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Abstract

The Kohn-Sham formalism for Density Functional Theory (DFT) is a remarkable
tool which in principle can solve exactly Schrodinger’s equation at the computational
cost of the independent particle model. The recognition of this great potential led
to the development of MAGIC, a modern, extensible computer program intended
for calculations on industrially relevant heavy atom molecules. This thesis describes
the author’s contribution to MAGIC. The implementation of the overlap, kinetic
and nuclear attraction integrals is presented. Also, a new method for the calculation
of Effective Core Potential integrals, conceptually simpler than previous methods,
is described. A broad range of test results demonstrate the efficiency and verify
the correctness of the implementation. The auxiliary basis fitted density Coulomb
energy approximation is a key feature of MAGIC that reduces computation time
by an order of magnitude compared to conventional methods. Extensive tests of
current auxiliary basis sets are performed and criteria are developed for controlling
the resulting error. The evaluation of the two-electron integrals is performed with
the reduced multiplication scheme of the Rys quadrature. Two-electron integrals
account for the bulk of the computational effort of a direct SCF calculation and
therefore the careful optimisation of the relevant computer code is of paramount
importance. Efficiency is enhanced considerably by estimating the magnitude of
two-electron integrals and rejecting them when they are negligible. Convergence of
DF'T calculations is assisted with various techniques. Emphasis is placed on Density
Matrix Search (DMS) methods as a means of improving the initial approximation
to the density and a novel DMS method based on more rigorous theoretical back-

ground is developed. Geometry optimisations, achieved by an analytic gradient and
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the BFGS algorithm, are checked by tests. Finally applications to large inorganic
systems with the current version of MAGIC, allow for an interpretation of chemistry
from a different point of view to experiment and show the strengths, weaknesses

and potential of this theoretical approach.
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Chapter 1

Introduction

1.1 Chemistry from a theoretical point of view

Chemistry has a long history and is usually thought to be both an art and a sci-
ence. This is due to the great difficulties encountered in describing the nature of
matter whose behaviour at the microscopic level is governed by laws not directly
linked to our experience in the macroscopic world. Thus, chemical reactions and
properties have been rationalised mainly from the empirical point of view. An
enormous number of man-hours of research into observing reactions has led to the
classification of molecules according to their composition, reactivity, size, etc. Rules
and predictions have been derived from this classification. However, due to their
empirical nature, they only apply broadly and the final test is always experiment.
Although this flexibility represents some of the pleasure of being a chemist, there
is nevertheless something undesirable in this empirical approach to chemistry com-
pared to the precision of other sciences. For example, a chemist will usually try
several different synthetic paths for the preparation of a molecule. On the other
hand, much of physics is constructed on a firm mathematical basis. Physical laws
are supposed to allow for the exact description of nature; where they fail, they have
to be revised to do so. There are no clear borders between the sciences and some
of the laws of physics have been introduced indirectly to the study of chemistry,

in the form of spectroscopic techniques that have become an indispensable tool for
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the characterisation of molecules. However the direct description of chemistry by
mathematics and physical laws is not as straightforward. The quote by A. Compte
(1838) : “Every attempt to employ mathematical methods in the study of chemical
questions must be considered profoundly irrational. If mathematical analysis should
ever hold a prominent place in chemistry - an aberration which is highly impossible
- it would occasion a rapid and widespread degradation of that science” represents
the view of a significant number of chemists even today.

We possess no direct insight into the constituents of matter and their behaviour.
As a consequence, efforts to explain matter have progressed very slowly. The concept
of the atom that the philosopher Demokritos suggested in the fourth century B.C.
was only extensively re-examined and confirmed experimentally in the 19th century.

Progress from this point onwards however accelerated and in 1925 the wave equation
HU = EU (1.1)

discovered by Erwin Schrodinger formed the basis for the mechanics of microscopic
particles, or Quantum Mechanics. Quantum mechanics developed into a major
branch of physics and in the late 1920’s the theory had already matured to a signif-
icant extent. The mathematical equations with the potential to describe exactly es-
sentially everything that can be known about the behaviour of atoms and molecules,
as manifested in chemical reactions, existed. The often quoted comment “The un-
derlying physical laws necessary for the mathematical theory of ... the whole of
chemistry are thus completely known, and the difficulty is only that the exact ap-
plication of these laws leads to equations much too complicated to be soluble” by
Paul A. M. Dirac in 1929 provides a good summary of the situation. An alternative
interpretation of this comment may be that our point of view of nature is not always
the most convenient.

The apparently insurmountable difficulties in the application of quantum me-
chanics into the chemical properties of matter did not deter research but strength-
ened it. Since the theory was known, research was focused on developments of
methodologies and approximations that would allow the extraction of useful infor-

mation from the virtually insoluble equations of quantum mechanics. This research
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produced many concepts that provided chemists for the first time with at least a
qualitative picture of the nature of the chemical bond and reactivity. The molecu-
lar orbitals, the hybridization theory and the Hiickel molecular orbital theory are
amongst numerous concepts developed during this era that found appreciable appli-
cation in chemistry. Quantum chemistry, or the application of quantum mechanics
to solve chemical problems, was established. A major breakthrough occured in the
1970’s as computers became widely available. The power to perform an enormous
number of arithmetic operations in a very short period of time opened new hori-
zons. The approximations became more rigorous and approached more closely to
the solution of Schriodinger’s equation, through breaking down the solution process
into many small steps. The GAUSSIAN 70 program [1] of Pople was the first tool
of computational chemistry to become available. It was a general, robust program
able to perform calculations on molecules defined by the user.

Nowadays, quantum chemistry, or electronic structure theory has come a long
way and has reached a state of maturity. A variety of methods exist, ranging from
the Hartree-Fock (HF), or independent particle approximation to Full Configuration
Interaction (CI) that is essentially the exact solution of Schrddinger’s equation.
Hartree-Fock theory is rather poor in terms of accuracy, but is computationally very
cheap and can be applied to large molecules. Full CI on the other hand includes
the whole of the correlation energy (everything that’s missing from non-relativistic
Hartree-Fock) but is extremely expensive and can be applied to molecules of 10
electrons or less. Intermediate situations to these two extremes exist. Some of
them, in increasing level of sophistication, are: Mgller-Plesset perturbation theory
(MP), CI, Multi-Configuration Self Consistent Field (MCSCF), Multi-Reference CI
(MRCI), Complete Active Space second order Perturbation Theory (CASPT2) and
Coupled Cluster (CC) [2, 3, 4].

Maybe the ultimate goal of computational chemistry is to be able to predict
the properties of any molecule and furthermore to furnish the optimum synthetic
route for it. This objective is still far from current capabilities and it is likely that
it will continue to be so in the future. However, it is believed that computational

chemistry can provide significant assistance to improving the efficiency of applied
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chemistry.

1.2 The MAGIC project

Heavy atom chemistry is a challenging topic, often of interest to the nuclear industry,
and computational chemistry may have a lot to offer. Here the motivation and

general planning behind such a use of computational chemistry are presented.

1.2.1 The nuclear fuel cycle

The use of nuclear fission for the generation of energy presently accounts for 25-30%
of the World’s energy supply[5]. This creates a problem however in what to do with
the spent nuclear fuel. One solution is simply to dispose of it. A more elegant and
environmentally aware solution however is to reprocess it to extract materials of
use. This will clearly involve recovery of any uranium-235, which forms the basis
of the fission process itself. It will also include extraction of plutonium, which is
formed in the reactor from uranium-238.

There are a number of advantages to recycling in this way. As the uranium-235
content of naturally occurring uranium ore is very low, the fuel is enriched before
being used. This keeps the size of reactors down and means that the fuel has to be
changed less often. However, such enrichment, typically by diffusion or centrifuge,
is expensive. In the spent fuel the uranium-235 content is typically higher than in
nature and so less enrichment is necessary. Hence the cost of producing fresh fuel
is reduced. Another advantage is in the conservation of resources, a topic of ever
growing importance. This may also be extended to the use of ex-military material,
where the alternative is simply a difficult disposal procedure. Finally, one easy way
of restricting access to plutonium is to store it in a mixed fuel; it is a straightforward
procedure to generate such a mixed fuel within the reprocessing cycle.

Spent nuclear fuel consists of actinide elements and their fission products. The
first step in reprocessing is therefore to separate uranium and plutonium from the
fission products. This involves a liquid separation between aqueous and organic

phases. The spent nuclear fuel is first dissolved in nitric acid. Any insoluble ma-
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terial can be filtered at this stage. The rest is passed through a mixture of an
organic solvent, typically tri-n-butylphosphate in odourless kerosene (TBP/OK),
and water. The important uranyl and plutonyl nitrates are coordinated by TBP
and are extracted in the organic phase. Most of the other nitrates simply dissolve
in the water and are extracted in the aqueous phase. In this way the uranium and
plutonium may be separated, together with some contaminants. The next stage is
to separate the uranium from the plutonium. This may be achieved by changing
the oxidation state of the plutonium. For example, U(IV) in hydrazine reduces the
extractable Pu(IV) complex to the practically inextractable Pu(III) complex.

Once the uranyl nitrate has been separated, it is heated to produce uranium
trioxide, which may be subsequently reduced to give uranium dioxide. It is this
which provides the basic fuel for the reactor. Before use however it needs to be
enriched. For this reason it is converted to uranium hexafluoride; this is a convenient
choice because it is gaseous under the conditions of the diffusion experiment and
fluorine has only one isotope. It is subsequently converted to uranium metal or back
to uranium dioxide for use in the reactor. The plutonyl nitrate may also be heated
to produce plutonium dioxide but because of the presence of impurities conversion
to plutonium oxalate and heating to give the dioxide is more typical.

The metal nitrates, which were extracted in the aqueous phase, must now be
disposed of. These are classified as high-level waste. They are denitrated and vitri-
fied ready for long term storage. Material from the recycling process, for example
cladding materials from the fuel rods, is classified as intermediate-level waste and
is encapsulated in cement. Other low-level waste is simply buried in vaults.

It is clear that a good understanding of the chemistry of these systems can
be used in a number of areas. For example, in the area of liquid separation a
number of criteria need to be satisfied for a good extractant. These include: a
high distribution ratio for uranyl and plutonyl nitrates, which is sensitive to the
acidity; a different affinity for different actinide elements, in particular uranium and
plutonium; negligible affinity for the fission products; stability towards chemical
and radiolytic breakdown; low toxicity, with harmless degradation products which

are simple to dispose of.
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It would be interesting to explore if quantum chemistry can be used to model
some of the molecules; in particular the change in their energetic properties in dif-
ferent environments can now be studied. In combination with experiment, such
understanding may lead to the use of improved extraction methods. The potential
saving involved, due to the need for less experimental work, is considerable. Hence
it may be possible to extract uranium and plutonium more efficiently or, for ex-
ample, to extract other actinide elements effectively. A further example might be
to look for an extractant for the heat-releasing elements (Cs and Sr) which cause
problems later in waste storage, or for technetium which affects the efficiency of the
uranium/plutonium separation.

A second area in which theoretical chemistry could be used is in describing the
final waste storage procedure. It is important to engineer properties of the glasses
in which the high-level waste is vitrified. For example, they must incorporate the
maximum amount of waste material. They should be sufficiently reactive, so that
they incorporate the waste, but also durable so that they do not need to be main-
tained over long periods of time. With a good theoretical model, such properties
may be predicted, as well as the likely effects of waste incorporation on the glass
structure. Similarly, in the case of intermediate-level waste, the cement properties
such as chemical stability and leach behaviour may be predicted. Quantum chem-
istry may provide parameters for a more reasonable model of the system, or in some

cases it may even provide the model.

1.2.2 MAGIC: the software

So far our discussion established an outline of the types of applications to be stud-
ied. The next logical step is to decide how to perform these calculations. Many
quantum chemistry programs are currently available that in principle could per-
form calculations on such molecular systems. They were meant however for very
accurate calculations on small molecules and in any case they contain a plethora
of methods that simply cannot by applied due to the size of the systems of study.
Another drawback is that most available programs have been developing constantly

over the last 20 years and now they contain an enormous amount of code that is dif-
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ficult to understand or amend. For the same reason the programming conventions
used in many existing programs do not take into account recent computer science
developments that increase flexibility and functionality.

Therefore the development from the beginning of a program specifically for
calculations on large molecules containing heavy atoms is necessary. Such a choice
also allows one to address effectively the problems of the robustness of the program.
This refers not only to how the program executes but also, for example, in the ease
with which it may be moved between different computer platforms. The program
developed for this purpose is called MAGIC.

The choice of the scientific model was based on consideration of both the com-
plex molecular systems to be examined and the properties that can be predicted
reasonably well. It is clear that this should be a relativistic model. A full Dirac-Fock
4-component analysis is rejected due to the size and complexity of the systems. A
2-component analysis is therefore favoured, although it is not clear which of the
Douglas-Kroll (DK) [6] or Chang-Pellissier-Durand (CPD) [7] treatments is more
reliable. Both of these were therefore included in MAGIC. They will not be dis-
cussed however further in this thesis apart from mentioning that they are expensive
compared to the use of relativistic effective core potentials, which form the basis of
the model. The implementation of the DK and CPD methods was carried out by
Dr Adrian M. Simper with contributions by Dr Laura Gagliardi.

As most of chemistry takes place in the liquid phase, solvent modelling is im-
portant. The simplest approach is to use a cavity model [8] where the liquid is
represented by a bulk continuum with a fixed dielectric constant. A multipole ex-
pansion of the solute density is performed and it is through this that the effect
of the interaction with the solvent is introduced to the model. The modelling of
solvent effects will not be discussed further here except for mentioning that it is
likely that the most severe approximation lies in not allowing specific interaction
between the solvent molecules and the solute. One way to overcome this is to per-
form a calculation on a small collection of solute and solvent molecules using the
quantum mechanical model. This soon becomes too expensive and one has to con-

sider the use of mixed quantum mechanical/molecular mechanical [9] models. The
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implementation of solvent effects was carried out by Dr Steven Spencer.

The choice of a quantum mechanical method is crucial to the predictive success
of the entire model. The inclusion of electron correlation in the model is impor-
tant. The high-level correlated techniques, such as CI [10] or CC [11], are however
too expensive when applied to such large systems. Also, although they may be
conceptually straightforward, their implementation is often much less so. Density
functional theory (DFT), which is outlined in section 1.3, includes correlation at an
affordable computational cost and is therefore the obvious choice.

Every effort has been made during the development of MAGIC to keep the struc-
ture of its code as simple and short as possible. Typically, most subroutines have a
length of the order of 50 lines. Variable names are long and descriptive, according
to conventions set by the developers, and comments are included in places where
ambiguity might arise. Where possible, external mathematical library routines are
used. A modular format ensures functionality and ease to develop and debug code.
This means that every distinct part of a calculation is a different module. Modules
are combined together in scripts in order to form the stages of various types of cal-
culations. Data are passed between the modules with a special binary disk storage
facility called archive. The archive is also used to store the results of a calculation,
such as the density, orbitals, etc. for subsequent access and processing by tools, i.e.
modules that process the results of a calculation. The archive as well as some other
computer science related features are written in C while the subroutines for the
scientific tasks are written in FORTRAN. It is important that MAGIC should be
straightforward to run. This is addressed by the use of the Cerius? [12] visualisation
software, to which MAGIC has been interfaced, even though it can be run without
it. Overall it is intended that maximum development effort should be directed into
improvement of the scientific model and minimum effort in trying to understand

the existing computer science.
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1.3 Density Functional Theory

1.3.1 Density as the basic variable

Quantum mechanics is built around the wavefunction ¥ (equation (1.1)) which is a
complex function of many variables. It is an ab initio theory which means that no
quantity is taken for granted apart from the fundamental physical constants. On the
other hand the accurate description of the wavefunction is a tremendously difficult
task. An alternative approach is based on the first-order diagonal one-electron

spinless density matriz to which we will refer from now on as the “density”
p(r) = [pr(r',0)]v = (1.2)
with
p1(ry,r1) = N/ e / U(ris1,x9,...,xn)U*(r181,Xg,...,XN)ds1dXy ... dXy

where N is the number of particles, s1 is a spin coordinate, r; is a space coordinate
and x5 is a space and spin coordinate. The rigorous justification for the transition
from the wavefunction to the density was provided in 1964 by Hohenberg and Kohn'
[14]. Their first theorem states that given a mathematical form for the Hamiltonian
operator H of a system there is a one-to-one correspondence between the ground
state density pgs and the external potential v(r) and the number of electrons N.
Therefore the density pgs provides v(r) and N that determine the Hamiltonian,
which in turn is able to provide all the information we can know about the system
through the wavefunction. The proof of this fundamental statement which consti-
tutes the first Hohenberg and Kohn theorem is based on the logic of reductio ad

absurdum and is very simple.

Theorem 1.1 Suppose that there are two external potentials v and V' differing in

more than an additive constant, corresponding to two different systems. Further-

!The Density functional formalism was originaly developed in the space of v-representable den-
sities, i.e. those due to some external potential v(r). One can work just as well in the space of
N-representable densities which is the space of densities derived from an antisymmetric wavefunc-
tion ¥ for N fermions (electrons in our case) [13]. The space of N-representable densities is a

superspace of the v-representable densities.
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more suppose that each of the two potentials produces the same density pgs for the
ground state of its system, through their Hamiltonian operators H and H' respec-
tively. If the ground state energies for the two external potentials are Egs and Eyg

respectively, the variational principle leads to the following two relations

Egs < (Vs |H|Uhs) = (Wis|H' W) + (Vs H — H'[Ths)

~ B+ [ post)lo(x) - o'(r)]ds (13)
Egs < (Vas|H'|Was) = (Vas|H|Was) + (Vas|H' — H|[gs)

— Bug— / pas(T)u(r) — o/ (r)]dr (1.4)

and by adding them together we obtain
Egs + Egg < Egs + Egs (1.5)

which is clearly wrong and therefore the external potential defines uniquely the

ground state density.

As a consequence, it must be possible to express the ground state energy as a

functional of the ground state density.

Egs = Eylpas] = /PGs(r)U(r)dr + Fuxlpcs) = (¥as|H|¥gs)  (1.6)

This statement leads naturally to a variational principle which is the second Ho-

henberg and Kohn theorem.

Theorem 1.2 According to the first Hohenberg and Kohn theorem any trial density
pt defines an external potential vi(r) which in turn defines a Hamiltonian operator
H, with wavefunction W;. This sequence allows us to write down the variational

principle for wavefunctions in terms of densities

(U H|Ty) = /Pt(r)U(r)dr + Fuk(pt] = Eulpi] > Eylpcs] (1.7)

where v(r) and H are the external potential and Hamiltonian of the system with

ground state density pgs. Therefore the ground state density pgs minimises Ey[p].
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1.3.2 The Kohn-Sham equations

The Kohn-Sham (KS) formulation of Density Functional Theory (DFT) [15, 16] is
a further development that casts DFT in the form of single particle equations. It is
in principle an ezact single-particle description of a many particle system. For this
unique feature, and its accompanying simplicity, it is widely used.

In quantum mechanics the expectation value (O) of the observable O, repre-

sented by the operator O, is given by the integral
(0)=(¥ 0| V) (1.8)

where the wavefunction V¥ is assumed to be normalized. Density functional theory,
based on the first Hohenberg and Kohn theorem, replaces the operator 0 by a
functional Fp which produces the expectation value (O) when the density p is its
argument

(0) = Folp] (1.9)

The task of DFT formalisms then is to find accurate forms for the functionals which
yield the observables and also ways of calculating the electronic density accurately.
The starting point is the ground state energy of a closed-shell system which is

represented by the following functional form:

Eulpas) = Erlpas) + [ pas(@)ole)dr + Ealpas) + Euclpas] + Uy (1:10)

where the energy has been written as a sum of terms which are familiar to us from

wavefunction quantum mechanics. We recognise Er[pgs] as the kinetic energy, and

1 r r
Ejlpas] = 5/ %drd’"l (1.11)
Ezclpas] :/F(pGSaVPGSa---)dT (1.12)

are the Coulomb energy (classically interpreted as charge distribution self-interaction
energy) and the exchange and correlation energy respectively. The second term in
equation (1.10) is the nuclear attraction energy and the fifth term is the internuclear

repulsion energy (a constant under the Born-Oppenheimer approximation).
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Kohn-Sham theory postulates the existence of a noninteracting reference system
whose density is equal to that of the system under study. The purpose of the non-
interacting reference system is to provide a unique (up to a unitary transformation)
decomposition of the density pgs in terms of orbitals.

N/2

pas(r) = 2; | i(r) (1.13)

Here it is assumed that there is an even number of particles. The theory applies
equally well if N is odd with only a trivial extension along the lines of unrestricted
Hartree-Fock theory. The kinetic energy functional is redefined as

N/2

Er(pgs) = 2 Z(Tﬁi | -

§V2 | i) (1.14)
which is the ezact kinetic energy of the noninteracting reference system (with 1);
being the occupied orbitals of the reference system) but not of the real system.

Looking back to equation 1.10, and provided that the density pgs is exact, we
can observe that Ey[pgs] is exact for the real system (the reference system does not
have Coulomb energy due to the lack of interelectronic interactions), [ pgs(r)v(r)dr
is exact only for the real system and Er[pgs] is exact only for the reference system.

E,[pas] is the total electronic and nuclear energy of the real system, and since we
have changed the definition of its Er[pgs] component, we must redefine E.[pgs] as
a functional which yields the correction to the kinetic energy for the real system, the
correction due to self-interaction in the Coulomb energy E;[pgs] and the exchange
and correlation energy for the real system. The difficulty now is that the explicit
form of Ey.[pgs] is unknown and approximations, often semiempirical in nature,
have to be used.

According to the second Hohenberg-Kohn theorem the correct ground state
density pgs for the system minimises the energy F,[p]. Finding the density pgs
then involves the minimisation of the energy subject to the constraint that the
number of electrons N remains constant. This leads to the folowing Euler equation

with the Lagrange mutliplier p

§Er[p]
dp(r)

p= vesr(r) + (1.15)
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where the effective KS potential v,ss(r) is defined by

— ofr 5EJ[p] 6Ea:c[p]
Pt = TSy )

v(r) + / L,)'dr' + Uge(r) (1.16)

|r—r!

and v,.(r) is called the exchange-correlation potential.

We have assumed that the density of the real system can be expressed as the
sum of squares of N/2 orbitals. The determination of these orbitals 1); requires
the minimisation of the energy functional of equation (1.10) with respect to the
orbitals, subject to orthonormality constraints. This leads to the following single-

particle equations
1
where veff(r) plays the role of an external potential. Therefore the Hamiltonian of

the non-interacting reference system is

N

N 1

Heff: E {—§V§+veff(ri)} (1.18)
=1

and its ezact wavefunction is a Slater determinant of the orbitals ;. These N/2
orbitals will afford the ground state density pgs which minimises E, [p].

