirements than
LDAX. Our calculations also raise the question of
the accuracy of the RI-J approximation for molecules
containing transition metals. The answer should be
probably postponed to a future paper, as the examples
presented here are not sufficient for this purpose. We
can note however that complexes with quasi-spherical
metals such as Au and Rb are more accurately
described than complexes containing transition metals
with partly filled d orbitals such as Ti and Pt.

5. Conclusions

We have tested extensively the accuracy of the
existing auxiliary basis sets for a variety of molecules
and basis sets. We have found that when used in
conjunction with smaller basis sets, than the ones
they were designed for, they perform equally well
except in the case of minimal basis sets. Furthermore,
they performed very well in conjunction with increas-
ingly larger basis sets, producing errors of the same
order of magnitude as their standard basis sets. The
robustness of the auxiliary basis sets towards the
complete basis set limit is a particularly interesting
result. Increasing size of basis set leads to very steep

increase in the cost of a calculation and an accurate
RI-J approximation with current, readily available
auxiliary sets makes possible much larger calcu-
lations.

We have introduced the WRMSD test for predict-
ing how well a combination of basis set and auxiliary
set for a particular molecule will perform. It is useful
when there is no capability for an “exact” four-index
calculation, however it requires a reference RI-J
result. For the auxiliary bases we tested, this reference
result is a calculation with the SVP or TZVP basis set.
When four-index calculations are feasible, we suggest
a much more direct test for the suitablity of an auxili-
ary basis set. An RI-J and a four-index calculation on
a molecule similar to the one in question but much
smaller give an error which can reliably predict the
error of the RI-J calculation for the large molecule. As
Table 3 shows, the error of an RI-J calculation grows
linearly with the size of the molecule. This should
always be taken into account.

The RI-J method appears to be the only practical
way for DFT calculations on the type of large inor-
ganic molecules we are interested in. We will
continue to use it and based on the results of this
work we will ensure that we achieve the accuracy
we desire for each calculation. Furthermore, we
wish to fill in the gap in the literature by designing
auxiliary basis sets suitable for the valence basis sets
of effective core potentials for lanthanide and actinide
elements. Finally, the option of an algorithm for opti-
mising an auxiliary basis set on the fly for each new
basis set we encounter is to be explored.
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