In practice the orbitals corresponding to the N/2 lowest eigenvalues ¢; of the
noninteracting reference system are chosen. From equations (1.17) and (1.16) it
can be seen that a set of complicated, non-linear equations needs to be solved to
determine the orbitals. This is done by an iterative scheme that is designed to find
a self-consistent solution.

Kohn-Sham DFT calculations on collections of molecules are feasible. An im-
portant extension by Car and Parrinello [17, 18] combines density functional theory
with classical molecular dynamics and makes possible the calculation of molecular

properties at finite temperatures.

1.4 Gaussian basis functions

In calculations on polyatomic molecules, the Kohn-Sham orbitals are expressed as

linear combinations from a set of basis functions. Gaussian basis functions have
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been used almost exclusively for this purpose since they were first introduced into
quantum chemistry by S. F. Boys in 1950 [19] and MAGIC is no exception to this
rule.

A primitive Cartesian Gaussian function centred at point A, is represented by

the following formula:

9a; (1345 A, 0y, 02, A) = (70— Ag)™ (y — Ay)™ (2 — 4,)*

x exp(—a;|r—A?) (1.19)

We define A = a; + ay + a, and we call it the angular momentum number of the
Gaussian function, in analogy with the nomenclature of the orbital functions of
atoms. Gaussians belonging to the same angular momentum constitute a shell and,
carrying the analogy with atomic functions further, we name the shells by the letters
s,p,d, ... when X is equal to 0,1,2,... respectively.

The normalisation constant for this function is

_ (Baj)razlayla,! (20 3
na; = \/(2aw)!(2ay)!gz2az)! (T) (1.20)

A contracted Gaussian function with K 4 being its degree of contraction is defined
by

Ky
Ga(r;ag,ay,a,,A) = Zci na; 94; (5 4, 0z, Gy, 05, A)
i=1
= ('77 - Am)aw (y - Ay)ay (z - Az)az
Ka
X Zci na, exp(—a; |t — A %) (1.21)
=1

As can be seen from the above equation, the contracted Gaussian is a linear
combination of normalised primitive Gaussians, centred at the same point and of
the same angular momentum. The purpose of the contraction is to alter the radial
part of the Gaussian functions in order to make it more suitable for our calculations.
Usually the exponents and contraction coefficients are selected so as to make the
contracted functions resemble atomic orbitals. Over the years a huge number of
contracted Gaussian basis sets have been developed to cover the needs of different

computational approaches [20]. It turns out that the normalisation constant for the
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contracted Gaussian does not depend on the kind of angular momentum component

of the contracted Gaussian. It is given by the following expression

1 1
Ny = 25+§ I (1.22)
2T1
(ajo)272 2+7f
ZC CkooTE 3
=1 (egter)™2

The normalisation of each primitive cartesian Gaussian ga, participating in a
contraction is the product of n4; and N4 of equations (1.20) and (1.22). For prac-
tical purposes that will become clearer later, we rearrange the terms between the

two normalisation constants to create two new normalisations

nly, = (8041')% (%) ! (1.23)
and
azla,la,! 2
Na=Na <(2ax)!(2;y)!(2az)!> (1.24)

The benefit of using this normalisation scheme is that we can use the same value of
n;‘i to normalise with it all components of a shell (it does not depend on az, ay, a,).
Then contraction follows and a normalisation of contracted functions with Ny,
whose value differs for each component of G 4.

A further advantage of primitive Cartesian Gaussian functions is that their
derivative with respect to the coordinates of their centre is simply a sum of two
other primitive Cartesian Gaussian functions centred on the same centre. For ex-
ample, the derivative of g4, from equation (1.19), with respect to A, is

39Ai(r§ a’iaawaa'yaa'zaA) _
0A,
2094, (r; 04,00 + 1,ay,a,, A) — agga,(r;ai,a, — 1,ay,a,,A)  (1.25)

with analogous formulae for differentiation with respect to A, and A,.

1.5 Quadrature for exchange-correlation potential ma-

trix elements

The solution of the Kohn-Sham equations requires the calculation of the Kohn-Sham

matrix, which, in a fashion similar to the Fock matrix in Hartree-Fock theory, is
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the sum of the matrix elements of operators. The matrix elements of the exchange-

correlation potential are needed for this purpose.
(G alvge|GB) (1.26)

The analytical computation of these elements is not feasible due to the complicated
form of the functionals in use. Therefore, a lot of effort has been made by researchers
in the construction of efficient quadrature schemes for numerical evaluation of these
integrals. Here, the quadrature scheme used in MAGIC and the parameters it
involves, are discussed briefly.

The integration grid is a combination of octahedrally symmetric distributions
of points centred at the coordinates of every atom. Let us examine one of these
octahedral, atomic grids of which the molecular quadrature grid is made. Concentric

spheres of points are used around an atom.

1.5.1 Atomic quadrature grid
Radial quadrature

The Log3 quadrature scheme of Mura and Knowles [21] that is optimised for inte-
gration of Gaussian functions is used to generate the radial distribution of points
and weights w,. The Log3 scheme is described in some detail in subsection 2.8.3.

Atoms are divided into six groups depending on their atomic number.

Group | Atomic number

1 1-2
2 3-10
3 11-18
4 19-36
5 37-54
6 55-104

The number of radial points for each atom is given by
ny = 20 + 5(Group + LOG3 — 2) (1.27)

where the parameter LOG3 is defined by the user. The default value of LOG3 is 2.
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Angular quadrature

The angular distribution of points on each sphere is provided by the octahedral
symmetry angular quadrature grids of Lebedev [22, 23, 24, 25]. Lebedev has found
that several groups of angular quadrature schemes with octahedral symmetry are
possible. In practice, for the atomic quadrature grids only one group is necessary
and a choice was made based on the theoretical efficiency of the grids that Lebedev
reports. The chosen angular quadrature grids are able to integrate exactly spherical

polynomials (spherical harmonics) up to degree L given by the following formula
L =12 x LEBEDEV + 5 (1.28)

where the paramerer LEBEDEYV is specified by the user. It can take the values 1,
2, 3 or 4 and its default value is 2. The number of points n, of the angular grid is
given by the formula.

1
ng = §(L2+2L+7) (1.29)

For LEBEDEYV equal to 1,2,3 and 4 grids are generated with 110, 302, 590 and
974 points respectively. The Cartesian coordinates of the points on the surface of
the unit sphere and the corresponding weights are generated by the implementation

using the grid parameters provided by Lebedev.

1.5.2 Molecular quadrature grid

The atomic quadrature grids are combined together with an adaptation of the multi-
centre numerical integration scheme of Becke [26]. A relative weight function w4 (r)
is assigned to each nucleus. The relative weight functions satisfy the requirement

Nar

> walr) =1 (1.30)
A=1
where N 47 is the number of atoms. Now, if F(r) is the integrand of the exchange-
correlation matrix element, it can be partitioned into a sum of atom-localised inte-
grands F4(r) = wa(r)F(r) since

Nar

F(r) = ) Fa(r) (1.31)
A=1
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and the molecular integral can be split accordingly into a sum of atomic integrations.
The optimum weight function w4(r) should approach 1 close to the Ath atom and
0 away from it in order to use efficiently the atomic quadrature grids of subsection
1.5.1 to evaluate the integral. For this purpose, the confocal elliptic coordinate uap
is introduced for every distinct pair of atoms A and B

TA—TB

=TAB (1.32)

HAB

where r4 and rg is the distance of point r from A and B respectively. The elliptic
coordinates will provide a natural way of partitioning the area surrounding each
atom. A further adjustment is made in order to take into account the different sizes

of the atoms by defining a new coordinate v4p

vag = pas + aap(l — pip) (1.33)
with

apap = —"">—5—— and xap=— (1.34)
B

where R4 and Rp are defined as the radii of the atoms. In the implementation the
radii are defined as half the distance of closest approach in the elemental structure
[27]. With the coordinate v4p the boundary between atoms A and B no longer lies
at the midpoint of the line joining them. A “cutoff profile” function s(v4p) is now

defined, according to the definition by Handy et. al. [28, 29]

d
S =01 - i)Y (1.35)

This function satisfies the requirements s(—1) = 1, s(1) = 0 and a number of its
first derivatives at vap = —1 and v4p = 1 are zero. The cutoff profile is used
to define “fuzzy Voronoi polyhedra” or cells for each atom through the following

functions.
Nar

Pa(r) = ] s(van) (1.36)

B£A

Py4(r) has a value close to unity if r lies inside the cell of atom A and near zero
outside the cell. Finally, the normalisation of the cell functions yields a formula for

the weight functions.
Pa(r)

S A 1.37
SYAT Py (r) (137)

wx(r)
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In practice the points of the atomic quadrature grids are calculated in Cartesian
coordinates and stored together in the archive. The corresponding weight of every
point r; is the product of its radial weight w,;, its angular weight w,; and its
molecular weight wy; (if it comes from the atomic grid of atom A). The quadrature
weights are also stored in the archive. In this form the molecular quadrature grid

is accessed whenever a MAGIC module needs it.



Chapter 2

One electron Integrals

2.1 Interpolatory integration formula

We wish to evaluate exactly a definite integral of the function f(t) exp(—t?) in the
interval (—o0,00) by a sum of n terms [30]. The function f(t) is a polynomial of
degree < n —1. Each term in the sum will be a product of a coefficient (weight) Ay

and the value of f(t) evaluated at a point
o0 n
| @ exp(-)dt = 3 Auf (1) (2.1)
- k=1

The points {t;}}_, are chosen arbitrarily. The polynomial f(¢) can be expressed in

terms of its values at those points according to !

3 a(t)
0 = 3 G 22
where
at) = J[¢t—t) and a'(tk):d(Z—S:) (2.3)
k=1 t=ty,

The integral we wish to evaluate becomes

[~ rwep-ta = [T 0020 ey
e X k=1

'The righthandside of eq 2.2 is an interpolating polynomial which takes the same values as f(t)

in the n points t5. It is identical with f(¢) since both are of degree n — 1 and take the same value

at n points.

20
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Il
M=

[ (-] £ (1)

1 L/ oo (¢ —tk)a (i)

£
Il

Il
M=

Ak f(te) (2.4)

ES
Il
—

This proves that the integral of equation 2.1 can be evaluated ezactly as a sum
of n terms. Equation (2.4) serves also as a definition of a formula for the weights
Ay. This result is called the interpolatory integration formula and it is characterised
by the fact that any n distinct points {t;}}_, can be used.

At this point it is useful to observe that if the interval of integration was not
(—o00,+00) but [a,b] where a,b are real numbers or infinity, the interpolatory in-
tegration formula would still be valid, even if some or all of the points #; did not
belong to [a,b]. Since we have total freedom to select the points t, it is worth
investigating if there is some particular set of points which is preferable in the sense
that it would allow for exact integration with f(t¢) being a polynomial of degree

higher than n — 1.

2.2 Gaussian Quadrature

Let the points {¢x}}_; be the zeros of the nth degree Hermite polynomial Hy/(t).
We will prove that for this choice of points, equation 2.1 is exact for f(t) being a

polynomial of degree < 2n — 1.

Theorem 2.1 Assume that equation 2.1 is ezact for f(t) being any polynomial of
degree < 2n—1. Therefore it must be exact for f(t) = a(t)Q1(t) where a(t) is defined
in equation 2.3 and Q1(t) is any polynomial of degree < n — 1. By substituting the
expression for f(t) into equation 2.1 we get
00 n
/Oo a(t)Q1(t) exp(—t?)dt = Z Apa(ty)Q1(ty) =0 because afty) =0 (2.5)
- k=1
which shows that a(t) is orthogonal to all polynomials of degree < n — 1.
The converse now, assume that a(t) is orthogonal to all polynomials of degree
< n —1 (which means that it must be a multiple by a constant factor of the nth

degree Hermite polynomial. This justifies our selection of the t;’s at the beginning
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of this section). Let f(t) be a polynomial of degree < 2n — 1. Then f(t) can be
written as

f(t) = a(t)@2(t) + p(t) (2.6)
where Q2(t) and p(t) are both polynomials of degree < n — 1 and are the result and
the remainder respectively of the division of f(t) by a(t). Equation 2.1 becomes

o

/ F(#) exp(—t2)dt = / (1) Qs (£) exp(—12)dt + / T o) exp(—2)dt  (2.7)
—o0 —o0 —o0

The first term on the right vanishes because of our postulated orthogonality. Then,
because the degree of p(t) is < m — 1, the interpolatory formula of equation 2.1 is
exact and using it yields

|7 @yexp(—)at =Y Axoltn (2.9

-0 k=1

or, since a(ty) = 0, equation 2.6 gives p(ty) = f(tx) which when substituted into

equation 2.8 gives the final result

" s exp-i =3 acsw) 29
k=1

—0oQ

which is ezact for f(t) being any polynomial of degree < 2n — 1.

2.3 Overlap integrals

The overlap integral plays the role of the metric in the matrix form of the SCF
equations and appears in most expressions when a non-orthogonal basis set is used,
as is the case with Gaussian basis sets. The calculation of these integrals is a
very fast and simple process and many methods are available. We will derive the
equations required to evaluate overlap integrals by Gaussian quadrature on which

the current implementation is based. We want to evaluate the integral:

(94 | gB) = /gA(r;a, Az, Gy, 0, A) gB(r; 8, by, by, by, B) dr (2.10)
Now according to the product rule for Gaussian functions
ga(r; @, ag, ay,a,,A) g(r; 8,bg, by, b, B) =
kap (@ — Ag)® (& — By)™ (y — Ay)™ (y — By)™

x (z—A,)%(z — B,)%gr(r;A,0,0,0,L) (2.11)
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where kqp = kapzkabykapz- The coordinate L, the exponent A and the constant kg,

are defined by

o aly + BBy -
Lw_7a+ﬂ , A=a+p (2.12)
aby = €Xp (—%(Am — BI)2> (2.13)

with analogous expressions for the y and z coordinates. The overlap integral is

therefore expanded as follows

(gal98) = has [ (= A2) (o — B)* exp(—A(z — Lo))da

—0oQ

X

| =4 - By exp(-Ay - L))y

—0o0

X /Oo (z — A,)% (2 — B,)" exp(—A(z — L,)?)dz

—0o0

— kaplas | ba)(ay | By)(a | b)) (2.14)

The triple integral has been factorised now into a product of three equivalent in-
xT
tegrals. We show how to evaluate (a; | by). We use the change of variables

t = V/A(xz — L). Therefore

_ b dt

x \/K—'_Lw and dr = (2.15)

S

and the integral becomes

(ag | bs) = % /_O:o (% 4Ly — Az)am (% I, — Bx> N exp(—12)dt  (2.16)

The integrand in the above integral now has the form “polynomial in ¢ of degree

” and is evaluated by Gaussian quadrature as described in

ag + by times exp(—t2)
section 2.2.

The elements of the overlap matrix S are overlap integrals between normalised
contracted Gaussian functions. Therefore overlap integrals over primitive Gaussian

functions are accumulated to form the elements of the overlap matrix.

Ka Kp

(S)aB = NaNp(Ga|Gp) = NaNpy_ > cicinang;(ga;l9s;) (2.17)
i=1j=1



CHAPTER 2. ONE ELECTRON INTEGRALS 24
2.4 Kinetic energy Integrals

The kinetic energy matrix elements between primitive Cartesian Gaussian functions

are
1 2 1 2
_§<gA|V |gB> = _i/gA(ra a,ax,ay,az,A)V gB(I';,B, bxabyabzaB) dr (218)

The derivative of a primitive Gaussian is equal to the sum of two primitive Gaussians
with angular momentum higher and lower by one. By taking this into account we

can expand (2.18) in terms of overlap integrals.

— ${9alV%lgs) =

— balbe = 1){9a(5 gy, 02, A)lgn (53 6, b — 2,5y, B))
— Sulby — 1){9a(r; @, 0, 0y, z, A)lgp (5B, by by — 2,5, B))
— ba(bs — 1)gar5 a0y, 05, A)lg (55 B, by, by b — 2,B)

+ B2(az + ay + a;) + 3{ga(r; a,a$,ay,az,A)|gB(r;ﬁ,bw, by, b, B))

— 28%(ga(r; @, az, ay, a5, A)|gB(r; B,bs + 2, by, b,, B))

— 26%{ga(r;a, a5, ay, az, A)|gp(r; B, by, by + 2,0, B))

— 2B%(ga(r; @; ag, ay, az; A)|gn(r; B,bs, by, b, + 2, B)) (2.19)

The next step is to expand each of the overlap (triple) integrals above into products

of three one-dimensional integrals. Then, they can be regrouped as follows.
1 2
— 5(94[V7lgm) =
— o { [ galbe = 1) (o T =2+ 26%as T 0+ 2)] (0 T )00 T

1 Y 9 Y T z
— [5tntes — ey Ty — 2+ 26%0, T +2)] o T bt )

— [t~ e To = 2) 4 28200 1o+ 2)] (a2 T )y )
b B2ba +by+b2) +3 (s | ba)ay | by)as | bz)} (2.20)

Each of the one dimensional integrals in the above expression is calculated using
the Gaussian quadrature subroutines that calculate the overlap integrlals. The el-

ements of the kinetic energy matrix T are integrals between contracted Gaussian
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functions and are calculated by accumulating the kinetic energy integrals over prim-

itive Gaussian functions in a fashion similar to that of equation (2.17).

2.5 Rys Polynomials

2.5.1 Definition of Rys polynomials

The manifold of Rys polynomials [31] is defined by the polynomials J,(¢,z) which
are orthonormal on the interval ¢ € [—1, 1] or the R, (¢, z) polynomials orthonormal
on ¢t € [0,1]. This orthonormality is defined with respect to the weight function
w(t) = exp(—zt?) :

/ 11 exp(—zt2) J (t, &) Jm(t, 2)dE = S (2.21)

/0 ' exp(—at?) Rt 2) Ron (, 2) A = G (2.22)

where ¢ is the dummy variable of integration and z is a real parameter. The J,, are
polynomials of degree n while the R,, are chosen to be even polynomials of degree
2n. The R, are proportional to the even members of J,, according to the relation:
R, (t,z) = V2J,(t, ). Since R,, is an even polynomial in ¢ of degree 2n, it can be
written as:

Z Cron(x)t?k (2.23)

Now let us suppose that the value of z is fixed. By definition, for up to a given
n, the square (n+1) X (n+1) matrix C(z) is upper triangular. Furthemore, observe
that R, is orthogonal to all t>™ with m < n because each t*™ can be written as a
linear combination of R;’s, ¢ = 0, ..., m which are all orthogonal to R,,. Substitution
of 2.23 into the orthogonality relation gives:

Omn = / R, R, exp(—xt®)dt = chm/ t?* R, exp(—zt?)dt
k=0

= Z A Z [/ {2(k+D) exp(—xt?) dt] Cip = Z Z 1k FriCin

k=1 k=01=0
or in matrix notation:

C'FC =1 (2.24)
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As the elements of C below the diagonal are zero, this equation can be solved for

the elements of C. It defines the Rys polynomials Ry ... R, as a set of Schmidt or-

thogonalised functions, linear combinations of the original set of functions {#2*}7 .

The product of R; and R; can be expressed as a linear combination of Ry up to
and including R; ;.

itj 1
RiR; = kz;biijk, bijk = /0 RiR; Ry, exp(—at?)dt (2.25)
The above simple formula for b;j;, is a result of orthonormality. The coefficients

b;ji are nonzero only if the indices 4, j and k satisfy the “triangle inequality” which

states that no index should be greater than the sum of the other two.

2.5.2 Rys Quadrature

We can use the orthonormality properties of the Rys polynomials in the interval
[0,1] with respect to the weight function exp(—zt?) to construct a set of quadrature
points and weights, in the same way as we did with the Hermite polynomials in
section 2.2. If we use only the positive roots {to(z) > 0}2_; of R,(t,z), then the

orthonormality integral between R; and R; can be written as 2

n

/01 R;(t,)R;(t,z) exp(—wzt?)dt = Z Ri(ta,z)Rj(to, x)Wo(z) = 045 (2.26)

a=1
where the weights W, (z) are calculated by a formula similar to the formula for the
weights Ay of equation (2.4). The sum is the exact expression of the integral in
terms of Rys (polynomial) quadrature. According to section 2.2, the quadrature is
exact when 2i +2j < [2(2n) — 1], or i + j < 2n since we are dealing only with even
polynomials. Now suppose f(¢) is an even polynomial of degree 2m with 2m < 4n.

It can be written in terms of Rys polynomials as follows

m

fm(®) =Y ai(x)Ri(t, z) (2.27)

1=0

*Normally we should use all roots of the Rys polynomials but we are working under the tacit
assumption that we will be integrating only even polynomials. Therefore the positive roots are

sufficient provided that the weights are the usual weights multiplied by 2.
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All integrals of the type

To(z) = /0 " b () exp(—at?)dt (2.28)

can be evaluated exactly by Rys quadrature
Im(x) = Z fm(ta)Wa(x) (2.29)
a=1

using the n positive roots t, of R, (t,z) and the weights W, (x).

2.5.3 Calculation of Rys roots and weights

Rys quadrature has proved to be a very effective tool for generating many of the
integrals that appear in quantum chemistry calculations. To obtain the roots and
weights we use the original subroutines of King and Dupuis [31]. These subroutines
employ Chebychev polynomial approximations and other curve fitting techniques
to produce efficiently the quadrature parameters for all values of z and for n =
1,2,...,9. They return the weights W, (z) and the points {v2}?_, defined by
__'a

“1-142

(2.30)

v,

The Rys quadrature is exact provided we know the roots and the weights exactly.
These subroutines were designed and tested in order to produce numbers accurate
to at least one part in 10'® when used in double precision arithmetic, which is
standard in our code. Therefore, the resulting errors should be comparable to the
roundoff error of the computer and we need not be concerned about the accuracy

of integrals that we calculate with Rys quadrature.

2.6 Nuclear Attraction Integrals

Nuclear attraction integrals are necessary in order to form the matrix elements of
the electrostatic attraction of the electrons from the charge of the nucleus. We are
interested in evaluating the following type of integral

1
F—C

= /QA(E a,am,ay,az,A)

(94 l9B)

1
e 9B(r; B, by, by, b, B) dr (2.31)
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The procedure we have developed and implemented for this purpose is an adaptation
of the Rys quadrature method for two electron integrals [31, 32]. It is a very
efficient way of calculating these integrals which demonstrates yet another use of Rys
quadrature. The formulas we develop in this section will serve as an introduction
to the more complicated formulas used in the evaluation of two electron integrals,
in section 3.9.

The first step is to express the nuclear attraction operator as a Gaussian trans-
form (derived by a modification of a Laplace transform) [33]

! = = s_%exp —s|r — C|?)ds 2.32
r-C| V&
— 0

and apply the change of variables

s=u? €[0,+00), u=+/5¢€[0,400) and ds=2udu (2.33)

to get
= [ el - CP)d (2.34)
—_— = exp(—u®|r — U .
|r — C| V7 Jo p
Substitution of the above expression for the transformed nuclear attraction operator

into equation 2.31 yields

1

2 o0
oalr—glom) = (ol [~ exp(-lr ~Rel?) dulgn)

N \/%7 /()OO<QA| exp(—u’|r — C|*)|gp) du
- \% | M) My M w) du (2.35)

where the integrand has split into a product of three one-dimensional integrals
M (u), My (u) and M} (u). We can therefore manipulate each one of them separately.

For M/ (u) we have

M;Iv(u) = kab;c
« / T (2 — Ag)% (2 — By)? exp(—A(z — Lo)?) exp(—(u2(z — Cy)2)dz

— 00

— ke [ (=A% (0= B exp(—C(o— Zof)dz (230

—o0
where the definitions of L, A and kg, are given in equations (2.12) and (2.13). Also

aAg + BB + u?Cy
a+ B+ u?

(=a+B+u’ Zy= (2.37)
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and
2

p + u?

p=a+f kpyz=exp

(L — Cw)Q] (2.38)

It is easy to see now that for any value of u, the integral M_(u) is one of the three
components of an overlap integral and can be evaluated by Gaussian quadrature.
For this purpose, a change of variables is carried out, as in equation (2.15) and the

resulting integral is similar to that of equation (2.16)

My (u) = kabwkluw\/iz
X /_O:o (% + Zy — Az) - (% + Zy — Bz) - exp(—z?)dz’  (2.39)

To proceed further, one more change of variables is necessary, this time in the
integral (2.35). This change, from u to t, is defined by
2

2=, du=—Y" g (2.40)
p+u (1—12)2

in terms of which the quantities of equations (2.37) and (2.38) become

Zy = Ly, ke = exp[—p(Lg — Cx)2t2]a and (= % (2.41)

M, (t) is now defined as a function of ¢. It will play a similar role to M/ (u)

1 t
My(t) = M’( 7>ex Ly — Cp)*?
) = =M (VP ) explp(Es — G
[
(e} 1—¢2
_ kape / z l + L, A;c)
VP J-x P
bz
1— 12 )
x |2 . + Ly — B | exp(—2")ds’ (2.42)
[am+bm]+1 Qg
kabz E ! 1-— tZ
VP o ( Vo
by
1—1¢2
x (z; S Lam B,,) w; (2.43)

and My(t) and M,(t) are defined in a similar manner. The sum (2.43) is the
integral, expressed in terms of Gaussian quadrature, as we calculate it in practice.

An observation is pertinent at this point: the expression of equation (2.43) is an
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even polynomial in ¢ of degree® 4[(a; + b;)/2]. This is not immediately obvious
because t appears in the form v/1 — t2. However, if we were to carry out a binomial
expansion on the terms in parentheses inside the integral of equation (2.42) we
would split the integral in a sum of integrals containing powers of z/v/1 — 2. All
the integrals with odd powers of z' would vanish because of the odd parity of the
integrand and symmetric interval of integration. Only terms with even powers
of ' and consequently /1 —¢2 would remain. The highest order term would be
(1 — §2)200a-+bc)/2],

The nuclear attraction integral of equation (2.35) can now be written as

2ka
(0al = glow) = > / My (8)M, ()M (¢) exp[-p(L — C)*Jdt  (244)
where kqp = KappKabykab, and My (t) M, (t)M,(t) is an even polynomial in ¢ of degree

([ B ) e

At this stage we can finally evaluate the nuclear attraction integral using Rys

quadrature with Ngys = [npe/4] + 1 points. In practice, members of the same
shell of primitive basis functions may require different number of points for the Rys
quadrature. For example, the g4(r;«,1,1,1,A), gg(r;5,0,0,0,B) pair of functions
would require 1 quadrature point while the pair g4(r; o, 3,0,0,A), gg(r;5,0,0,0,B)
requires 2 points. Hence, evaluation of the nuclear attraction integrals with the min-
imum number of quadrature points would require two calls to the subroutines that
generate the Rys roots and weights for this combination of shells. With higher
angular momentum the number of calls increases. We have found that for compu-
tational efficiency it is necessary to call the Rys subroutines as little as possible.
Thus we call them only once per pair of shells and obtain the lowest number of
points necessary to integrate all the integrals of a shell pair. So in practice we use

s+ A

NRys = [ 9

] +1 (2.46)

As with the other one electron integrals we have seen so far, the nuclear attraction

integrals over unnormalised primitive Gaussian functions are combined with con-

3Here the square brackets are used to denote the closest integer which is smaller than the real

number inside the backets. For example, [3.7] = 3 and [-3.7] = —4.
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traction coefficients and normalisation constants in order to form the matrix V7ucl

of the nuclear attraction operator in the contracted Gaussian basis.

2.7 Effective Core Potentials

2.7.1 Introduction

The study of complexes of heavy elements by ab initio quantum chemical methods
requires the incorporation of relativistic effects since it has been shown that they
play a significant role in the properties of such compounds [34, 35]. To a great
extent, the incorporation of such effects can be achieved through the use of Effec-
tive Core Potentials (ECP) (also called Pseudopotentials by some authors) or by
some approximate method of solving the Dirac-Schrédinger equation adjusted to
a many electron system [7, 6]. The design of ECPs is a compromise between two
requirements: first they have to imitate the interactions of core electrons of a many
electron atom with the valence electrons. Second, this imitation of core electrons
has to be limited only to the valence region. This means that they have to pro-
duce valence orbitals that resemble the true valence orbitals in the valence region
but have no features (nodes, etc.) in the core region. This requirement, which is
not so trivial, is necessary to ensure that a smaller ( i.e. valence only) basis set
is needed for the atom in question. The ECPs are routinely used because in most
cases they afford results of comparable accuracy to all-electron methods at reduced
computational cost. Even in the cases of second, third and fourth row atoms, where
relativistic effects are usually negligible, the use of ECPs is very common due to the
computational savings that are achieved from the use of “valence only” basis sets.
The effective core potential operators of the functional form first proposed by
Kahn et al. [36, 37] are widely used today. The only effort in using them in a
molecular calculation rests in the evaluation of their one electron integrals which
are their matrix elements with the Cartesian Gaussian functions of the basis set.
The matrix element of the ECP operator consists of two distinct types of inte-
grals, one of which does not involve projection operators and one that does. A few

methods and corresponding computer programs for evaluating these integrals are
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known [37, 38, 39, 40]. The integral which involves the projection operators is by
far the most difficult from a theoretical and practical point of view.

The purpose of this section is to introduce the reader to the theory behind
the ECPs implemented in the code. As far as the implementation is concerned, a
new method to calculate the second integral which is simple and fast will be de-
scribed and compared to a much slower, benchmark original attempt. As with all of
MAGIC, no limitations on the maximum angular momentum of basis functions and
projection operators or the values of the parameters involved exist. Furthermore,
the size of the molecular system to be studied is only restricted by the available

Computer resources.

2.7.2 The pseudopotential method of Weeks and Rice for a single

valence electron

The method of Weeks and Rice [41] is very widely used because it avoids the com-
plications of the frozen core orbital approximation and makes possible the neglect of
the core orbitals. This results in computational savings both because it requires a
smaller (valence only) basis set and also because it eliminates the need to calculate
two-electron integrals between the valence and the core orbitals. In what follows we
will give an outline of the formalism and the underlying physical principles. This
information is essential for the understanding of the use of ECPs and their com-
putational requirements which we will examine later. It is also quite interesting
in itself as the theory involved is an elegant and successful approximation. ECPs
are a way to express with mathematics the traditional notion of chemistry which
attributes all chemical properties to the valence electrons.

We will consider an atom with a single valence electron (eg. Li, K, Ca™, etc.)
which we will treat explicitly. The rest of the electrons, Ny in total, which
belong to complete groups we will distribute in a set of spin orbitals {¢; z]-ic{”. The
eigenfunction and eigenvalue of the valence electron will be ¢, and ¢, respectively.

We assume that the core and the valence orbitals are orthonormal, i.e.

<¢k)|¢l> = 6kl kal = ]-a "'7NCO1"eav (247)
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The eigenvalue equation for the valence orbital is

Ncore
Fypy =€+ Y Aivthi (2.48)
=1

where the )\;, are Lagrange multipliers which impose orthogonality to the core
orbitals. We do not know the form of the hermitian operator F, at this stage, but
we assume that it is not connected in any way to the core orbitals. The next step
is the introduction of the following projection operators

N NCO’I'E N N

Q= > |¢i){¢s| and M=1-Q (2.49)

i=1

in terms of which we can rewrite equation (2.48) as

ﬁﬁvqsv = &Py (2.50)

We can now define a valence pseudo-orbital 1, as an admixture of core orbitals to
the valence orbital ¢,.

NCDTE

hy =y + D gy or ¢y =1, (2.51)

i=1

Substitution of the above expression for ¢, in (2.50) yields

E, T, = e,11t, (2.52)
We can rearrange (2.52) to obtain
(Fy + Vi)thy = €uthy (2.53)
where Vp is called the generalised Phillips-Kleinman operator.

U= —OF, — B0+ QB0+ o0 = —O(F, —e) — TGO (2.54)

It is easy to show that if we impose on F, the condition that the the core orbitals

¢; are its eigenfunctions with eigenvalues ¢; (not generally true), Vp simplifies to

NCOTe
Vek = Y (e — €i)|$i) (il (2.55)
i1

which is the Phillips-Kleinman [42] potential.
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The formalism we have developed so far is exact and allows us to use the valence
pseudo-orbital in place of the valence orbital. The pseudo-orbital is not restricted
to be orthogonal to the core orbitals and furthermore we have the liberty to chose
the coeflicients «; in any way we like. This non-uniqueness of the «;s is called
“pseudopotential indeterminacy” and was reported by Cohen and Heine [43]. The
importance and usefulness of this result lies in the fact that the valence pseudo-
orbital 1, can be constructed in such a way as to resemble the true valence orbital
¢y in the valence region and have no features (nodes, etc.) in the core region. This
leads to a smaller basis necessary to describe the valence space and it is the true
computational saving we seek. Of course the construction of the valence pseudo-
orbital subject to the requirement we just stated is not a trivial matter and many
different procedures have been devised over the years for determining the coefficients
a; of equation (2.51). We will examine these in subsection 2.7.5, but for the moment
we will assume the problem has been solved in a satisfactory way and we will proceed
with the development of a local and more handy version for F, + Vp.

In practice, an additional mathematical requirement (constraint) has to be im-
posed on the pseudo-orbital to lift the pseudopotential indeterminacy. It has been
shown that this requirement can be incorporated into the pseudopotential Hamil-
tonian [44]. This is achieved by using a modified form for the effective potential

Neore
Vb= > |¢i)(xil — TE,Q (2.56)

=1
where the functions y; could in principle be arbitrary and will always produce a
valence orbital ¢, = f[zpv which satisfies equation (2.50) just as the generalised
Phillips-Kleinman potential does. The generalised Phillips-Kleinman potential op-

erator is obtained when
Xi = (Fv - 6v)|</’1> (2-57)

The functional form of the x; determines now the shape of the pseudo-orbital. There
are choices of x; possible that are not plagued by pseudopotential indeterminacy
and fix the values of the coefficients «; in equation (2.51). Careful choices can

give smooth and nodeless pseudo-orbitals but care should always be taken against
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excessive contribution from core orbitals which is described as “variational collapse”

of the valence pseudo-orbital to the core.

2.7.3 Local representation of the effective core potential

It can be shown that without loss of generality the angular part of atomic Hartree-
Fock orbitals can be restricted to be a spherical harmonic [44]. By taking this into
account it is shown in appendix A how we can obtain a Hartree-Fock equation for
the radial only part of the orbital for a single valence electron. This is relatively
straightforward because the core consists of complete electron groups. The angular
part of the valence pseudo-orbital can be a certain real spherical harmonic Zg- (6, ¢)
and therefore only core orbitals with the same angular part will contribute in the
expansion of equation (2.51). This means that «; has to be zero for all core orbitals
whose angular part is not Zg,(6,¢). A consequence of this is that pseudo-orbitals
with angular momentum larger than the largest angular momentum of the core will
be pure valence orbitals since all a;s will be zero for them. In other words the result
of the action of the generalised Phillips-Kleinman operator on such an orbital is
ZEero.

A radial effective core potential equation for the radial part of the pseudo-orbital
(1 /r)RgfﬂeudO(r) can therefore be written in a similar fashion to the Hartree-Fock
equation for the radial part of the orbital for a single valence electron atom. The
parameters « and § are the principal quantum number and the angular momentum
quantum number of the pseudo-orbital respectively. The radial equation includes
the radial Hartree-Fock potential for the valence electron plus terms due to the gen-
eralised Phillips-Kleinman potential Vp, which is related only to the core orbitals.
These terms do not appear when the angular momentum of the valence orbital is
higher than the highest angular momentum of the core, in which case we get exactly
the same eigenvalue equation as in appendix A. In general, the eigenvalue equation

for the radial part of the pseudo-orbital of a single valence electron atom is
[iL( ) + U-CORE( )] lRpseudo( ) o lRpseudo( ) 2.58
T T g r—eagr of T (2.58)

where il,(’l") contains the point charge Coulomb attraction of the core and the radial
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form of the kinetic energy operators. The operator UCP%F (r) as defined by (2.58)
is the effective core potential. It represents the radial part of the Coulomb and
exchange operators due to core orbitals as well as the radial part of the generalised
Phillips-Kleinman operator.

There is difficulty in using the above equation in practice because both the core-
exchange and generalised Phillips-Kleinman operators are nonlocal. Their nonlocal
form necessitates the evaluation of two-electron integrals between core and valence
orbitals. This defeats our objective which is the elimination of the core orbitals
from the problem. However, we can overcome this difficulty by using an equivalent
local form for UCORE (r). The price we have to pay for the local operator is that
its functional form must be different for every single valence orbital. We therefore
have to replace the one nonlocal potential with a set of local potentials, defined
in equations (2.59) and (2.60). These equations are obtained by solving equation
(2.58) directly for UCORE (1) for every pseudo-orbital. The result is the following

two sets of local operators

A [TCORE () (1 ppseudo rh (L Rpseudo
pgone(y = i(eldfﬂ - % » B<L (259
FRaﬂ Raﬁ
and
A [JCORE(.\(L R LR
UﬂC’ORE(,,_) _ 1(7“)(7« af) = €ap — % , B> L (2.60)
;Raﬁ af

where L is defined to be greater by one than the maximum angular momentum
quantum number encountered in the core orbitals. Notice the simplification that the
dependence of the local effective core potentials on the principal quantum number
a of the valence orbital has been neglected. This approximation can be rigorously
justified for the case of Hartree-Fock equivalent pseudopotentials [44] in terms of the
close spacing of the eigenvalues of valence orbitals with different principal quantum
numbers and the same angular momentum quantum numbers. It is assumed to
be valid for the local Generalised Phillips-Kleinman (2.59) and Hartree-Fock (2.60)

potentials too. It is clear now from equations (2.59) and (2.60) that the radial

1 Rpseudo

functions of the pseudo-orbitals should be nodeless. A node (zero value) of R, 3
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at a point 75 would result in a singularity [45] of (2.59)

J d
AR g v?@%w LGRS

since VZ(r'RP se”do) defined according to (A.4), would not in general be zero at
rs. A singularity in the effective potential is something we wish to avoid since it
is bound to lead to numerical problems in our calculations. Therefore, a feature
common in all pseudo-orbitals is that they have no radial nodes. Singularities in the
potentials (2.60) can be avoided by using always the (1/7)R(g11)s(r) Hartree-Fock
orbitals that have no radial nodes by definition.

Furthermore it is observed in practice that the ECPs of equation (2.59) differ
significantly from each other while the ECP’s of equation (2.60) are similar to each
other. This is attributed to the absence of the Phillips-Kleinman term from the
latter. All these local ECP’s can be combined together in one only ECP with

semi-local form with the help of angular momentum projection operators
o0 l
UCORE(r,0,0) = Y UFOPE(r)| Zim) (Zum] (2.62)
=0 m=-—I1

Since all potentials of equation (2.60) are similar, we can approximate them by a

single, average term U'LCORE (r), and take into account the closure property of the

spherical harmonics Z;,, set of functions to get

GOORE(1,0,9) = UEORE(r) + 3 3 (A {DFOTE) — DEORE ] i
=0 m=—1

which is the final expression for effective core potentials, in wide use today. The
semilocal form of this expression does not hinder its applicability because it is based

only on spherical harmonics and not on any set of core orbitals.

2.7.4 ECPs for atoms with many valence electrons

The majority of atoms have more than one valence electron and therefore ECPs
for these atoms have to be derived as well. Even in the cases of one valence elec-
tron it is sometimes expedient to treat electrons belonging to complete groups, of

principal quantum number smaller by one than the valence, as valence electrons.
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This approach has proved to be more accurate since the outer shells of the core can
participate in bonding to a great extent and are therefore affected by the chemical
environment.

The simplest way to obtain an ECP for a valence electron for an atom with N,
valence electrons is by applying the Weeks and Rice method to the single valence
electron of the positive ion of the atom with charge N, — 1. Such a derivation how-
ever neglects the Coulomb and exchange interactions between the valence electrons.
These interactions cause the neutral atom valence orbitals to have significantly dif-
ferent shapes from the positive ion orbitals. This can be thought of as extra shielding
from the core due to the presence of the other valence electrons. Indeed, many au-
thors have observed that ECPs derived from positive ions yield satisfactory results
only for the ion from which they were derived [46]. Such ECPs have proved rather
inaccurate for neutral atoms. The situation is improved if the rest of the valence
electrons are taken into account during the derivation of each pseudo-orbital and
there are a variety of ways available in the literature to do so.

The general approach [37, 47] is to obtain Hartree-Fock core and valence orbitals
for the neutral atom. Then valence pseudo-orbitals can be constructed as for the
case of one valence electron. The localised effective potentials are then obtained by
a slight modification of equation (2.59)

r(h + Weat ) GRoE")

pseudo
Raﬁ

USORE (1) = eqp — (2.63)

where now the added operator W,ﬁf represents the Coulomb and exchange interac-

tions of the pseudo-orbital with the rest of the valence orbitals.

2.7.5 Determination of ECPs and incorporation of relativistic ef-

fects

According to our discussion so far, the construction of ECPs requires first the con-
struction of valence pseudo-orbitals. This in turn means the determination of the
coefficiens «; of equation (2.51). Smooth nodeless pseudo-orbitals can be obtained
by minimization of the kinetic energy (ib,|T|4,) of the pseudo-orbital [43]. Func-

tionals of v, more elaborate than the expectation value of the kinetic energy can be
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conceived whose variation yields pseudo-orbitals with improved features [37]. How-
ever, this approach will never yield valence pseudo-orbitals which exactly match
the valence orbitals in the valence region since by definition some of the a;s have
to be nonzero. This inexact coincidence of the pseudo-orbitals with the valence
orbitals in the valence region has been characterised as a major source of inaccu-
racy for the pseudopotentials. In order to amend this, equation (2.51) has to be
abandoned. There exist then various extensions to the theory of Weeks and Rice
that produce pseudo-orbitals matching exactly the valence orbitals in the valence
region [48, 47]. In fact such a shape-consistent method has been employed in the
derivation of the ECPs of Hay and Wadt[49, 50, 51]. We use these particular ECPs
widely in calculations with MAGIC.

So far we have presented the principles of a theory of ECPs which is based on
ab initio considerations and a rigorous theoretical framework. The approximations
involved in each stage of the derivation can be clearly distinguished. However, as is
the case with exchange-correlation density functionals, empirical approaches which
fit some functional form to either experimental data or high accuracy ab-initio
results have proved very successful. The energy-adjusted pseudopotentials are such
a case [46]. The following ansatz is the functional form which is used to represent
the potential

R N L 1 ,

UCORE (r,0,¢) = Tc +> > (Z Ajpe™ ST > | Zim ) Zim| (2.64)

I=0m=—I \ k

where N, is the number of electrons allocated to the core. The parameters A;; and
(i are determined by fitting to excitation and ionization energies or low lying states
of the neutral atom and singly positive ion. These quantities have the advantage that
they are quantum chemical observables, in contrast to orbitals which do not have
any such direct interpretation. Here too, it has been shown that fitting to a neutral,
many electron atom yields more accurate potentials than the one-electron ion. Of
course, once energy-adjusted potentials are constructed one can use them to obtain
valence pseudo-orbitals. These pseudo-orbitals are of secondary importance as they
only serve the purpose of leading to an appropriate basis set for use in conjuction

with the pseudopotentials in molecular calculations. We use frequently for our
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calculations with MAGIC the energy-adjusted pseudopotentials of the Stuttgart
group, [52, 53, 54]. This is a comprehensive range of accurate ECPs that covers
essentially all of the periodic table.

The representation of the interaction of the core electrons by an ECP does not
necessarily have to be based on the Hartree-Fock model. Pseudopotentials can
be derived using higher levels of theory. For heavy atoms in particular, the most
important contributions from relativistic effects can be incorporated without any
increase in the cost or complexity of the calculation. To this end, the Darwin and
mass-velocity terms are usually included in a one component formalism (similar to
the Hartree-Fock equations) which is used to obtain the pseudo-orbitals or energies
from which ECPs are derived. Hay and Wadt used the relativistic formalism of
Kahn, Cowan and Hay [55] for their pseudopotentials while the Stuttgart relativistic
pseudopotentials are derived using the formalism of Wood and Boring[56]. The
resulting quasirelativistic pseudopotentials are an effective and simple way to include
relativistic effects in a calculation even when no explicit relativistic terms are used
for the description of the valence electrons. It is fortunate for this reason that
relativistic effects affect mainly the core orbitals and valence orbitals are affected
implicitly through interaction with core orbitals.

We present now some simple results we obtained with the ECPs already men-
tioned in order to demonstrate how they compare with all-electron calculations.
First in Table 2.1 we present the optimised geometries of coinage metal hydrides.
The optimisation was carried out until all components of the gradient were less than
10~ which is the standard threshold for geometry optimisations in the code. The
Triple Zeta Valence plus Polarization (TZVP) basis set [58] was used for the hy-
drogen atom and the all electron calculation on CuH. ECPs and the corresponding
valence basis sets were used on the metal atoms. We have used ECPs with small
cores. The core of the gold atom contained 60 electrons which corresponds to the
element Nd, the core of the Ag atom contained 28 electrons (Ni) and the core of Cu
contained 10 electrons (Ne). For the calculations on Au and Ag without ECPs we
used basis sets of comparable quality to the TZVP bases. Two sets of calculations

were performed, one with the exchange-only functional derived from the uniform
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Table 2.1: Optimised geometries (A) of coinage metal hydrides with various treat-
ments of the core of the metal atom. The experimental values [57] are given in

parentheses under the name of each molecule.

Molecule ECP r. (LDAX) r, (BLYP)
AuH Stut. Rel. [53] 1.549 1.550
(1.524)  Hay Rel. [49] 1.537 1.547
Stut. HF [53] 1.722 1.746
No ECP 1.700 1.711
AgH Stut. Rel. [53] 1.604 1.616
(1.618)  Hay Rel. [49] 1.589 1.623
Stut. HF [53] 1.665 1.682
No ECP 1.670 1.687
CuH Stut. Rel. [52] 1.455 1.490
(1.463)  Hay [49] 1.468 1.490
Stut. HF [52] 1.476 1.480
No ECP 1.460 1.464




CHAPTER 2. ONE ELECTRON INTEGRALS 42

Table 2.2: Optimised bond length (A) of UFg with various kinds of ECPs for the
uranium atom. The experimental value is given in parentheses under the name of

the molecule.

Molecule ECP r. (LDAX) r. (BLYP)
UFg Stut. Rel. [54] 2.010 2.034
(2.000)  Hay. Rel. [61] 2.024 2.047

Stut. HF [54] 2.048 2.083

electron gas (LDAX) [16] and the other with the Becke88 exchange [59] and the Lee
Yang and Parr [60] correlation functional (BLYP).

From Table 2.1 which also includes experimental geometries, we can observe
some trends that are typical for these types of calculations. The BLYP functional
leads to slightly longer bonds as a result of the correlation effects it includes. Then
the quasirelativistic ECPs produce far better bond lengths than the nonrelativis-
tic Hartree-Fock ECPs or the all-electron calculations which involve no relativistic
effects. Apparently the quasirelativistic ECPs do incorporate relativistic effects to
an appreciable extent. They seem to be capable of predicting the bond lengths of
the hydrides as well as Hartree-Fock theory does for organic molecules. There is
however no clear trend on the effect of the functional and the correlation effects due
to the BLYP functional certainly do not improve the geometries. In particular, the
maximum error for the LDAX functional, 0.029 A, occurs with the Hay quasirel-
ativistic ECP of AgH and the maximum error of the BLYP functional is 0.027 A
for both the Stuttgart and Hay quasirelativistic ECPs on CuH. As expected, for
the methods that do not include any relativistic corrections the largest errors oc-
cur for the molecule containing the heavier element, AuH. They are 0.198 A for
the LDAX functional and 0.222 A for the BLYP functional. So in this case the
neglect of relativistic corrections increases the errors in bond lengths by an order of
magnitute.

Another example is the uranium hexafluoride UFg molecule. In Table 2.2 ge-
ometry optimisation results are presented, obtained in a manner similar to the

calculations we performed for the coinage metal hydrides. Here the effects of rela-
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tivity are not so pronounced, leading only to a two-fold increase in error when they
are neglected. This is because there is significant contribution from the fluorine
orbitals to the bond, more than there is from the hydride s orbitals.
Quasirelativistic ECPs for the core and a simple DFT treatment of valence
electrons is the lowest and computationally less demanding level of theory that
MAGIC can use for calculations on molecules containing heavy elements. It remains
to be seen whether and to what extent such methodology could produce results of
value to chemists. Geometries are one of the easiest properties of molecules to

calculate and it seems that MAGIC can successfully predict them.

2.8 ECP implementation in MAGIC

2.8.1 ECP integrals

We will now concentrate on the practical aspects of using ECPs in a DFT calcula-
tion, especially on the calculation of the required integrals. In general, the ECPs
we use represent the interaction of the core electrons with the valence electrons by

a potential operator of the following semi-local form [37]:

L-1 1
UB(r,0,¢) =UL(r)+ > > [lm; B)US (r) = UL (r)(im; B (2.65)
=0 m=—1

This form is valid for both the shape-consistent and energy-adjusted ECPs of sub-
section 2.7.5. For the shape-consistent ECPs, L is larger by one than the maxi-
mum angular momentum quantum number encountered in the core. In the case of
energy-adjusted ECPs, L is greated by two than the maximum angular momentum
encountered in the core and UP(r) = N./r. The ECP is expressed in terms of
spherical polar coordinates (r,6,¢). In our discussion of ECP integral evaluation
we will assume that the ECP will always be located on atom B that coincides with
the origin of coordinates and therefore r will be equal to rp, the distance from
atom B. As one would expect, UlB and UP approach zero asymptotically at large

distance from B. The functions |lm; B) are real spherical harmonics Zj,;, centred on
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B, according to the definition

cos(|m|¢)Pl|m‘ (cosf) m >0

(2124; . 8 :L :ZB:) 5 157" (cos ) m=0 (2.66)

sin(|m|¢) P™ (cos8) m <0

Zim (8, ¢) = (

For ECPs derived from pseudo-orbitals the core potential operators are expressed in
analytical form by fitting the numerical potentials to linear combinations of Gaus-

sian functions:

N,
UB(r) = SR DY dj "0 e ke (2.67)
k
UB(r)—UE(r) = dklr”’”e_g’“”2 2.68
l L

k

where N, is the number of core electrons. Energy-adjusted ECPs are expressed in
terms of Gaussian functions from the outset and equations (2.67) and (2.68) still
hold with the exception of the sum in (2.67). In all ECP’s derived to date, the
powers ngz, and nyg; are restricted to the values 0, -1 and -2, although the method
developed here assumes no such restriction. We will try to follow the notation of
earlier works on core potential integral evaluation [37, 38, 40]. The basis sets we
use consist of contracted Cartesian Gaussian functions. The general form of an
unnormalised primitive Cartesian Gaussian function on centre A (see also section
1.4) is

ga = 1%y 2% exp(—ar?) (2.69)

The matrix elements of the pseudopotential operators (2.67) and (2.68) with the
functions g4 and g¢, according to (2.65), require the evaluation of two distinct types

of integrals (referred to as type 1 and type 2 respectively).
XAC = /QA ™ exp(—Cepr?)ge dr (2.70)
and
°° 2 2
tac = [ galtms B)(r) v exp(=Gur) {gcltms B)(r) dr (2.71)

where

(galtm; BY0) = [ ga(r; 00,0y, 02, A) Zin(6,6)d0 (272)
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is an integral over solid angle. A few methods for the analytical calculation in
spherical polar coordinates around the centre B are available for the above integrals
[38, 40]. All these methods have the common starting point of expanding the inte-
grals in spherical polar coordinates. This separates them into sums of angular and
radial integrals. Methods differ in the analytical approaches they follow to evaluate
these angular and radial integrals. The angular integrals are relatively easy to eval-
uate and they require minimal computational effort with all the methods. On the
other hand the radial integrals, especially those emerging from the type 2 integral,
that involves the projection operators, lead to rather complicated expressions whose
evaluation is responsible for the majority of the computational effort. Indeed, even
though the ECP matrix is two-dimensional and needs to be calculated only once
during an SCF calculation, it becomes a serious bottleneck as soon as we encounter
molecules of the size of 10 atoms or more. This is what we observed with an im-
plementation in MAGIC of a variant of one of the existing methods [62]. In order
to alleviate this problem, a novel, faster approach for the type 2 integral has been

devised. It is demonstrated in the remainder of this chapter.

2.8.2 Calculation of the type 2 integral

The author’s approach towards the evaluation of the type 2 integral consists of per-
forming the angular integrations analytically and the radial integration by quadra-
ture on a one-dimensional grid of points. Previous efforts [37, 38, 40] have focused

on the analytical evaluation of the radial integrals
o0 2
/ e iy (br )i, (cr)r™dr (2.73)
0

that emerge after the full expansion of equation (2.71) in spherical polar coordinates.
We would expect the evaluation of this integral by quadrature to be inefficient
compared to the analytical approach. On the other hand, quadrature makes possible
the calculation of integrals which cannot be done analytically. We can therefore use
it to evaluate directly the integral of equation (2.71) as a whole. This leads to
an efficient method for evaluating the type 2 integral. This would not be possible

without the presence of the angular projection operators that allow the isolation of
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the basis functions from each other, as far as the angular integration is concerned.

First, the terms (ga|lm; B)(r) are evaluated analytically at every point of the
radial grid. The points r of the radial grid extend from the centre B of the ECP
which is the centre of the coordinates. The following formula is used for this purpose,
which can be derived by expressing the Gaussian function g4 in terms of functions

located on the ECP centre [37, 38]

9z Q 4] a
(ga|llm; B)(r) = 4w Z Z Z ’ v ‘
ko=0ky=0k,=0 \ kg ky k,
—k —k % I+v
BAua; mBAUy yBAuz_ z Z rkw+ky+k2 [e—a(AB +r )Z)\(QOAAB’F)]
A=0
Z Z\u(AB) / Zonu(B) Zin (8) &%= v 272 4O (2.74)

p=—X
where v = a; + ay + a; is the angular momentum of g4, BA is the distance from
the centre B of the ECP to the basis function centre A and AB is the unit vector
from B to A.

The angular integrals in the above equation were initially evaluated using Lebe-
dev quadrature [22, 23, 24, 25]. The Lebedev quadrature grids and weights are
designed to integrate exactly spherical harmonics up to a certain order L, i.e. if
A+1+kz+ky+Ek, < L the angular integrals in (2.74) should be calculated exactly.
We have used quadratures with 302, 590 and 974 points for which L is 29, 41 and 53
respectively. By looking in the parameter tables for ECPs and basis sets it can be
seen that the quadrature with 302 points would suffice for all combinations of exist-
ing ECPs and basis sets. So would of course the rest of the schemes with 590 and
974 points. However, we noticed that upon varying the scheme used, the results we
obtained varied in the 6th or 7th decimal digit. This is a consequence of the small
accuracy with which the Lebedev parameters are known. The same observation has
been made by Treutler et. al. [63] in the context of molecular numerical integration
grids for DFT integrals. They have used a “brute force” optimization procedure and
the original results of Lebedev as input to refine the parameters up to 17 decimals

for the grid with 434 points and L =35. We have chosen rather to abandon the
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numerical evaluation of these angular integrals and to calculate them analytically.
A group of subroutines written especially for this purpose were used [62]. They
evaluate these integrals as linear combinations of angular overlap integrals of three
real spherical harmonics.

The term e‘a(ﬁz+’"2)z’)\(2aﬁr) has to be evaluated as the exponential of the
sum of its logarithms for retaining precision. This can be understood by considering
that the asymptotic values of the Gaussian term, the Bessel term and their product
with increasing r, are zero, infinity and zero respectively. It often happens then
that with some of the r values used in the quadrature the Gaussian term becomes
zero within machine precision and its product with a finite number such as the
Bessel function value is bound to be zero. This of course is not the true value of the
product, which is still by no means negligible, but is an artefact of finite (double
in our case) arithmetic precision. The use of logarithms eliminates this error. The
spherical modified Bessel function of the first kind ¢y is computed by a standard
implementation [64] and its asymptotic form is used for large values of its argument
[65].

The computation of y4¢ is completed by summing the (gal|llm;B)(r) and
7™ exp(—(r?) terms over the radial grid

Ny

vac = Y_{gallm; B)(rs) (gellm; B)(ri) ri* exp(—Cur]) w; (2.75)
=1

where n, is the number of radial quadrature points and w, are the corresponding
weights.

A point worth noting is that the calculation of the (g4 |lm; B)(r;) (which is the
computationaly intensive step) scales linearly with the size of the system (number
of basis functions Npp). Of course, the radial quadrature part scales quadratically,
but it has a small prefactor so its contribution is negligible for all systems we have
tested. If the quadratic part starts to dominate in large systems, linear scaling could
still be achieved, if necessary, by screening of integrals that can be predicted to be
negligibly small.

For the calculation of derivatives of y4¢ with this mixed Analytical-Numerical
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(AN) method, we have selected to avoid differentiating directly the ECP operator.
Instead, we use the principle of translational invariance as has been demonstrated
by Cui et al. [66] for other ECP integral methods.

We tested the mixed analytical-numerical method by comparing with an imple-
mentation of a variant [62] of the method of McMurchie and Davidson [38]. This
was the original ECP implementation in MAGIC. It was ensured that the variant
code yielded accurate results, however it was not optimised for speed. We found
that the AN method is considerably faster than the variant which requires a pro-
hibitively large amount of time for molecules larger than 4-5 atoms. A wide range
of molecular geometries was used in the tests and they seem to have no effect on
the AN method. For example, correct results are obtained for UO%"" (U ECP from
[61], DZP basis on O) when varying the U-O distance from 0.01 to 10.0 ap. These
tests reassure us about the reliability of the AN method but they cannot exclude
the possibility of failure in some “ridiculous” case.

Table 2.3 presents some timings for the calculation of ECP integrals with the
McMurchie-Davidson variant and the new AN method. A variety of molecules,
basis sets and ECPs were used. The time reported is for the calculation of both
the first and the second integral on one R10000 processor on a Silicon Graphics
Origin 2000 computer. These results prove the necessity for a new algorithm, much
faster than the McMurchie-Davidson variant. All the subroutines of MAGIC were
designed with robustness as well as speed in mind and they are fast enough to make
calculations on large inorganic systems feasible. Therefore the McMurchie-Davidson
variant would constitute a serious bottleneck for all our calculations as it requires
in many cases more time to calculate the ECP integrals than the time necessary to
run the SCF calculation or even more time than that available in the longest queue
of a usual workstation. The AN method has eliminated this problem, reducing the
time necessary for the evaluation of ECP integrals to a few seconds, or minutes, for

the most difficult cases.
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Table 2.3: Timings in seconds for the evaluation of both y4¢ and y4¢ with the
variant of the McMurchie-Davidson (MD) method and the Analytical-Numerical
(AN) scheme. Npp is the number of basis functions and Ngop is the number of
ECP centres present on each molecule (on metal atoms, except in the case of Cg

where all carbon atoms contain ECPs).

Molecule Basis Ngr ECP Ngcp MD AN
AuH 6311G* 45  [53] 1 2 1
AuH 6311G* 20 [51] 1 1 0
AuH cc-pV6Z 144  [53] 1 581 26
AuH cc-pV6Z 119  [51] 1 581 26
RbCl DZP 54 [67] 1 109 3
RbCl DZP 32 [50] 1 165 1
Uoz*t SVP 135  [54] 1 153 14
U0zt SVP 74 [61] 1 213 21
UFg DZ 165 [54] 1 837 23
UF DZ 104 [61] 1 3251 29
UF-UFg DZ 208 [61] 2 87895 319
K[PtCl3(CoHy)]  STO3G 106  [53] 2 3262 16
K[PtCl3(CoHy)]  STO3G 106 [51] 2 2648 11
Rhy(CO)12 DZ 280 [51] 4 > 4days 1715
7-C7H;Mo(CO); TZVP 328 [67] 1 92427 45
Cs(18c6) TZ 353 [67] 1 118325 77
Ceo PVDZ 840 [67] 60 >4 days 12261
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2.8.3 Radial Quadrature

As far as the radial quadrature is concerned, the Log3 scheme of Mura et al. [21]
was found to be particularly efficient. In order to obtain the points, we start with
a number n, of equally spaced points x; on the interval (0, 1)

1

— 2.76
Zj ny + 1 ( )

then these points are mapped to points 7; on the interval (0, +oc) by
r; = —&In(l — z?) (2.77)

where ¢ is an empirically determined parameter and has the value 5 or 7, according

to the type of atom [21]. The weights are given by

1

wr 36322 In?(1 — z3)
1=z (n, +1)

(2.78)

The form of equations (2.77) and (2.78) allows for the use of an integration technique
that converges the values of the integrals to a certain predefined precision. We can
gradually increase the number of points without having to recalculate the value of
the integrand at the points we have already used in the previous step.

In particular, we can first evaluate the integrals with a number of radial points

(2) (1)

and weights given by equation (2.78). If we then choose to use ny”’ = 2n,; ' +1

)

n!
radial points for evaluating the integrals at improved precision, we observe that
every second point

r?, =24, 0P 1) (2.79)
coincides with a point of the first set ng) and its corresponding weight w§-2) is half of

(1) (1) (2)

the weight w,;™’ of r;”/. Therefore calculating an integral with all the n;”’ quadrature

points is equivalent to calculating it using only the subset
r& k=1,3,...,n0 (2.80)

and adding to the result half of the value calculated in the previous step with the
n,(~1) points.
Using this algorithm we can increase the number of quadrature points consec-

utively, and check the convergence of the integrals at each step. We use only the
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extra points added in each step, therefore avoiding carrying out the integration from
the beginning with all the points. In the current implementation, we start with 31
points and the results typically converge to the 10th decimal by the time we reach
2047 points or 4097 points for a few cases.

The performance of the Log3 scheme was found to be consistently better than
that of the Euler-Maclaurin radial quadrature scheme [28] which was also examined.
This scheme maps points to the (0,+00) interval according to

2

T _Z:L‘i)2 (2.81)

r; =
The Euler-Maclaurin scheme is not as efficient for our purpose, requiring on average
an order of magnitude more points in order to produce the same results as the Log3
scheme. This trend was common in all examples tried. As an illustration, the
number of points required by each type of grid for a variety of molecules, ECPs and
basis sets is shown in Table 2.4.

Both quadrature schemes are routinely used in DFT calculations for the eval-
uation of the exchange-correlation potential matrix elements. The reason for the
better performance of the Log3 scheme could be attributed to its specific design for
integration of Gaussian functions in contrast to the Euler-Maclaurin scheme which
is supposed to be of more general applicability.

Having decided upon the type of quadrature and integration technique to be
used, there remains the implementational question of memory usage as the number
of basis functions and quadrature points increases. The values of (ga|lm;B)(r;)
are calculated, contracted to (G 4|lm; B)(r;) and stored in an array of size Npp X
n&k) where Npr is the number of basis functions. Furthermore the values of
e_a(EQ‘”Q)i A(2aABr) are also precalculated and stored in an array of size N,z X
(L + Vmaz) X m(nk), where Nz is the total number of primitive Cartesian Gaussian
exponents and vy, is the highest orbital angular momentum in the basis set. The
sizes of these arrays can become substantial for large molecules when the number of
basis functions approaches or exceeds 1000 and they are obviously affected by the

increasing number of quadrature points in the iterations for converging the integrals.

This dissipation of memory can be avoided by performing the radial integration us-
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Table 2.4: Comparison of the performance of the Log3 and Euler-Maclaurin radial
grids. Each molecule contains only one ECP centre (the metal atom) with the

accompanying valence basis set. The integrals were converged to the 10th decimal

digit.

Molecule Basis ECP Log3 points Euler points
RbCl 631G2DP Wadt et al. [50] 4095 16383
AuH, 07 DZ Wadt et al. [51] 4095 32767
UOo3*+ DZP Hay et al. [61] 2047 65535
UF¢ DZ Hay et al. [61] 1023 65535
AgH PVTZ Hay et al. [49] 255 32767
Pt(CoH4)Cly DZ Wadt et al. [51] 127 65535
RbCl 631G2DP  [67] 127 255
AuH,OF DZ Andrae et al. [53] 127 511
Uo2*+ DZP Kiichle et al. [54] 127 255
UF¢ DZ Kichle et al. [54] 127 255
AgH PVTZ Andrae et al. [53] 127 511
Pt(CoH4)Cly DZ Andrae et al. [53] 127 511




CHAPTER 2. ONE ELECTRON INTEGRALS 93

ing batches of radial points. In such a batch formalism, subsets of npep of the

(k)

radial points are used in each step of the integration, until all the n,"’ radial points
are exhausted. Thus, n&k) is replaced by npgtcn in the sizes of the relevant arrays. In
the present implementation the value of npq:c;, Was set to 64. The use of batches of
points makes the memory demands of the program more or less the same as those
of the usual one-electron integrals.

It is appropriate here to make a further comment on the accuracy of the AN
method. We can observe from equation (2.74) that every (gal|lm; B)(r;) term in-
volves several spherical modified Bessel functions of the first kind ¢; multiplied by a
steeply decreasing exponential term. Even though we have ensured that accuracy is
maintained by using logarithms, one could still claim that we have not succeded in
our goal. This would however affect our results when we switch from Log3 to Euler-
Maclaurin quadrature because the distribution of points and weights in the two cases
is substantially different. However the integrals obtained using the two quadratures
are identical up to the number of decimals we decided to converge them, though
they require a much larger number of quadrature points for the Euler-Maclaurin
case. This fact is a proof that no numerical errors, due to the finite precision of the

computer, affect our results.

2.8.4 Illustrative results

We wish to demonstrate the capabilities of the AN method with calculations on
some large, commonly encountered molecules. For this purpose, some single point
energies of molecules containing various heavy elements with ECPs are given in
Table 2.5. Single point energies are a means of verifying the code and provide a
point of reference for others who may try the AN method.

The uranium and rhodium atoms were represented by ECPs with the corre-
sponding basis sets from references [61] and [49] respectively. The geometries of
the rhodium clusters were taken from crystal structures with the aid of the Quest
program of the Cambridge Crystallographic Database[68], while the geometries of
the 18crown6 and the uranyl were obtained from a molecular mechanics geome-

try optimisation using Cerius? [12]. The LDAX exchange functional [16] was used
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throughout and no correlation functional was included. Standard double zeta basis

sets on the atoms not bearing ECP’s were used.

Table 2.5: Single point LDAX (exchange) energies

Molecule Energy (Ep)
Rh4(CO)12 -1428.3449
Rhg(CO)19C -2337.8623

UO,(18crown6)?* | -1104.7779
UOZ" + 18crown6 | -1104.2977

Carbonyl clusters of metals are common examples of molecules with metal-
metal bonds [69]. There are numerous experimental studies on these systems due
to their complexity of structure, variety of unusual reactions, resemblance to bulk
metals and possible use in catalysis [70, 71]. The understanding of their electronic
structure is also a field of active research [72]. There are no localised orbitals and
the chemical concept of a bond between two atoms due to an electron pair cannot
be used. Their structures are explained often in terms of electron counting rules
which have been derived from rudimentary LCAO arguments. There are no general
trends and correlations with the other great class of clusters, the halide clusters
whose properties are rationalised by different arguments. Our aim is to optimise
the geometries of representative types of clusters at the DFT level of theory with the
most important relativistic contributions accounted for through the use of ECPs.
We then hope to derive conclusions concerning the stability and electronic structure
of these compounds.

Ligands which bind uranium, plutonium and other actinides are of prime im-
portance in the nuclear industry. For example, ligands such as tributyl phosphate
(TBP) are used in the separation by extraction of uranium and plutonium from nu-
clear fission products. Also, special ligands for removing actinides from the blood in
cases of contamination exist [73]. There is potential for improving the efficiency of
such separative processes by designing ligands with better selectivity. Experimental

investigation of such systems is quite expensive and time consuming because of the
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Figure 2.1: Plot of a density isosurface of UO2(18crown6)?t. The U core is rep-
resented by an ECP and therefore its core electron density is not included in the

plot.

hazards involved. A code like MAGIC is expected to provide chemically useful in-
formation on such systems. As a starting model we have decided to investigate the
interaction of a uranyl cation with the 18crown6 ether. Results by other workers
using the Molecular Dynamics approach [74] claim that the complex is stable in
the gaseous phase. In the gaseous phase, we find a dissociation energy of 0.4802E,
(301.3 kcal/mol) which indicates quite a strongly bound complex (see Table 2.5).
A plot of a density isosurface of the complex is given in Figure 2.1.

Even in cases where relativistic effects are negligible, such as third row atoms,
ECPs are a common choice because they reduce substantially the cost of a calcu-

lation with very small error. As a demonstration of this fact, the geometry of a
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Table 2.6: Selected bond lengths (A) and angles (°) of the optimised structures
of P7 with Molecular Mechanics (MM), All-Electron (AE) LSDA and ECP LSDA

calculations.
Bond/Angle MM AE LSDA ECP LSDA
P1-P2 1.780 2.219 2.061
P1-P4 1.780 2.245 2.044
P4-P6 1.780 2.246 2.041
P6-P5 1.780 2.216 2.059
P1-P4-P3 90.0 91.9 93.4
P2-P3-P7 90.0 106.0 110.3
P1-P2-P3 90.0 93.5 92.3

cluster of seven phosphorus atoms, P7, was optimised with and without the use
of ECPs. The unrestricted Kohn-Sham formalism with one unpaired electron was
used, within the Local Spin Density Approximation (LSDA) for exchange and cor-
relation which consists of the uniform electron gas exchange functional [16] and the
VWN correlation functional by Vosko, Wilk and Nusair [75]. For the all-electron
calculation the SVP basis of Ahlrichs et. al. [76] was used while in the ECP calcu-
lation the 10 core electron ECP of Bergner et al. [77] was used. The bases for the
valence orbitals were double zeta plus polarisation in both cases and therefore of
comparable quality. The starting geometry was obtained by a Molecular Mechanics
(MM) optimisation with the Cerius? package [12] using the universal force field of
Rappé et. al. [78]. The ECP calculation was significantly cheaper, with only 35
electrons and 98 basis functions in comparison to 105 electrons and 133 basis func-
tions for the all-electron calculation. The optimised geometries are shown in Figure
2.2. Selected bond lengths and angles are given in Table 2.6.

It can be observed that the ECP results compare well with the all-electron re-
sults and the difference is of the order of magnitude of errors resulting from the
inexact description of electron correlation. Part of the difference can be attributed
to the ECP parameters which have been derived from Hartree-Fock (HF) calcula-

tions. They are therefore supposed to include the effects of HF core orbitals, which
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Figure 2.2: Optimised geometries of a P7 cluster with different methods. (a) Molec-
ular mechanics. (b) All-electron LSDA DFT. (c) ECP LSDA DFT.
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should be somewhat different from the effects of DF'T core orbitals. The all-electron
and ECP bond lengths in Table 2.6 are comparable with the bond lengths of the
orthorhombic, rhombohedral and cubic allotropes of black phosphorous which are
2.23 A, 2.13 A and 2.38 A respectively [69]. Both all-electron and ECP geometry
results differ quantitatively and qualitatively from the molecular mechanics results
that predict a cubic structure for P; without any distortion. The magnitude of the
dipole moment of the optimised cluster is 0.55 D in the all-electron case and 0.74

D in the ECP case.

2.8.5 Conclusions about the AN method

An efficient approach which combines analytical angular with numerical radial in-
tegration is suggested for calculating the ECP integrals that involve projection
operators. It is much simpler in concept and implementation than purely analyti-
cal integration methods. The implementation of the method has been done in the

MAGIC program and is used for calculations on large molecules.

2.8.6 The DFT molecular energy in calculations using ECPs

What we have achieved with the use of ECPs is to separate the core energy which
is the largest part of the energy of the molecule from the valence energy which is
a very small fraction. The ECPs take care of the core-valence interaction energy
within the independent particle model approximation, and the DFT calculates the
energy of the valence electrons, including valence-valence correlation effects. The
self-energy of the electrons of each atomic core is supposed to be independent of the
chemical environment of the atom, a constant according to the basic assumption of
ECPs, and therefore we neglect it as it contains no chemically useful information.
What is left then is the inclusion of the interaction of the core electrons of one
ECP bearing atom with those of another, or with the nuclear charge of an atom
without an ECP. It is not difficult to show that this term can be approximated by an
electrostatic repulsion between point charges with magnitude equal to the number

of valence electrons on each core [37]. The expression for the total KS-DFT energy
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is therefore:

Za—Na)(Zp — Np)
|A — B

Blpo] = Yo 577 19} + Brlpa] + Bnclpul + 3 ¢
v A<B

(2.82)

The first term contains the independent particle kinetic energy, nuclear attraction
and effects of the core, all represented by the hel ! operator. The functions ¢, are the
valence orbitals, the only orbitals that exist in an ECP calculation. The remaining
terms are the self-interaction (Coulomb) energy E;[p,]| of the valence density p,,
the exchange-correlation term FEg,.[p,] and the (approximate) interaction between
the electrons of one core with those of another. N4 is the number of core electrons

of atom A and is set to zero if this atom does not contain an ECP.



Chapter 3

Coulomb Energy Evaluation

3.1 Introduction

3.1.1 Density Functional Theory for large systems

Density Functional Theory (DFT) has been established as a practical method for
including electron correlation effects in calculations on chemically important molec-
ular systems. While research into finding improved functionals continues, there
are a large number of reasonably accurate functionals available. Many studies of
chemical properties have been carried out using those functionals. To this end, an
efficient computer program is essential as the amount of computation necessary is
large. In the regime of the size of molecules which are of practical interest to many
experimental chemists, the number of integrals necessary for a DFT calculation is
simply too large to store in core memory or on disk. Direct SCF algorithms, first
introduced by Almlof et al. [79], are the only possibility. This breakthrough in
computational chemistry was made possible by reducing the prohibitive and unnat-
ural cost of such a calculation, which appeared to be proportional to Njé. , Where
Npr is the number of basis functions, a quantity proportional to the size of the
molecular system. In the Direct methodology, the integrals are calculated afresh
in every SCF cycle and tests are used to skip the evaluation of integrals which are
predicted to make zero contribution to the Fock matrix. As a result, the cost of the

calculation scales quadratically for sufficiently large systems. Refinements to this

60
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procedure were developed by Ahlrichs and coworkers [80, 81]. The direct SCF de-
velopments were originally applied in Hartree-Fock calculations. They are however
readily transferable to Kohn-Sham theory and in fact easier to implement due to
the lack of exchange integrals.

In Kohn-Sham theory the contributions to the electronic interaction energy are
expressed as functionals of the electronic density. These are the exchange-correlation

term Exc¢ and the Coulomb term E;

Exclpl = [ 10, Vp,...)do (3.1)

Bilpl = [ [ o0 —plez)dvrdon (3:2)

The evaluation of Exc¢ is typically carried out with numerical integration. Its
computational cost is a small percent of the whole cost of a DFT calculation for
medium sized molecules (~ 50 atoms) and it has been shown that it can be made
to scale linearly with Npp [82]. It is the evaluation of the Coulomb term which
dominates the computational procedure as soon as molecules of reasonable size are
encountered. Methods for calculating this term which scale linearly asymptotically
have been invented [83, 84]. However, their breakeven point with conventional
methods has been demonstrated to be of the order of hundreds of basis functions
and this for cases of molecules of light atoms with extended geometries, such as
linear hydrocarbons, graphite sheets and water clusters. It is therefore reasonable
to expect that in large complexes containing heavy atoms or three dimensional
metal clusters the breakeven point will be located at a prohibitively large number of
basis functions. This renders current linear scaling methods unsuitable for practical,
every day calculations on such compounds. The complexity of the implementation of
such methods, without any optimum “recipe” available in the literature, is another
drawback. Quantum Chemistry programs such as MAGIC [85] are mainly intended
for the study of inorganic compounds containing heavy elements [86]. Methods for
reducing the cost of the calculation by having a small prefactor even though they

still scale quadratically would lead to significant benefits in this case.



CHAPTER 3. COULOMB ENERGY EVALUATION 62

3.1.2 Representation of the density by an auxiliary basis set

A quadratically scaling method for calculating the Coulomb energy which is faster
than the conventional approach is the fitted density approximation. It was used in
different forms in the early work of Baerends [87] and Dunlap [88]. It is based on
the observation that the basis we use to describe the molecular orbitals is more
flexible than required to describe the density. This can be more clearly understood
if we consider that the basis set is required to describe all molecular orbitals. These
are usually quite different from each other and contain features not present in the
density (eg. sign changes, different levels of localisation). If {Xz}ii BF is the set
of basis functions we use to express the orbitals, the density is represented as a
quadratic form in the basis in terms of the density matrix D:

Npr Npr

p(r) = > > xilr)x;(r)Dji (3.3)

i=1 j=1
When the basis consists of Gaussian functions, then according to the product rule,
Xi(r)x;(r) = xt(r), where x;(r) is a linear combination of a few Gaussian functions,
centred on the line joining the centres of x;(r) and x;(r) [89]. Consequently, the
above expression for the density can equivalently be written as

Npr(NBr+1)/2

p(r) = > xt(r)g; (3-4)

t=1
where qg(i_l)/%j = (2 — 0;j)D;;. As the space of the x;(r) functions is nearly
degenerate [90, 91], it is desirable to obtain an accurate representation of the density
in terms of a new basis set, especially tailored for this purpose. This new basis set
{ ft}iV:AlUX is commonly called the auxiliary basis set. The density is approximated
by the auxiliary basis set as
Navx
p(r) = pavx(t) = D felr)a (3.5)
t=1

where the expansion coefficients, or “charges” ¢ [92, 93] are determined in some op-
timum way. The approximate density is subsequently used to calculate the Coulomb

energy

1 1
Ejlp] ~ 5//PAUX(rl)EPAUX(rQ)d’UldUQ (3.6)



CHAPTER 3. COULOMB ENERGY EVALUATION 63

The above result would equal the exact Coulomb energy only if the auxiliary set was
a complete basis with an infinite number of functions or the set of Ngp(Ngr +1)/2
functions arising from all the distinct products of pairs of the original basis functions.
None of these choices would result in any computational savings however. To have
any significant savings, N4y x has to be proportional to Ngr. Indeed, Eichkorn et
al. [94, 95] have constructed auxiliary basis sets for every element (excluding the

lanthanides and the actinides) which satisfy the requirement
Navx <3Npr (3.7)

and it is claimed that this leads to an increase of the speed of calculation of Ej
by an order of magnitude. The absolute error introduced by these auxiliary sets is
expected to be smaller than the errors arising from the incompleteness of the basis
sets and the inexact treatment of correlation. In fact, the relative error, which is
important for chemical properties, is expected to be even less and should not hinder
attempts to improve our results in an effort to achieve “chemical accuracy” of 1
mE, [96].

The MAGIC quantum chemistry program, intended for performing relativistic
calculations on large systems containing heavy atoms [97, 98], is able to calculate
the Coulomb energy either by an auxiliary basis fitted density, or with the “exact”
density. In agreement with the above, it has been observed that the fitting density
approximation is markedly faster than the exact calculation. We find however that
there are very few auxiliary basis sets available in the literature [94, 95, 99] and the
method’s accuracy has not been tested extensively. A great part of this chapter is
devoted to testing the robustness of some of the most widely used auxiliary basis
sets with respect to the size of the basis set. We wish to examine their performance
for smaller and larger basis sets than the ones they were meant to be used with
and see if we can establish criteria for judging the quality of the representation
of the fitted density without comparing with the “exact” calculation. In general,
every basis set is not accompanied by a corresponding auxiliary set. Therefore, even
though the auxiliary fit method is efficient, it may not be of much practical value

without general-purpose auxiliary sets, accurate for a range of basis sets.
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In section 3.2 a brief comparison of density fitting procedures and the underlying
theory including the procedure implemented in MAGIC, is given. In section 3.3
the calculations performed, in order to answer the questions we have posed, are
described. Section 3.4 is a discussion and rationalisation of the results obtained.
This investigation ends in section 3.5 where we reach some conclusions regarding
the transferability of auxiliary basis sets and suggest ways of predicting how well

they will perform with a particular basis set and molecule.

3.2 Density fitting procedures

We summarize briefly and compare the most common density fitting procedures in
the literature. The notation of earlier works in the field is followed. Both the basis
set and the auxiliary basis set consist of nonorthogonal functions. The first step in
fitting procedures is to orthonormalise the auxiliary basis set. Symmetric orthonor-
malisation is used for this purpose. This leads to two broad classes depending on

the kind of metric used.

3.2.1 Inner product: Overlap integral

The overlap integral
St = [ £ (Wf(Ddvr = (Flf) (39

is used as a metric. Then symmetric orthonormalisation

=

=S~ (3.9)

yields the auxiliary basis set {f/ é\i“lUX which is orthonormal in the linear vector

space with metric S. The density can be fitted now by simply projecting it onto

the orthonormal auxiliary basis.
pp="F(f|p) =£S73(£S77|p) = £S!(f|p) = £q (3.10)
The Coulomb energy can therefore be represented by

2B; = (plp) = (£S™'{flp)|fS~(f]p))
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= (lf)S M (ED)S(E]p)
— (ple)S VS H(t]p) (3.11)
where V is the matrix of two-centre two-electron integrals in the auxiliary basis,

see equation (3.13) below. Equation (3.11) was originally derived by minimising the

mean square deviation of the fitted density [87]:
[ 1p(x) = 50) P (3.12)

3.2.2 Inner product: Electrostatic interaction integral

The electrostatic interaction integral

Vio= [ [ 520 fu@dvidor = (711 (3.13)

can serve as another definition of inner product and be used as a metric. Symmetric

orthonormalisation in a similar fashion as before

f'=fv 2 (3.14)

yields the auxiliary basis set {f]'}4U* which is orthonormal in the linear vector

space with metric V. The density is again expanded in the orthonormal auxiliary
basis

p=1"(E"|p) = EV 3 (EV 2 |p) = £V !(£]p) = £q (3.15)

The expression for the Coulomb energy in this case is

2B; ~ (plp) = (V' (Elp)IEV " (£]p))
(P )V (EIE) VT (Flp)
= (f)VIVVTi{(E|p)
(

plf) V= (flp) (3.16)

By noting that (p|5) = (5|p), a variational principle can be written which shows that

the error in Coulomb energy due to auxiliary basis set incompleteness is negative

2E; > (p|p) (3.17)
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The result of equation (3.16) was originally derived by minimising the Coulomb

energy of the residual of the fitted density [88]:

%//(/)(rl)—ﬁ(rl))(P(r2)—ﬁ(r2))dvldv2 (3.18)

[r1 — 1o

3.2.3 Combination of the two methods

If the two ways of fitting the density are combined the following expression results.

2B = (p|p) = (pIf)S ™ (flp) (3.19)

As will be seen in the next subsection, this expression is a compromise in computa-
tional cost between equations (3.11) and (3.16). When used in a direct SCF scheme
it requires the evaluation of three-index two-electron integrals and three-index over-

lap integrals in every SCF cycle.

3.2.4 Comparison of the three approximations

In order to use equation (3.11) in a direct SCF calculation, one would have first
to calculate the S™'VS~1(f|p) column vector and then contract it with the (p|f)
row. These two steps require the calculation of three-index overlap integrals twice
per SCF cycle. In a similar way we can show that for equation (3.16) it is neces-
sary to calculate three-index-two electron integrals twice per SCF cycle. The three
schemes therefore have substantially different computational costs. They also differ
substantially in their performance in fitting the density. By intuition, we would
expect the use of the electron repulsion integral as a metric to yield better results
since the reason we are fitting the density is to approximate such an integral. Or in
other words, minimising directly the Coulomb energy of the density residual should
lead to better results as far as energy is concerned. This assumption was verified
by Vahtras et al. [100] through a series of simple tests. They found that for every
auxiliary basis set they tried equation (3.16) (the “V approximation”) was far more
accurate than (3.11) (the “SVS approximation”) while the results due to (3.19) (the
“S approximation”) were in between. The variational principle of equation (3.17)
is an added benefit of the V approximation that is also referred as the RI-J approx-
imation (Resolution of the Identity for the Coulomb energy). It applies strictly for
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p being the density of the RI-J calculation. However under the assumption that the

density p« » of the non-fitted calculation is almost equal to p one can deduce

exac
that the RI-J error in energy should be negative. When this subtle generalisation
is valid, it leads to some cancellation of systematic errors in energy differences.
As a consequence, the V approximation has become the most widely used today.
Some results of accuracy as a function of auxiliary basis set size have been given by
Van Alsenoy [101] for the S approximation with the added constraints of preserving
charge and dipole moment. However the auxiliary basis sets used were far from
optimised and explicit corrections to the Coulomb energy in terms of four index
electron repulsion integrals had to be included.

[We should note at this point that in the case of hybrid exchange-correlation
density functionals the auxiliary basis set approximation is not as efficient since
four-index integrals are necessary for the exchange energy and have to be calculated
as well.]

The program approximates the Coulomb energy using the V approximation.
This method was chosen because of its accuracy. Furthermore, calculation of the
gradient (section 5.2) or higher derivatives is not much more complicated than the

conventional approach [102].

3.3 Calculations and results

The computational efficiency as well as the quality of the V approximation depend
on the auxiliary basis. There is little justification for using RI-J DFT unless the
auxiliary basis is optimised for both speed and accuracy. This is achieved by requir-
ing the auxiliary sets to represent the density of the isolated atom in such a way
as the error which results in the atomic energy is below a certain threshold. It is
important to note however that the optimization procedure of the auxiliary basis is
carried out for a particular kind of basis. There is therefore no a priori guarantee
that they are going to perform equally well for basis sets other than the one for
which they were optimised. On the other hand, the construction of an auxiliary

basis is not a trivial task and is certainly not one that can be performed on a daily
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basis for each basis set we encounter. Consequently, the practice of considering
the available auxiliary basis sets more or less as “universal” has prevailed. They
are thus used with little regard to the basis set selected. We wish to examine the
validity of this assumption for a variety of basis sets and molecules. Furthermore we
wish to gain some insight into the quality of the RI-J approximation for a particular
auxiliary basis set as a function of the basis set and the type of molecule.

For this study, it was decided to use the auxiliary basis sets of Ahlrichs et. al.
[94, 95] which were designed specifically for basis sets of SVP and TZVP quality
by the same group [76, 58]. These auxiliary sets are available for almost all the
elements, apart from the actinides and lanthanides and are meant to produce an
error of less than 0.2 mEj, per atom. We decided to treat these auxiliary basis sets
as standard “universal” auxiliary basis sets.

Six types of basis sets were selected [103] which we describe in order of increasing
size. First was the STO3G minimal basis set of Pople [104, 105]. Calculations with
a minimal basis are essentially semiempirical as a result of its incompleteness and
lack of polarization functions. The second basis set that we use is the Double Zeta
(DZ) basis of Dunning et. al. [106, 107]. This is certainly an improvement over
the STO3G but still lacks polarisation functions. Next in the series come the SVP
and TZVP bases of Ahlrichs et al., the ones for which the auxiliary basis sets were
designed. These were therefore expected to perform better than the rest of the
basis sets. These sets are fully optimised (exponents + contraction coefficients)
and describe well both the core area with large contractions and especially the
valence area. The fifth basis set we tried is the cc-pVTZ basis of Dunning et al.
[108, 109]. This basis, like the TZVP, deals with the core orbitals with large fixed
contractions and puts the emphasis on the valence region which is mainly responsible
for most molecular properties, especially the ones related to the energetics of bond
breaking and bond forming. It is substantially larger than the TZVP and contains
polarisation functions with angular momentum up to and including d for Hydrogen
and f for second and third row atoms. The sixth and final basis that we employed
was the cc-pVQZ, again by Dunning et al. [108, 109]. This basis further extends cc-

pVTZ with its four zeta description of the valence region and is probably sufficient
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for the most demanding of DFT calculations. It contains polarisation functions up
to and including f for Hydrogen and g for first and second row atoms.

In order to determine the effect of the functional, if any, on the accuracy of the
RI-J method, we ran some of the calculations with the Local Density Approxima-
tion exchange-only (LDAX) functional [16] and some with the Becke 88 gradient
corrected exchange functional [59] plus the correlation contribution by Lee, Yang
and Parr [60] (BLYP). The LDAX functional is equivalent to the Xa exchange
functional whose adjustable parameter o can be determined according to different
criteria [110, 111]. The value a = 2/3 was selected which comes from the uniform-
electron-gas approximation for the exchange energy [16].

As we are interested in ways of evaluating the quality of the RI-J approximation
we assess here the usefulness of the Weighted Root Mean Square deviation of the
fitted Density (WRMSD) from the “exact” density for this purpose. The WRMSD

test computes the following quantity at the end of an RI-J calculation:

Ngrip
J > wilp(ri) — pavx(ri) 2 (3.20)

i

where p and papx are given by equations (3.3) and (3.5) respectively. Both of them
are computed with the density matrix D and the charges q of the RI-J calculation.
The points r; and the weights w; come from the molecular quadrature grid that
MAGIC uses to calculate the DFT exchange-correlation energy and matrix elements
(section 1.5). We note that these grids are extensive with 9060 grid points for every
first row element, increasing to 15100 points per atom for actinide elements. It would
be reasonable to expect that the WRMSD test should produce a good indication
of the quality of the RI-J approximation for results using the same molecule with
different basis sets.

MAGIC is able to perform both “exact” and RI-J (V approximation) DFT
calculations. We have selected a wide variety of molecules on which we have run
both types of calculations. Some of them are inorganic compounds and for their
metal atoms we have used ECPs (section 2.7) to represent the interaction of the
core electrons with the valence. Therefore, for the metal atoms, the valence basis

set which accompanies their ECP is always used regardless of what basis is used for
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the rest of the atoms in the molecule. We use this practice very often in applications
because ECPs are a cheap and simple way of taking into account the most important
of the relativistic effects. We selected the ECPs of the Stuttgart group [52, 54] as
they have small cores and large valence basis sets for maximum accuracy and also
because our auxiliary sets are optimised especially for them.

The results we obtained for each molecule are given in Tables 3.1 and 3.2. The
geometry of RbCl was obtained from a Molecular Mechanics (MM) optimisation and
the BLYP functional was used. The geometry of K[PtCl3(C2H4)] was optimised by
MAGIC using the SVP basis set and the LDAX functional was used throughout.
The geometries of CHoFCOO™ and CH3CgH5 were optimised by MM and the BLYP
and LDAX functionals were used respectively. NOo, BosHg and TiCly were optimised
by MAGIC with an SVP basis and the BLYP, LDAX and BLYP functionals were
used respectively. The geometry of (H3PAu),S was adopted from similar molecules
in the literature [112] and the BLYP functional was used. Finally, the LDAX func-
tional was used for both H3COSiH3 and CH3NH3+ whose geometries were obtained
by MM. The number of auxiliary functions and the number of basis functions for
each basis set for each molecule are given. For each case we performed an “exact”
calculation with four-index two-electron integrals and an RI-J calculation and we
present the error in total molecular energy, the error in atomization energy and the
WRMSD. Atomisation energy is the difference of the total energy of the molecule
from the sum of the energies of the neutral isolated atoms comprising the molecule,
both calculated either with or without the RI-J approximation.

Having obtained the above mentioned results on the RI-J approximation for
different molecules and basis sets, we performed calculations with the same basis set
but on molecules of increasing size. The purpose here was to gain some insight into
the effect of the RI-J approximation as the molecules become larger. We therefore
ran calculations on crown ethers, starting with 3c1 (CoH40) , to 6¢2, all the way up
to 21c7. The LDAX functional and the SVP basis set were used. Table 3.3 contains
the results of these calculations, which are again the errors in the energies and
atomization energies and the WRMSD. The energy error and atomization energy

error are plotted as functions of the number of monomer units (3cl) in Figure 3.1.
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Table 3.1: Errors in total energy (E) and atomisation energy (EA) and WRMSD
values (equation (3.20)) for the RI-J method. The number of auxiliary basis func-
tions for each molecule is given in parentheses under its name. Also given are the
functional and the method for obtaining the geometry (eg. BLYP//MM means
that the BLYP functional was used and the geometry was obtained by molecular
mechanics).

Molecule Basis Set Npr E—ERpj EARI— J —-EA WRMSD
(mEp) (mEp)  (x107)

RbCl STO3G 39 8.110 0.249 3.33
(74) DZ 48 0.602 0.533 1.09
BLYP//MM SVP 49 0.567 0.546 0.99
TZVP 53 0.643 0.611 1.01

cc-pVTZ 69 0.736 0.705 1.01

cc-pVQZ 104 0.892 0.801 1.27

K[PtCl3(CoHy)] STO3G 106 55.259 1.304 9.83
(439) DZ 147 31.943 0.034 8.12
LDAX//LDAX(SVP) SVP 172 31.753 0.101 8.09
TZVP 198 31.856 0.186 8.12

cc-pVTZ 312 32.018 0.342 8.12

cc-pVQZ 567 32.276 0.281 8.20

CHyFCOO~ STO3G 27 2.288 3.567 2.40
(256) DZ 54 0.301 0.267 1.72
BLYP//MM SVP 85 0.400 0.374 2.08
TZVP 112 0.464 0.444 2.06

cc-pVTZ 205 0.484 0.451 2.12

cc-pVQZ 420 0.522 0.499 2.21

CH3C4Hs STO3G 43 2.155 6.308 1.83
(428) DZ 86 0.255 0.205 1.56
LDAX//MM SVP 145 0.463 0.428 2.13
TZVP 188 0.552 0.520 2.18

cc-pVTZ 365 0.666 0.633 2.38

cc-pVQZ! 525 0.672 0.627 2.39

NOs STO3G 15 1.494 19.128 2.35
(132) DZ 30 0.207 0.193 1.58
BLYP//BLYP(SVP) SVP 45 0.277 0.256 1.94
TZVP 60 0.313 0.302 1.80

cc-pVTZ 105 0.308 0.292 1.81

cc-pVQZ 201 0.340 0.329 1.86

!The cc-pVTZ basis set was used on the C atoms.
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Table 3.2: Errors in total energy (E) and atomisation energy (EA) and WRMSD
values (equation (3.20)) for the RI-J method. The number of auxiliary basis func-
tions for each molecule is given in parentheses under its name. Also given are the
functional and the method for obtaining the geometry (eg. BLYP//MM means
that the BLYP functional was used and the geometry was obtained by molecular
mechanics).

Molecule Basis Set Npr E—Eppj EAR.j—EA WRMSD
(mEp) (mEp)  (x107)

BoHg STO3G 16 0.556 5.507 1.32
(178) D7 32 0.049 0.017 0.80
LDAX//LDAX(SVP) SVP 60 0.049 0.042 0.78
TZVP 76 0.058 0.044 0.89

cc-pVTZ 160 0.074 0.057 1.01

cc-pVQZ 350 0.088 0.062 1.06

TiCly STO3G 85 34.405 —0.519 10.39
(294) DZ 121 4.082 0.323 6.75
BLYP//BLYP(SVP) SVP 125 3.895 0.328 6.55
TZVP 141 3.944 0.336 6.61

cc-pVTZ 205 3.949 0.345 6.62

cc-pVQZ 345 4.228 0.383 6.91

(H3PAu),S STO3G 111 25.078 —2.727 7.90
(439) DZ 144 0.227 0.092 1.13
BLYP//exp SVP 165 0.209 0.139 1.03
TZVP 183 0.242 0.149 1.14

cc-pVTZ 285 0.285 0.185 1.14

cc-pVQZ 510 0.718 0.427 1.54

H3COSiH3 STO3G 25 10.158 4.754 7.64
(229) DZ 50 0.333 0.241 1.58
LDAX//MM SVP 79 0.342 0.312 1.82
TZVP 99 0.385 0.348 1.92

cc-pVTZ 199 0.402 0.358 1.93

cc-pVQZ 424 0.590 0.419 2.18

CH3NHS STO3G 16 0.714 0.947 1.55
(178) DZ 32 0.100 0.067 1.18
LDAX//MM SVP 60 0.152 0.134 1.62
TZVP 76 0.178 0.161 1.64

cc-pVTZ 160 0.197 0.179 1.71

cc-pVQZ 350 0.216 0.187 1.77
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Table 3.3: The RI-J approximation for crown ethers of increasing size. The values
of WRMSD (equation (3.20)) and the errors in total energy (E) and atomization
energy (EA) are given. 3cl is 3-crown-1 (C2H40) and contains 65 auxiliary basis

functions.

Molecule NBF E_ERI—J EARI—J —EA WRMSDx 107

(mEj) (mEp)
3cl 65 0.429 0.412 2.33
6c2 130 1.071 1.038 2.95
9c3 195 1.456 1.405 2.98
12c4 260 1.885 1.818 3.08
15¢h 325 2.239 2.155 2.98
18c6 390 2.738 2.636 2.97
21c7 455 3.257 3.139 2.81
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Figure 3.1: Error in energy and in atomisation energy for the RI-J approximation
as a function of increasing crown ether size.

3.4 Discussion

Even though the list of molecules studied is by no means exhaustive, it contains
many cases similar to those encountered in chemical applications with DFT. Equi-
librium, or near equilibrium geometries, where DFT is most commonly used, were
selected. We focus on energies since our auxiliary basis sets are optimised for them
and therefore they are a direct indication of how well the RI-J approximation works.
Furthermore, atomization energies are useful for comparisons of stability between
different molecules and do not depend on errors in the description of the core region.
Many molecular properties have this characteristic.

From Tables 3.1 and 3.2 we can observe that the RI-J energy is lower than the
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non-fitted energy in accordance with the generalisation of the variational principle
of equation (3.17). The atomisation energies of the RI-J calculations are larger than
the four index results, probably because the RI-J energies of the isolated atoms are
calculated more accurately than the energies of the molecules. Only in TiCly and
(H3PAu),S, both with the STO3G basis, is the four index atomization energy higher
than the RI-J atomization energy.

Our next observation is that the target accuracy of less than 1mE;, has been
achieved for the atomisation energies for the SVP and TZVP basis sets for which our
auxiliary basis functions were designed. In most molecules this is true for the total
energy which gives errors of comparable magnitude. However, in K[PtCl3(CyHy)]
and TiCly, which include third row or lower elements, the errors in energy are much
larger and way above our threshold. These errors can be attributed to the density
of the core electrons and cancel in the atomization energies as they are not affected
by the chemical environment of the atoms.

We now look at how the rest of our basis sets performed. Surprisingly, STO3G
which is much smaller than SVP and TZVP and in some cases has almost an order
of magnitude less functions than the auxiliary basis, performs rather poorly. It
seems that the auxiliary basis does not have the flexibility to follow its inadequate
description of the density, which is substantially different from the density of a
near-complete basis. This causes errors in the core region description for RbCl,
K[PtCl3(CoH,)] and TiCly, in the valence region for NOg and BoHg and in both
core and valence for CHoFCOO™, CH3CgHs, (H3PAu)2S and H3COSiHs. Only in
CH3NH§' does it seem to perform well, probably as a result of its positive charge
which contracts its electron density, but still worse than the rest of the basis sets.

DZ performs in most cases almost equally well or a little better than the SVP and
TZVP bases. This should probably be the general trend for a basis set smaller than
the ones for which the auxiliary basis set was optimised but larger than minimal.

The cc-pVTZ and cc-pVQZ basis sets perform surprisingly well. They afford
comparable errors to the SVP and TZVP basis sets even though they have almost
the same number or more (for the cc-pVQZ case) functions than the auxiliary basis.

This shows that the auxiliary basis sets are quite robust towards the complete basis



CHAPTER 3. COULOMB ENERGY EVALUATION 76

set limit and can probably be considered as “universal” auxiliary basis sets as long
as the basis set has plenty of flexibility.

In evaluating now the usefulness of the WRMSD as a means of deciding the
suitablility of the auxiliary basis for a particular calculation we observe the following.
First of all the WRMSD is not an absolute measure of the quality of a calculation
but it has to be compared to some reference, “good” calculation for the molecule
in question. For example, in the (H3PAu)2S molecule, if our reference result is
the one with the SVP basis, one can observe that DZ, TZVP and cc-pVTZ are
equally good, with similar values of WRMSD. On the other hand, cc-pVQZ is not
as accurate and yields a slightly larger value of WRMSD, while STO3G is much
worse and this causes WRMSD to increase substantially. This rationale holds for
the rest of the results apart from STO3G CH3CgHs. Overall, the WRMSD seems
to be fairly sensitive to changes in errors. Its usefulness lies in the fact that it can
give (most of the time) some indication about the quality of the RI-J approximation
with a particular basis set if no four-index program is available. However, it requires
an extra calculation with the reference basis set and gives no a priori indication of
the magnitute of the error caused by an unsuitable basis set.

Table 3.3 presents the variation of the energy error, atomisation energy error
and WRMSD with increasing molecular size for the SVP basis set. We observe
that the WRMSD is almost constant, as should be expected for the same basis set
and class of molecules. The error in energy and atomization energy however grows
proportionally with the size of the molecule as shown more clearly in Figure 3.1.
This was to be expected since the auxiliary basis sets are expected to produce errors
of less than 0.2mE;, per atom. It is worrying however to observe that the target of
1mE,, is missed even for the atomization energy of 6¢2. Since the RI-J method is
meant for much larger molecules than this, we must hope that this increasing error
with molecular size will not render the chemical information we can obtain from
a large molecule useless, although this has to be tested. At least it is possible to
take advantage of this regular increase of the error with molecule size and use it in
a more direct approach to predict the performance of a particular basis set for an

auxiliary basis: RI-J and four-index calculations on a molecule much smaller than
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the one of interest should provide an error from which we can estimate the error on
the large molecule by extrapolation.

In all the RI-J calculations it was observed that the convergence of the SCF
procedure was either as good as the four-index case or better for some cases in the
sense that it required less iterations. There seems to be no observable trend in RI-J
accuracy related to the type of functional we used. BLYP which is a gradient cor-
rected functional is not more demanding in terms of auxiliary basis set requirements
than LDAX. The present calculations also raise the question of the accuracy of the
RI-J approximation for molecules containing transition metals. However, the ex-
amples presented here are not sufficient for this purpose. Nevertheless, we can note
that complexes with quasi spherical metals such as Au and Rb are more accurately
described than complexes containing transition metals with partly filled d orbitals

such as Ti and Pt.

3.5 Some conclusions regarding the RI-J approxima-
tion

We have tested extensively the accuracy of existing auxiliary basis sets for a variety
of molecules and basis sets. We have found that when used in conjunction with
smaller basis sets than the ones they were designed for they perform equally well
except in the case of minimal basis sets. Furthermore, they performed very well in
conjunction with increasingly larger basis sets, producing errors of the same order
of magnitude as their standard basis sets. The robustness of the auxiliary basis sets
towards the complete basis set limit is a particularly interesting result. Increasing
size of basis set leads to a very steep increase in the cost of a calculation and an
accurate RI-J approximation with current, readily available, auxiliary sets makes
possible much larger calculations.

The WRMSD test was introduced as a means of predicting how well a combi-
nation of basis set and auxiliary set for a particular molecule will perform. It is
useful when there is no capability for an “exact” four-index calculation; however

it requires a reference RI-J result. For the auxiliary bases tested in this work this
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reference result is a calculation with the SVP or TZVP basis set. When four-index
calculations are feasible, we suggest a much more direct test for the suitablity of an
auxiliary basis set. An RI-J and a four-index calculation on a molecule similar to
the one in question, but much smaller, give an error which can reliably predict the
error of the RI-J calculation for the large molecule. As Table 3.3 shows the error of
an RI-J calculation grows linearly with the size of the molecule. This should always
be taken into account.

The RI-J method appears to be the only practical way for DFT calculations on
the type of large inorganic molecules we are interested in. Our present findings form
a basis for ensuring that we achieve the accuracy we desire each time we use the
RI-J method. This will prove particularly useful, especially as there is currently a
gap in the literature on optimised auxiliary basis sets suitable for the valence basis
sets of effective core potentials for lanthanides and actinides and also for all-electron
basis sets of these elements. Finally, the option of an algorithm for optimising an
auxiliary basis set on the fly for each new basis set encountered is a possibility well

worth exploring.

3.6 Calculation of the charges

The determination of the charges (:1 of equation (3.15) should be carried out carefully
as the V matrix can very often be nearly singular.

Eichkorn et al. [94] have solved this problem by adding a small positive number
¢ to the diagonal elements of V. This results in raising all the eigenvalues of V by
¢, which is supposed to be a small number but greater than the computer precision.

Then a set of charges can be obtained without fear of rounding errors.
Qo = (V+6)"'(flp) (3.21)

However these charges are not exactly correct since we have manipulated the V
matrix to make it more stable. The charges used in the calculation are obtained in

a second step where (:10 are corrected by subtracting from them the contribution of
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the residual
4G =q-(V+0) "R=3q+ (V+0) "[(flp) — Vi (3.22)

It is claimed that the charges (:11 obtained with the above procedure are both accu-
rate and stable with respect to rounding errors. The parameter ¢ has been chosen
to be equal to 10~ for the particular implementation of the authors. An alternative
approach to this scheme would be to simply neglect the eigenvalues of V which are
lower than some threshold value § and then construct a numerically stable V! [64].
This singular value decomposition is a straightforward way of removing contamina-
tion from near nullspace solutions.

The drawback of the above schemes for determining the charges is that they
depend on the choice of the parameter §. The optimum value of this parameter is
a function of the precision of the computer in use. It must therefore be redefined
every time the code is ported to a different platform. In order to eliminate this
dependence we have chosen to solve the system of linear equations Vq = (f|p) with
a BLAS subroutine which is designed for systems of linear equations with V being
symmetric and indefinite. Such mathematical library subroutines are common to
all workstations and are optimised for efficiency and numerical stability. Finally a
subroutine for improving iteratively the solutions of the BLAS subroutine is called.
The charges obtained are checked by examining the Maximum Absolute Relative

Residual (MARR).

_ |(VaQ)i — (filp)]
MARR= maz =70 (3.23)

7

The value of MARR is usually ~ 10~!! or less for auxiliary basis sets stable towards
linear dependence and can range up to ~ 10~* before near linear dependence starts
to dominate the solution of the linear system (even with the specialised solution

schemes) and affect SCF convergence.
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3.7 Unoptimised auxiliary basis sets

Our investigations so far have been focused on the use of existing auxiliary basis
sets. However the question arises as to what we can do in cases where there are no
auxiliary basis sets available in the literature. We often encounter this problem, such
as in the case of calculations on molecules containing actinides and lanthanides with
and without ECPs, or second and third row transition metals without ECPs. As
we have mentioned already, the optimisation of auxiliary basis sets is a complicated

nonlinear problem.

3.7.1 A standard auxiliary basis set construction method

It is instructive to outline here the procedure that Ahlrichs et al. [94, 95] have fol-
lowed in order to create the most complete selection of auxiliary basis sets available
in the literature, that we have used for our studies. Based on preliminary results,
they decided to represent the exponents 7; of each particular angular momentum

by the expression
2
), 1=0,1,...,n—1 (3.24)

Ni+1 = M0 (1 + 7(71:_71)2
where it is assumed that there will be n exponents for each angular momentum.
The ansatz of equation (3.24) is an extension of the formula for even-tempered basis
sets [113]. The optimisation of an auxiliary basis set is a much easier task using
this ansatz as only three parameters (79, 3,) need to be optimised, as opposed to
the much more difficult task of optimising freely all the exponents. A simulated
annealing technique was used in order to optimise simultanously the parameters for
all angular momenta, in two steps. In the first step the exponents of the functions
of s, d, etc. symmetry were determined from atomic calculations by maximising the
Coulomb energy with respect to the parameters. Because the atoms have spherical,
or spherically averaged densities, only the even functions participated in the fit and
therefore the parameters for the odd functions p, f, etc. could not be determined
from atomic calculations. These were determined in a second step by calculations

on the hydrides of the atoms. Hartree-Fock theory was used as it does not de-

pend on the choice of a functional. Apart from exponents, the calculations on the
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atoms produced charges that were used as contraction coefficients to provide a light

segmented contraction of the auxiliary basis sets.

3.7.2 How to obtain a working auxiliary basis

Without endeavouring to fully optimise auxiliary basis sets, we seek a practical,
working solution that allows us to perform calculations involving types of atoms for
which auxiliary basis sets are not available. We have found that one can devise or
“hand-optimise” auxiliary basis sets without significant effort. These are obviously
going to be much larger than their optimised equivalents but hopefully equally
accurate. The accuracy of such auxiliary basis sets can be checked with the criteria
we have developed.

The choice of the exponents has to be done in a trial and error fashion. In
order to make our task simpler we have decided to represent the exponents of each

angular momentum by an even tempered formula (geometric sequence)
Nit1 =niB, 1=0,1,...,n—1 (3.25)

where n is the number of exponents for a particular angular momentum. Thus, only
two parameters per angular momentum are needed. We were kindly provided with

the following set of parameters by Ahlrichs [114].

type| m B n
s | 006 1.8 16
p |020 22 7
d |020 22 6
f 020 24 5
g 1020 24 4
h 030 24 3
i (060 24 3

These parameters produce an auxiliary basis with many closely spaced exponents
distributed over a large range of values. Due to this large flexibility, this uncon-

tracted auxiliary basis set is considered capable of describing the valence density of
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all actinide elements with ECPs. We have found however that even with the pre-
cautions we take for solving the system of linear equations for the charges (3.15),
instabilities arise which often affect badly SCF convergence. This increased ran-
domness in the determination of the charges is illustrated by the lowest eigenvalue
of the V matrix for a single atom containing this auxiliary set which is equal to
4.06 x 107, close to the precision threshold of most computers.

To alleviate this problem we have contracted this auxiliary basis using as con-
traction coefficients for the even functions (s,d,g,i) the charges from an LDAX cal-
culation on UFg with octahedral geometry. Contraction coefficients for the odd
functions (p,f,g) were obtained from the charges from an LDAX calculation on UFy
with a 90° bond angle. The SVP basis was used on the fluorine atoms and the
Stuttgart group quasirelativistic ECP with 60 core electrons on uranium. This re-
sulted in reducing the lowest eigenvalue of the V matrix to 2.14 x 10710 a value that
maintains stable convergence behaviour. The contraction of the actinide auxiliary
basis set is [16s;7p;6d;5f;4g;3h;3i](1s,1s,2s,4s,8s;1p,1p,1p,2p,2p;1d,1d,1d,3d; 11, 1f, 3f;
1g,3g;1h,2h;1i,1i,1i) where the number of primitive exponents for each angular sym-
metry is in square brackets and the contraction pattern is in parentheses.

It is expected that this contraction will be compatible with many uranium com-
pounds. As a demonstration, the following Table contains the energies of some
uranium complexes calculated with the uncontracted uranium auxiliary basis, the

contracted version of it and without the RI-J approximation.

Molecule Uoz*+ UBrg UsS
“Exact” -621.871281 | -551.722916 | -449.466415

Uncontracted | -621.871335 | -551.722966 | -449.466933
Contracted -621.871589 | -551.723997 | -449.467086

It can be seen that both the uncontracted and contracted auxiliary bases achieve
millihartree accuracy. However, convergence with the uncontracted auxiliary basis
was problematic, requiring an excessive number of iterations. On the other hand,
no convergence difficulties were encountered with the contracted uranium auxiliary

basis or without the RI-J approximation. Switching from the uncontracted to the
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contracted auxiliary basis causes an increase in the error as expected but does
not change its order of magnitute. It is probably reasonable to suggest that the
contracted auxiliary should be used in place of the uncontracted one as it is almost
as accurate and does not affect convergence. The LDAX functional was used for
UO32" and UBrg and the BLYP functional for US. The Ahlrichs auxiliary bases were
used on nometallic atoms. The SVP basis was used on the oxygen atoms and the
DZP basis on the sulphur. The bromine atoms were described by an ECP with 28
core electrons and the accompanying valence basis set. The uranium ECP of UO%""
and UBrg represented 60 core electrons while the one on US represented 78 core
electrons.

Another way to obtain a working auxiliary basis set is to modify or extend one
that is already available. For example, there is no auxiliary basis available for an
all-electron gold atom, but there is one for the valence density of a gold atom with
an ECP. We can augment this valence auxiliary basis to create a new one, suitable
for an all-electron calculation. For this purpose, we add functions from the existing
all-electron auxiliary basis set for copper, as it belongs to the same group of the
periodic table as gold. Only the functions (contracted and primitive), which contain
exponents larger than the exponents of the gold valence auxiliary basis, for each
angular momentum are added, since the goal is to improve the ability to describe
the core density. However this is not enough for an adequate description of the
core density of gold because its nuclear charge (79 a.u.) is much larger than that
of copper (29 a.u.). We need functions of spherical symmetry with considerably
larger exponents, for the density in the vicinity of the nucleus. Hence, we add s
primitive Gaussian functions with even tempered exponents according to equation
(3.25), with parameter values ny = 38.56104604754, 8 = 1.8 and n = 19.

The resulting auxiliary basis set for gold consists of 152 distinct functions (an-
gular momentum components included in the count) and the primitives it contains
are: [38s;5p;7d;6f;4g]. The lowest eigenvalue of its V array is 2.73 x 107!, For an
indicative test, we have performed LDAX calculations on the AuH molecule with
a basis set of double zeta plus polarisation quality. The energy we obtained was

-17849.878015 E;, as compared to the “exact” energy of -17849.877991 E; without
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the RI-J approximation. The role of the even tempered s core functions we added
is very important. This is illustrated by the large error that results by neglecting
them, in which case the energy obtained is -17857.624717 Ey,.

There is not much point to examine any further auxiliary basis sets derived with
the empirical procedures described above, since they are far from optimised. The
aim of our discussion was to demonstrate that it is possible to construct auxiliary
basis sets for cases where properly optimised ones are not available. The resulting
working auxiliary sets should be used with caution but it is possible to ensure, by
testing them beforehand, that they will be adequate for the needs of the application

in hand.

3.8 The RI-J approximation with Slater type basis func-

tions

It was mentioned in section 1.4 that Gaussian basis sets are used almost exclusively
for calculations on polyatomic molecules. Some of the alternative options that have
been examined over the years are numerical basis sets, plane-wave basis sets and
Slater basis sets. A primitive spherical Slater function [115] centred at point A is

represented by the following formula:
SA; (I'; a;,n,l,m, A) = exp(—air)Zlm(O, ¢) (326)

Slater functions are claimed to be superior to Gaussians because their short range
(cusp on nucleus) and long range (decay rate) behaviour can be adjusted to be
exact if their exponents are chosen appropriately. This is a benefit over Gaussian
functions as they do not possess a nuclear cusp and decay too fast. It is known
that asymptotically with increasing basis set size only half as many Slater functions
are required to achieve accuracy comparable to the accuracy of a certain number
of Gaussians [20]. On the other hand, the basic difficulty with Slater functions is
that integrals involving more than one centre cannot, in general, be expressed in
closed form and approximations are necessary. Molecular quadrature is probably the

best option for evaluating the integrals, but even then, the situation becomes very
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complicated when it comes to the evaluation of the two-electron integrals as they
are six-dimensional. However, the electrostatic potential due to a single primitive
spherical Slater function can be readily expressed in an analytic form [116]. This
result can be used to make three-centre two-electron integrals three-dimensional.
Based on this fact, a version of MAGIC was modified to use primitive spherical
Slater basis functions within the RI-J approximation [116]. The molecular quadra-
ture grid of section 1.5, with a variety of radial grids, was used for evaluating all
the integrals. The overall performance of this scheme was poor compared to the
standard Gaussian function code. Because the quadrature grid was not optimised
for Slater functions, a very large number of points was necessary in order to eval-
uate the two-electron integrals to sufficient accuracy with a consequent increase in
computational cost. It was concluded that Slater basis functions could not become
competitive to the Gaussian basis functions within the RI-J approximation.
Probably the only way that Slater functions can become competitive to Gaus-
sians is when they are employed in DFT calculations where the density for approx-
imating the Coulomb energy has been fitted according to the SVS approximation
(section 3.2.4). The bulk of the work in the SVS approximation goes into the evalu-
ation of three-centre overlap integrals and this can be done in an efficient way with
an appropriate quadrature grid [117]. The ADF program [118] can perform DFT
calculations on molecules using Slater functions with the “discrete variational” [87]
variant of the SVS method which fits separately densities of diatomics. Slater func-
tions preclude Hartree-Fock or DFT calculations with hybrid functionals, because
they require exact exchange energy which in turn requires evaluation of four-centre

two-electon integrals.

3.9 Two-electron integral evaluation

Since the first quantum chemistry programs became available, 3-4 decades ago, it
was recognised that the calculation of two-electron integrals is naturally the most
computationally demanding step in a calculation. As a consequence, the deriva-

tion of efficient algorithms for the evaluation of these integrals is a major area of
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research which is still active. The capacity for improvement was limited in early
computations that used Slater basis functions because multicentre integrals have to
be expressed as infinite series and no closed forms are available. The first break-
through was due to S. F. Boys [19] who decided to use Cartesian Gaussian basis
functions. In his scheme he gave a closed form for the two-electron integral involving
only s-type functions. He expressed all other integrals in terms of this basic integral
by taking advantage of the fact that the derivative of a Gaussian function is a sum
of Gaussian functions. More efficient methods have been invented since then, based
on different closed form formulae. One of these methods employs Rys quadrature
to evaluate the integrals. This method has been implemented, taking into account
some recent modifications for increased efficiency. In what follows we describe the
relevant theory on which the code is based and then show how the Rys quadrature
method can be used as a starting point to derive other methods in the literature.
The starting point is to express the interelectronic repulsion operator 7‘1_21 as
a Gaussian transform, as we did with the nuclear attraction operator in equation
(2.32) of section 2.6. Then a change of variables as in equation (2.33) is applied to
yield
1 2 R 9 9
T /0 expl—u?(r1 — r2)%du (3.27)

The general form of an integral involving four primitive Gaussian functions is

[gAgB|gch] = //gA(rl;aaa’waayaaZ’A) gB(rl;ﬂa bwabyab257B)

1
X EQC’(I‘Q; Y, Cxy Cy, Cz, C) gD (I‘2; 6a d:ﬂa dya dza D)drldr2
2 o0

= 5 [ l9agslexp(—u’r}y)|gcgpldu
w2 J0
2 o0

- = [ nIndu (3.28)
w2 J0

where the transformed interelectronic repulsion operator inside the integral sign can
be expressed as a product of terms depending only in x, y or z coordinates. Thus

the integrand is split into three factors. Let us examine the I, factor
I;; = //(-'El — Ag;)aac (,'1}'1 - Bz)bx (3;2 — CI)CQ: ($2 _ Dx)da: exp(_Qz)dQ}'ld{EQ

where
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exp(—Qa) = exp (—alsr — Ay)* = Bla1 — Ba)? — Y(z2 — Cy)?

— O(@s — Dy)? — u(m1 — :)?) (3.29)

We now define the following quantities

aA, + BB, vCy + 6D,
L,=—>"—"+, R,=———= 3.30
a+p ‘ v 46 (3:30)
A=a+p, P=~+4$ (3.31)
AP
Uy = p(Ly — Pp)? (3.33)
o 1)
kapz = exp <_a fﬁ (Aw - Bw)z) v kedz = €xp (_#(Cw - Dz)z) (3'34)

In terms of the above definitions, exp(—@,) becomes
eXP(—Qw) = Kabzkcdr €xXp (_A(-z'l - Lw)2 - P($2 - Rw)z - 'UIQ(-'EI - 132)2)

where the first two terms in the right hand side product are constants depending on
the Gaussian function parameters (exponents + positions). Let us make a change

of variables from u to t.

u= \/ﬁ\/lt——t? du = ﬁdt (3.35)

This changes the range of integration in (3.28) from [0, +00) for u to [0, 1] for . We

also define the 2D integrals

eUat’ [N [P,
I, = I;|ay, bs|cs, dg|(t) = —1/—1 3.36

Now equation 3.28 becomes

1
l9a98l9c9p] = g /0 LI, T, exp(— (U, + Uy + U)t2)dt (3.37)

3 3
p m\2 [m)?2
=2,/E ) (= .
q Wkabkcd (A) <P) (3 38)

depends only on the exponents and the positions of the primitive Gaussian functions

where

participating in the integral, with k., = kepekabykap, and keq = keagkedykcdz- By
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extending the line of thought of section 2.6 for examining the M, (¢) integrals, it
can be shown [119] that,
P(t) = LI,I, (3.39)

is an even polynomial in ¢ of degree npy = 2(Aa + Ap + Ac + Ap). Therefore the
above integral can be evaluated by Rys quadrature using the positive roots and
corresponding weights of Ry, (t,U; + Uy + U,) where

Npys = [%} +1 (3.40)

The subroutines we use to generate the Rys roots and weights are due to the au-
thors of the Rys quadrature method [119, 31, 32]. They take as arguments the
number of roots Ngys and the value U, + Uy + U, and return the values of v? and
the quadrature weights. Then the values of the squared quadrature points ¢* are
calculated according to (see also subsection 2.5.3)

’02

t=——
1402

(3.41)

as these are the only values we will need subsequently because we are dealing only
with even polynomials of £.

The next step is to generate the I, I, and I, integrals for each value of 2.
Even though they can be expressed in closed form, their straighforward calculation
is not computationally efficient. The most efficient approach is through recursion
relations.

In order to facilitate the following discussion we will introduce a simplified nota-
tion for Gaussian basis functions and two-electron integrals. We will use the vector
of angular momentum indices a = (ag,ay,a,) to represent the function g4. For

example if g4 is a p function, A4 = 1 its angular momentum components are
(z — Aw)efa(FA)Q, (y — Ay)efo‘(FA)z and (z— Az)e*a(r*A)z (3.42)

and a can be (1,0,0), or (0,1,0) or (0,0,1) respectively. In a similar manner the

two-electron integral of equation (3.28) can be represented as

[ab|ed] (3.43)
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and the set of integrals formed by all allowed values of a, b, ¢ and d will be called
a batch of integrals. The expression (3.43) will be used to represent both a single
integral and a batch of integrals, depending on the context.

In the recursive scheme implemented for the four-index two-electron integrals,
in order to calculate the batch of equation (3.43) we need the following batches of

integrals
[e0|f0], f = max(c,d),...,c+d, e=max(a,b),...,a+b (3.44)

which are called uncontracted source integrals. The addition of ¢ and d represents

a vector whose angular momentum is equal to the sum of their angular momenta.

3.9.1 Generation of the 2D integrals

We start by calculating by recursion the 2D integrals necessary for the generation of
the uncontracted source integrals. These recursion relations were discovered by Rys
et al. [119] by integrating partial derivatives of the integrands of the 2D integrals.
We will demonstrate the recursion for the 2D integrals related to the x-coordinate.
The starting value is I;[0, 0|0, 0](¢) and it is easy to show that it is independent of ¢
and equal to 1. Then the angular momentum of the first index of the left hand side
and of the first index of the right hand side are increased by alternating application

of the two recursion formulae

Lofes +1,00f0,00(t) = ((Lm — Az) + thQ(Rx - Lz)> Ly[es, 01f, 0](%)
2
+ 26_7\ (1 —_ %) Iw[ez - 1,0|fzao](t)
prt2
+ S Irleq, 0l f — 1,0](2) (3.45)

and
I[ez,0|fz + 1,0](t) = ((Rm —Cy) + %Q(Lz — Rm)> I.[ez,0]fz,0](t)

fa pt2
+§FG_?JQ@ﬁ%—LWﬂ

facpt2
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where terms with negative indices are substituted by zero. A simple way to generate
the necessary batches of uncontracted source integrals is to use equation (3.45)

successively to generate
1,[1,0[0,0](t), I.[2,0(0,0](t), . .. Iz[Aa + AB, 0[0, 0] (%) (3.47)

Then equation (3.46) is used to generate I;[0,0|1,0](¢) and another pass through
equation (3.45) will yield

L,[1,0]1,0](), I,[2,0[1,00(t), . .. Iy[Aa + Ag, 0|1, 0](%) (3.48)

Continuation of this procedure generates all integrals from I;[0, 0|0, 0](¢) up to and

including I;[A4 + Ap,0|Ac + Ap, 0](t) which are kept in memory for the next stage.

3.9.2 Construction of the primitive source integrals

Once all the 2D integrals for all the values of #2 have been calculated and stored,
they are combined to generate the primitive source integrals. Each member of a
batch of primitive source integrals is calculated using Rys quadrature.

NRys

[eO\fO] =q Z Im[ewa0|fma0](ti) Iy[eya0|fya0](ti) Iz[62a0|fza0](ti) Wi (3'49)
=1

where ¢ is defined in equation (3.38). The above equation is used several times in the
process of generating one batch of uncontracted two-electron integrals and makes
a substantial contribution to the overall computational cost of the two-electron
integrals.

In order to minimise this cost, the number of multiplications performed in equa-
tion (3.49) must be reduced. To this end, the same number of Rys quadrature points
for evaluating all the batches of primitive source integrals of equation (3.44) must
be used, even though some batches could be evaluated with less than the Ngy, roots
of equation (3.40). This ensures that the same 2D integrals are used for all uncon-
tracted primitive source batches. One improvement possible then is to premultiply
every I,[e,,0|f,,0](¢;) with W; and use the result I} = I,W; in place of I,, disposing
of the W;. This provides some computational benefits in our code because the same

I’} are used to calculate different batches of primitive source integrals. A further
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improvement for efficiency which we have implemented is the reduced multiplication
scheme of Lindh et al. [120]. The scheme suggests the storage in memory and
reutilisation of the I [e;,0|fz,0](;) Iy[ey, 0| fy,0](t;) products. The gain in arith-
metic operations is achieved through increase in memory requirements since all the

products satisfying the relations
0<ez+e, <Aa+Ap and 0L fo+ fy <Ac+Ap (3.50)

for every t;, have to be kept in memory. This is however not a problem with modern
computers. The point that needs most attention is the implementation as this
scheme introduces additional code complexity. The code has to be well-structured
and consist of small, specialised subroutines if any improvement in performance is
to be observed in practice.

The recursions of section 3.9.1 and the quadrature of equation (3.49) are pro-
grammed by explicit formulas for the [00/00], [10|00], [00|10], [10|10], [20|00] and
[00]20] types of uncontracted primitive source integrals. The explicit evaluation
is cheaper than the recursions and produces observable computational savings, es-

pecially since the majority of basis functions are usually of s (0), p (1) and d (2)

type.

3.9.3 Contraction of the primitive source integrals

The next step is the contraction of the batches of primitive source integrals in order
to produce batches of contracted source integrals.

Ki Kg Ko Kp

(e0f0) =3 > > > cicjckcilei0;|fi0] (3.51)

i=1j=1k=11=1
Here ¢ is the contraction coefficent ¢; multiplied by the normalisation coefficient
n;‘i of equation (1.23). In practice the contraction is achieved by accumulating the
primitive source integral batches, as they are generated, into the array which is

meant to contain the contracted source integral batches.
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3.9.4 Generation of the batch of contracted integrals

This is the final step for obtaining the contracted integrals batch and is carried out
by recursion. The recurrence relation we use was first reported by Rys et. al. [119]
for application to the 2D integrals. It was called the transfer equation. Later, Head-
Gordon et. al. [121] observed that it is independent of the radial part of the basis
functions and hence can be applied after contraction of the integral batches has

taken place. The resulting recursion was named the horizontal recurrence relation
((k +1¢)|mn) = ((j + 1¢)k|mn) + (J; — K¢)(jk|mn) (3.52)

where { = z,y or z and it is implied that the J; (= Az in our discussion so far)
coordinate is a component of the position vector of the centre of j and similarly for
K¢ (= By). Since the right hand side of the contracted batches does not change, it

can be omitted to simplify the notation
((k+1e)] = (G + 1e)k| + (Jg — Ke) (K| (3.53)

The calculation of the contracted batch is completed by application of the horizontal

recurrence relation to the ket side of the contracted source batches.
im(n + 1¢)) = |(m + 1¢)n) + (Mg — N¢)|mn) (3.54)

Equations (3.53) and (3.54) look deceptively simple. Their implementation is very
complicated as each recursion is in three dimensions (z,y, z) simultaneously. For-
mally, twelve-dimensional arrays are needed to store each batch of integrals. This
would be very inefficient in terms of memory management since the majority of the
elements of such an array would remain unused because for every triplet of indices,
only the elements whose indices add up to the angular momentum of a basis func-
tion will be used. In order to overcome this problem, the code stores batches in
two-dimensional arrays where the elements (integrals) are always stored in a definite
order so that all the memory allocated is utilised while the integrals of a batch can
still be accessed easily for performing the recursions. The indexing scheme is based
on a general order that is followed thoughout the integral subroutines of MAGIC
for counting the components of Cartesian Gaussian functions, for every angular

momentum. For example, the following loop structure
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do a,=0,\4

do ay =0, g —a,

Az = A4 — G, — Gy

more code

enddo
enddo

counts the components of a Cartesian Gaussian function of any angular momentum.

For example, the ordering of the 15 components of a g function (A = 4) is z*, z3y,

3 2

z2y?, zyd, v, 232, 22yz, vy’ Y3z, 2222, wy2?, Y222, 222, y2® and z*. Conversely,
given a component of a Cartesian Gaussian basis function, the implementation uses
the following formula

ay(a, + 1)

az(a$+ay+az+2)+ay+]—_ 2

(3.55)

to determine its order (position) in the indexing scheme. For the example just
mentioned (3.55) is equal to 1 for z%, 2 for 23y, 3 for 22y?, etc.

Even with this indexing scheme, strictly speaking, the product ab defines a two-
dimensional array. This in turn, means that a four-dimensional array is needed in
order to store a batch. This is avoided by introducing a further indexing scheme for
the product of Gaussian functions where the two-dimensional array ab is perceived
and expressed as a one-dimensional row vector constructed by joining together the
consecutive rows of the two-dimensional array. Thus every batch of integrals is
always stored in a two-dimensional array.

There is some arbitrariness regarding the application of equations (3.53) and
(3.54) when basis functions of f type or higher angular momentum are involved. The
most efficient paths to follow for this tree search problem have been investigated
by Ryu et al. [122]. The biggest savings they achieved in floating point operations

were 44% for batches containing exclusively i functions (A = 6) and much less for
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other types of batches. Functions of such high angular momentum are rare in most
basis sets, and are usually located on only one atom. As a result they appear
in only a small percentage of the two-electron integral batches. It was therefore
decided not to follow the Ryu scheme which would introduce a substantial amount
of unnecessary complexity in the code. Rather, the horizontal recursion relations are
programmed in the easiest way to understand. Intermediate batches of contracted
source integrals are generated according to the indexing schemes we have presented.

Finally, in order to minimise the number of times the horizontal recursion rela-
tion is used, we produce the batches so that the right hand side of the bra and ket
sides have the lowest angular momentum possible and then we shift them over if
the batch we wished to generate was the other way round. For example, if A4 = 0,
Ap =1, A\c = 1 and Ap = 1 the batch (balcd) is calculated and then its elements
are swapped around to get the desired (ab|ed) batch. Swapping elements of arrays
takes no time compared to the savings resulting from less applications of the hori-
zontal recursions. The calculation of a contracted batch is completed by multiplying
each of its elements by the appropriate normalisation constants Ny, N, N{; and
N7}y, defined in equation (1.24).

In the case of the three-index two-electron integrals used in the RI-J approxima-
tion the horizontal recursion needs to be applied only to the ket side of each batch.
Therefore the savings achieved from the application of the horizontal recursion at
the contracted stage are not as significant. Hence it was chosen to apply the transfer
equation to the 2D integrals. This choice involves much simpler one-dimensional

recursion relations such as the following for the x coordinate
I;FI[jwa (kx + 1)|mg](t) = Ifl[(]z + 1), kg lmg](t) + (Jo — Kx)IgI[jwa kx|mz)(t)

where the definition of I’ follows from equation (3.36), by assuming gp does not
exist. The I1! are then used directly to generate the batches of uncontracted
integrals and then they are contracted. The need for batches of source integrals
and the horizontal recurrence relation has been eliminated. As a result the code
involved is considerably simpler and straightforward and can be optimised better

for performance. So even though the theoretical count of floating point operations
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is higher, the code is fast because it is highly optimised.

3.9.5 Common points between modern two-electron integral eval-

uation methods

It is now known that most modern methods for evaluating two-electron integrals
are equivalent. By this we mean that if we select arbitrarily one of the methods as
the fundamental method, we can derive from it the other methods. This principle
however is not transferable to the implementation which has to be tailored to one
particular method in order to be efficient. In this subsection we will regard the Rys
quadrature method as the fundamental method and indicate how the theory of the
other available methods can be derived from it.

In the McMurchie and Davidson method [89] the following functions (“auxiliary

functions”) which can expressed in terms of the incomplete gamma function [33]

y(m + 1,:(:) (3.56)

1
Fr(z) = / $2me ot gy — 5

0 253
are the essential starting quantities for the application of a series of recurrence re-
lations. Looking back to subsection 2.5.2 it is obvious that Fy,(z) can be calculated
with Rys quadrature. In practice however, this would not lead to an efficient al-
gorithm because in the implementations of the McMurchie and Davidson method
much effort has been put on algorithms dedicated to this purpose [123]. The op-
timised implementation of such algorithms is a laborious computer science task,
justifying authors to regard the resulting code as “a secret of great commercial
importance” [124].

Another method is by using the 3-dimensional vertical recurrence relation sug-
gested by Head-Gordon and Pople [121], as a simplification of the recurrence relation
on which the earlier method of Obara and Saika was based [125]. Lindh et al. [120]
showed how to derive the vertical recurrence relation from the recurrence relations
for the 2D integrals of the Rys method. In particular, we can take equation (3.45)
for a Rys point ¢; and multiply both sides with

™ I [ey, 0l fy, 01(t:) L. ez, 0| £, 0] (£:)wi (3.57)
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If we then sum up over all points ¢; necessary for the integration of an even poly-
nomial of degree n,, + 2m, we obtain the vertical recurence relation for the z-

component of the bra side

(e +1,)0[0)™ = (L, — A,)[e0]f0)™ + £ (R, ~ L.,)[e0}fo] "+
* 26_}1\ ([(e — 1,)0|f0]™) — %[(e - 1$)0|f0](m+1))
* 2{tpp [e0|(f — 1,)0] ™V (3.56)

where the auziliary electron repulsion integrals are defined as
1
[e0[£0](™) — / 2mP(t) exp(—(Uy + U, + U,)¢2)dt (3.59)
0

and are, in theory, possible to evaluate by Rys quadrature. Lindh et. al. [120] went
even further by spliting the five-term vertical recurrence relation to two simpler
four-term recurrence relations, for added efficiency and simplicity.

Finally we should mention that Gill et al. [126, 127] have combined some of
the above methods together into the “PRISM” algorithm which is supposed to be
more efficient than any method alone. This happens because the PRISM algorithm
selects the method best suited to a particular molecule and basis set. However, as
one would expect, the complexity associated with implementing a PRISM algorithm
is substantially higher than implementing each one method alone.

The paper by Taketa et al. [128] gives closed form analytic expresions for the
two-electron integrals of primitive Cartesian Gaussian functions. Due to their high

complexity these expressions have little practical value.

3.10 Quadratic scaling in Coulomb energy evaluation

Direct SCF methods are possible because they skip the evaluation of two-electron
integrals which are predicted to make negligible contributions to the quantities
involved in the SCF calculation. There is no definite measure of “negligible contri-
butions” but usually a threshold that can be determined empirically and should be
satisfactory for most calculations. Integral algorithms calculate integrals in batches,

therefore direct SCF schemes skip batches of integrals.
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3.10.1 Upper bound for a batch of integrals

The magnitude of the maximum element of a batch of integrals will be represented
by
(IJ|IKL) = (KLI|IJ) (3.60)

for four-index two-electron integrals and by
(F|IJ) = (1J|F) (3.61)

for three-index two-electron integrals. The symbol I represents a particular shell of
contracted Cartesian Gaussian basis functions, i.e. the set of all angular momentum
components of a contracted Cartesian Gaussian function. The effort to calculate the
numbers (IJ|K L) and (F|I.J) still scales unfavourably with the size of the system,
so they have to be approximated by upper bounds. As an upper bound we use the

Schwarz inequality which was first employed for this purpose by Ahlrichs et al. [80]

(IJIKL) < \/IJ|17)\/(KL|IKL) = EST(IJ,KL) (3.62)

and

(T|1J) < \/(T|T)\/(1J|1]) = EST(T,1J) (3.63)

The quantities \/(IJ|IJ) and /(T|T) constitute a convenient, separable upper
bound as they are elements of a matrix and a vector respectively and can be very

easily stored on disk.

3.10.2 Tests for rejecting batches of integrals

The two-electron implementation of MAGIC takes advantage of tests for rejecting
batches of integrals based on their contribution to the Fock matrix. These tests
are much simpler to implement in a DFT formalism since one does not have to
predict the contribution of two-electron integrals to the exchange, as is the case
with Hartree-Fock calculations.

For the case of the RI-J approximation there are two sets of tests. The first

time the three-index two-electron integrals are calculated, an upper bound on their
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contribution to the charges is used for neglecting batches
Vo 'EST(T,1J)D;; < THRI1 (3.64)

where V- !'is a compressed form of the V! matrix according to the following

relation
Vil o= maz Vgl
se(1,...Navx) (3.65)

teT

where T denotes a shell of auxiliary functions. In a similar manner D;; is a com-

pressed density matrix.

Dry = maz |Dj (3.66)
iel, jeJ '

We can observe that all the quantities in equation (3.64) have insignificant compu-
tational and storage requirements. Integral batches (t|ij) are rejected then when
the left hand side of (3.64) is less than the threshold value THR1.

The second time the three-index two-electron integrals are calculated an upper
bound based on their contribution to the Molecular Orbital (MO) Fock matrix
elements between occupied and virtual orbitals is used. Almolf et al. [79] argue
that this upper bound to neglect integrals should be adequate. Also it should not
affect convergence since the elements of the Fock matrix between occupied and
virtual orbitals are the ones that determine the amount of virtual orbitals that will
be mixed to the occupied orbitals in each SCF cycle. The test for skipping integrals
now is

qrEST(T,1J)Cr; < THR2 (3.67)
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with the following definitions.

Cr;y = maz (oju; + oju;)

tel,jeJ
0; = mazr |cigl

a € occ

(3.68)

w; = mazr |cpl

b € virt
gr = mar |g

tel’

The subsripts a and b denote occupied and virtual orbitals respectively, c;; are the
orbital expansion coefficients in terms of the basis set and T is a particular shell of
auxiliary functions. Again, the calculation of the batch (t|ij) is skipped if the left
hand side of equation (3.67) is less than the value of T'H R2.

One further development implemented in MAGIC is the recursive Fock matrix
build. This technique becomes more efficient towards the last few iterations of an
SCF calculation. It is based on the obvious fact that close to convergence there
is none, or very little change to some of the charges between two consecutive SCF
iterations. Therefore for all SCF cycles apart from the first the Fock matrix can be

built as an increment to the Fock matrix of the previous iteration

i = B Y 4 (i]6) (@™ — o) (3.69)

where the superscripts in parentheses denote the number of the SCF cycle. The

same principle can be applied to save work from the calculation of the charges.
q™ =g+ VHE ™ - plml) (3.70)

As an indication of the efficiency of the recursive Fock matrix build, it is worth
mentioning that the time spent in the evaluation of the Coulomb energy in the last
SCF iteration is roughly half of the time spent for the same task in the first SCF
iteration.

The tests for skipping integrals are combined together with the recursive Fock

matrix build by replacing D7, with D™ — D™ in equation (3.64) and ¢r with

g™ — g™ in equation (3.67).
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The implementation of the tests for rejecting integrals in the four-index two-
electron code of MAGIC is slightly different as it is designed to skip integrals based
on their contribution to elements of the Fock matrix in the basis set representation.

Therefore the tests for the batch of integrals (ij|kl) are now simply

EST(1J,KL)(D{™ — DY) < THR2 (3.71)
and
EST(1J,KL)(D™ — D" V) < THR2 (3.72)

and they are of comparable efficiency to the tests for the RI-J method of calculating
the Coulomb part of the Fock matrix.

A series of RI-J calculations on crown ethers of increasing size were performed
in order to determine the highest possible values of THR1 and THR2 that do
not compromise accuracy. Crown ethers 3cl (CoH4O) up to 21c7 (C14Ho307) were
employed for this investigation. The LDAX functional and DZ basis were used.
THRI1 and THR?2 were varied independently and THR1 = THR2 = 10~!" were
selected as optimum threshold values. The resulting error in energy for this value

of the thresholds is shown below:
Molecule | Error (Ep)

3cl 3.805x106
6c2 3.912x10~6

9c3 -2.704x10~*
12c4 | -3.780x10°6
15¢5 | -6.402x107°
18c6 | -3.365x107°
21c7 | -1.139x107°

The maximum error in energy, with respect to the energy obtained without integral
cutoffs, with these thresholds is —2.709 x 10~ E, for the 9¢3 (CgH1203) molecule.
Further testing of these threshold values was performed with a set of 85 molecules
covering a wide range of functionals and basis sets and resulted in values of mean,

RMS and maximum error of 1.0 x107%, 2.0 x107¢ and 1.2 x10~° E, respectively.
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These threshold values were derived for the RI-J approximation but they have
proved equally efficient and accurate for the four-index case.

Although they have been tested extensively, it is important to note that these
thresholds are not guaranteed to be successful in every case and the user should
be aware of it. For example, in rare cases we have observed that they may lead to
convergence difficulties even though they produce accurate energies. Such artefacts
disappear by setting the thresholds to lower values.

As mentioned earlier, the RI-J approximation is faster than the “exact” calcu-
lation by roughly one order of magnitude. For example, let us consider the first
SCF iteration for the H3COSiH3 molecule with the LDAX functional, the TZVP
basis set [58] and the corresponding auxiliary basis set of Ahlrichs et al. [94, 95].
In this particular case, with THR1 = THR2 = 10~!!, the time it takes to cal-
culate the Coulomb energy “exactly” is 79.4 s while the time it takes to calculate
it with the RI-J approximation is 8.8 s, all on one 200MHz R10000 processor of a
Silicon Graphics Origin 2000 computer. This fact is dictated by the difference in
the amount of computation in the two cases and holds without exception for all
calculations. The requirements in computer resources of the three- and four-index
code are comparable because they both calculate the Coulomb contribution in a
direct SCF fashion and use only as much memory as is necessary for the generation

of one batch of integrals at a time.



Chapter 4

Convergence of SCF

calculations

4.1 Introduction

The solution of the SCF equations for a single determinant wavefunction, where the
orbitals are expressed as linear combinations of basis functions with the Roothaan
formalism [2], is a complicated non-linear problem. The simple iterative solution of
the Roothaan equations is successful only for very few small cases. For basis sets
larger than minimal or molecules with three atoms or more the sequence of diagonal-
isations and updates of the Fock matrix leads to divergent or oscillatory behaviour.
The early work by Cizek and Paldus [129] on the stability of Hartree-Fock solutions
is classic. There are numerous schemes in the literature which have been devised
to amend the shortcomings of plain diagonalisation and assist convergence. These
schemes increase substantially our ability to converge SCF calculations but by no
means provide a method that will always converge. Therefore, failure to converge
with one method does not necessarily mean that a solution does not exist and indeed
very often convergence is achieved by changing the parameters of the convergence
assisting methods. In this chapter we describe the most common and successful
convergence assistance techniques that have been implemented in MAGIC as well

as our experiences with some new methods that are still under development.
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4.2 Direct inversion in the iterative subspace

The Direct Inversion in the Iterative Subspace (DIIS) is a method of extrapolation
which aims to speed up SCF convergence by constructing an improved approxima-
tion to the solution which is a linear combination of all previous approximations.
By solution we mean either the orbital coefficient matrix, or the density matrix, or
the Fock matrix, or in general any set of parameters that is sufficient to define the
density resulting from an SCF calculation.

In the implementation of DIIS it was chosen to use the Fock matrix F in the
basis set representation as the set of parameters that defines an SCF solution. The
original idea of DIIS is due to Pulay [130] and is based on the assumption that
at each SCF iteration we can define a quantity called the error vector. The error
vector e; at the ith SCF iteration is supposed to represent the deviation of our

current approximation F; from the SCF solution Fgcp.
F; =Fscr+e; (4.1)

If this assumption is true, then a linear combination of available error vectors could
be constructed that approaches the zero vector in the least squares sense

Ne'l‘?"
Z cjej ~0 (4.2)
=1

where N, is the number of error vectors that we chose to participate in the sum
of equation (4.2). In general, if the error vectors are linearly independent, equation
(4.2) will be exact only when the dimension of the error vector space exceeds the
dimension of the parameter space. That is only when N, > Nprp(Npr+1)/2 where
Npr is the number of basis functions. Furthermore, if we impose the constraint
that the expansion coefficients add up to unity

NS’I‘T‘

Z Cj = 1 (43)

we can easily show that the SCF solution is equal to

NC'I‘T‘

Fscr = Y ¢;F; (4.4)
7j=1
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Therefore the DIIS method attempts to find Fg¢cp as an extrapolation from previous

F;. We calculate the error vector as follows

where S is the overlap matrix. It can be easily shown that this quantity becomes
zero when self consistency is reached. SCF convergence is achieved when the element

of e; with the largest magnitude

51-DHS= maz  |(€;)rs|

(4.6)

7,8

is less than the convergence threshold value we have set. The default value of the
convergence threshold is 1076.

We follow a variation by Sellers [131] to the original DIIS scheme. This variation
has been termed C?-DIIS and has been demonstrated to have improved stability
properties. At each SCF iteration we compute and store the corresponding error

vector. We then construct the DIIS matrix B with elements

NBr k

Bij=ei-ej= Y > (ei)rle)u (4.7)

k=1 1=1

and diagonalise it. If its smallest eigenvalue is greater than 5 we do not attempt to
perform a DIIS extrapolation. Otherwise we select the eigenvector corresponding
to the smallest eigenvalue subject to the conditions that this eigenvalue is greater
than zero and that the largest element of the eigenvector is less than 100. This
process is repeated until we find an eigenvector q which satisfies these conditions.
If no such eigenvector is found no extrapolation takes place and the DIIS will start
from the beginning in the next SCF iteration. If the search has been successful, q

is normalised to one in order to produce the coefficients of equation (4.4).

qi

= s (4.8)
Our presentation of DIIS was in the context of the restricted closed shell SCF
formalism. The extension to unrestricted SCF is straighforward and does not involve

any new concepts.
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4.3 Level shifting

The “Level shifting” method of Saunders et al. [132] has proved to be quite a
successful tool for assisting convergence and is implemented in MAGIC.

We will outline the method for the restricted closed shell case as the generalisa-
tion to unrestricted determinants is straightforward. Let F™? be the Fock matrix in
the molecular orbital basis and F® be the Fock matrix in the atomic orbital (basis
functions) basis. The number of basis functions is Ngp, the number of occupied
orbitals is N,.. and the number of virtual orbitals is Ny;,;.

At the nth iteration of the SCF procedure the Fock operator F, will be con-

structed from the current set of molecular orbitals which we represent as

{10357 = {la)yaes AN}k, o1 (4.9)

where the indices i, 7, k will be used to denote any orbital, the indices a,b,c will
denote occupied orbitals and the indices 7, s,? will denote virtual orbitals. These
orbitals are orthonormal and form a complete basis in the space of the N basis
functions. Using the closure property of the orbitals we can write the Fock operator

as
Npr Npr

NOCC
Do la)al BByl + Y Y )l Fals)sl (4.10)
b=1

7=Nocc+1 $=Nocc+1

N NOCC
Fo=Y"
a=1

Noce NBF
Y [ladalBalr)rl + In)(rlFala)al] = B+ B 4 B (411)
=1 r=Nycc+1

Without loss of generality we can assume that the orbitals |k) are pseudocanonical

[133], i.e. that

F2%la) = eala),  Flr) =0 (4.12)
F2ir) = ), FPtla) =0 (4.13)

Pseudocanonical orbitals can always be constructed by a unitary transformation of
the occupied orbitals with themselves and the virtual orbitals with themselves as

this has no effect on the wavefunction.
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The next step is to modify the F? operator by including a large positive number

8 to form the F*8 operator

NpFr NpFr

Erto= %" 3 In){r|Ea + Bls)(s] (4.14)

T=Nocc+1 5=Nocc+1

This results in the following modification of equation (4.13)
EPr) = (e + B)lr),  Ep*™Pla) =0 (4.15)

The eigenvalues of the virtual orbitals are shifted upwards by 5. The value of 3 is
supposed to be large enough to raise the eigenvalues of the virtual orbitals higher
than any occupied orbital eigenvalue even if this was not the case initially.

To show the effect of shifting the eigenvalues of the virtual orbitals on the con-
vergence properties of the wavefunction we will apply Rayleigh-Schrodinger per-
turbation theory. We wish to determine the orbitals that will emerge from the
diagonalisation of Ff = F00 4 Fvv+8 4 Fovtvo i the |i) basis. The zeroth order
Hamiltonian is

HO) = froo 4 frov+s (4.16)

with the molecular orbitals |i) being its eigenfunctions and zeroth order solutions.
The perturbation is

H®) = frovtvo (4.17)

From a standard text of quantum chemistry [134] we can find that the first order

correction to the occupied orbitals should be as follows:

(1) Npr aw
1 _ blH |a) (r[H'"a)
a = —F——|0) + —|r
|a) I; p—— |b) r:zgcﬂﬁa—(eﬁﬂ)')
E_(r|Fala) £S
= 0+ Y )= Y Alr) (4.18)
r=Nocc+1 €a — (GT + IB) r=Nocc+1

It can be seen that to first order only virtual orbitals are mixed into the occupied
ones. If B is large enough, A,, will be small enough to make second and higher
order contributions negligible. For the same reason we take into account only the

linear terms that contribute to changes in the electronic energy.

NBF Nocc

AE=En1 — Ep ~ Z Z Ara<r|ﬁn|a> (4.19)
r=Npece+1 a=1



CHAPTER 4. CONVERGENCE OF SCF CALCULATIONS 107

We observe that this expression is always negative. However AE can be very small
and make convergence too slow. The choice of the value of 8 is crucial for this. In
our implementation we start with 8 = 4 and when DIIS is switched on we either

set it to zero, or alter its value according to the following ansatz

1 0.7
Pn = exp (— (;2)%5) ) (4.20)

where (3, is the value of 3 for the nth iteration. This ansatz for 3, is justified by
practical experience, not theory. We can observe that 3,, decreases quickly with in-
creasing SCF iteration number n and decreasing convergence parameter magnitude
57?115 . When the error vector magnitude becomes less than or equal to 107° we
set 0 equal to zero to make sure that the eigenvalues of the virtual orbitals are not
shifted at convergence.
In our implementation we simply add in every iteration the matrix
000 | OOU

sC C's (4.21)
O’UO | I’U’UIBn

to the F%° matrix, where S is the overlap matrix and C is the coefficient matrix for

all the molecular orbitals.

4.4 Initial approximation for the density

An initial approximation, or guess for the density matrix D is necessary for starting
an SCF calculation. The self consistent solution is equivalent to the constrained
minimisation of the energy in the space of the elements of D or the coefficients for
the expansion of the occupied orbitals in terms of the basis set. An iterative proce-
dure produces a sequence of points in this space which we desire to be convergent.
The starting point of the sequence determines to a great extent the convergence
properties. It is obvious that the closer the starting point is to the solution, the
better are the chances for the sequence to converge.

Probably the simplest type of initial approximation to the density is the one

that can be obtained by the diagonalisation of the core Hamiltonian Heore. The
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core Hamiltonian for one electron in the potential of Ny, nuclei is defined by

NTL'U/C
freme = _Lyz_§¥_2a (4.22)
2 e r — A )

where Z4 is the charge of nucleus A in atomic units and A is its position. The
orbitals that emerge from this procedure are certainly not close to the converged
SCF orbitals. Their drawback is that they do not include any effects due to the
interaction of electrons with each other. We have observed that this kind of initial
guess often leads to divergence, especially when it is used with molecules containing
atoms of the fourth period or lower where the electrons experience an effective
nuclear charge much smaller than the real one due to shielding from other electrons.
An improved initial guess which we have implemented is the Independent Atomic
Densities Initial Aproximation (IADIA). Within this scheme, calculations are per-
formed for every different atom and basis set of the molecule. The density matrices
computed for each atom are then combined together and stored as diagonal blocks
in a large block-diagonal matrix. For a chosed shell molecule for example the block
diagonal density matrix would be
Dy 0
Dblock — 0 Djp (4.23)

where D 4 is the sum of the alpha and beta density matrices for atom A. Since we
are using a single determinant formalism to calculate the atomic densities we have
to use fractional occupation numbers for the incomplete groups in order to produce
space isotropic atomic densities. Therefore, for the oxygen atom for example, we
perform an unrestricted calculation where we assume five occupied alpha and five
occupied beta orbitals. The occupation numbers of the alpha orbitals are all equal to
one as is the occupation of the first two beta orbitals (1s3, 2s3) while the occupation
of the remaining three beta orbitals (2pg) is % In setting up fractional occupation
numbers for the atomic orbitals we assume that they are always occupied according

to the following order:

1ls <25 <2p<3s<3p<4s<3d<4p < bHs<4d < bp (4.24)

<6s<4f<bd<bp<Ts<bf<bd<Tp
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Even if this order is not absolutely correct for every element, it has negligible effect
on the quality of the guess. For atoms whose core is represented by an effective core
potential we assume the same filling order starting from the orbitals not present in
the core. The atomic SCF calculations are carried out using a core Hamiltonian
guess and this can lead to convergence problems, especially for the heavier elements.
A method which usually overcomes this problem is the gradual introduction of the
Coulomb part of the Fock operator, which is by far the largest contribution added
to the core Hamiltonian operator. This is achieved by scaling the Coulomb operator
through the first 10 SCF iterations for atoms with atomic number larger than 20.
Thus the Coulomb part of the Fock operator is scaled by 0.1 for the the first SCF
iteration, 0.2 for the second SCF iteration, etc. Unfortunately this method is not
very successful for molecules.

A fundamental property of a density matrix is idempotency which is equivalent
to orthonormality of the orbitals. We want our TADIA density to be idempotent.

This can be achieved by solving the following generalised eigenvalue problem
DYksC = Cyf (4.25)

where S is the overlap matrix for the molecule. The result is a set of orbital coeffi-
cients C and fractional occupation numbers 7’. Next we set the N,.. largest values
of 7' equal to 2 and zero the rest to obtain a column vector of integer occupation

numbers 7. The idempotent IADIA density is then
DIAPIA — ¢yt (4.26)

Here too, the extension to unrestricted determinants is straighforward.

4.5 Density Matrix Search methods

4.5.1 Density matrix formulation of the SCF procedure

It has been known since the pioneering work of McWeeny [135] that a Hartree-Fock
(HF) calculation can be performed without using any orbitals but using the density

matrix instead. The HF energy and all properties can be written as functions of
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the density matrix elements and orbitals need not appear in the iterative solution
of the SCF equations.
In order to facilitate our discussion we will represent the trace of the product of

two matrices A and B as a dot product
AT B =Tr(AB) =) A;;Bj; (4.27)
]

where we perceive B as a column vector constructed by stacking the columns of the
matrix B on top of each other in order to form one large column. We see Al as a
row vector constructed by stacking the rows of the matrix A together to form one
large row vector. We assume that we will be dealing only with real matrices, so Af
is the transpose of A.

Using this notation we can write the HF energy expression for a restricted closed

shell calculation as
E(D)=D'-(H+F)=2D'. (H+1II D) (4.28)

where D is the density matrix for the electrons with alpha spin. For the restricted
closed shell case it is equal to one half of the total electron density matrix since elec-
trons with alpha and beta spin occupy the same orbitals. H is the core Hamiltonian
matrix and IT is the two-electron integral supermatrix, all expressed in terms of an

orthonormal basis set. The elements of IT are
.. |
Hije = (15|k1) — 5 (illkj) (4.29)

In his original work, McWeeny showed that a HF calculation could be performed
with a Density Matrix Search (DMS) method. Starting from an initial guess density
matrix Do we can iteratively converge to the same result as a conventional calcula-
tion with Fock matrix diagonalisation by minimising the following function with a
steepest descent procedure.

Noce
UD)=F-D=> ¢, (4.30)
a=1
The value of €y is equal to the sum of the occupied orbital energies for every

density matrix D that can be shown to be made of N,. occupied orthonormal
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spatial orbitals. The gradient of the function at each step of the procedure is
simply F (not taking into account the dependence of F on D). At each steepest
descent step F is updated by the new density. However, it is necessary to impose
the condition of idempotency on the density matrix, D? = D, which is equivalent
to the orthonormality of orbitals. This is achieved by repeated applications of the

purification transformation

D, = 3D?

n

., —2D3 (4.31)

n—1

until D,, becomes equal to D,,_; within some predetermined tolerance. This arti-
ficial application of the idempotency constraint is not always successful. As Li et
al. have showed [136] the purification transformation restores the idempotency of
an almost-idempotent density matrix only when its eigenvalues (which correspond
to the occupation numbers of the orbitals) are in the interval (—0.5,1.5). If some
iteration of the steepest descent DMS procedure produces a density matrix with
eigenvalues outside this interval the purification transformation diverges rapidly

and the method breaks down.

4.5.2 Impoved density matrix search methods

Since diagonalisation is inherently an N3 process [64], where Ngp is the number
of basis functions, attempts to achieve linear scaling in quantum chemical calcula-
tions should avoid it. Furthermore, the solution of the SCF equations by repeated
diagonalisation can lead to divergent behaviour even though a solution exists.

As an alternative to diagonalisation, DMS methods involve matrix multiplica-
tions and can be made to scale linearly provided that the matrices involved are
sparse enough to be handled efficiently by sparse matrix multiplication routines
whose computational cost increases linearly with system size. Convergence be-
haviour should be better as well, since DMS methods seek to minimise a function
of many variables in a systematic way rather than repeat a process until self con-
sistency is achieved.

Ochsenfeld et al. [137] proposed to minimise the following function

Qy(D) =2(D'-H+ D . 11. D) (4.32)
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where

D = 3D? - 2D3 (4.33)

The value of this function is equal to the HF energy for any idempotent density.
The function has the same form as the expression for the HF energy in terms of
the density matrix (4.28) but with a purification transformation in place of the
density matrix. Therefore it has some built-in idempotency-preserving capabilities
and the authors claim it can be minimised with a Newton-Raphson type method
in an unconstrained fashion. Idempotency and the correct number of electrons
constraints are taken care of automatically by the form of the function.

We are not currently interested in calculations on molecules whose size causes
the diagonalisation stage to become a computational bottle neck. However we are
very much interested in methods alternative to diagonalisation from the point of
view of converging SCF calculations. Difficulties arise often in the convergence of
DFT calculations on heavy atom complex compounds. We want to investigate if
DMS methods can yield a convergence technique which is more robust or at least
complementary to diagonalisation.

We first implemented the Conjugate Gradient Density Matrix Search (CG-DMS)
method for DFT calculations by Millam and Scuseria [138]. The function to be
minimised is

Q3(D) = F"- D + u(DF - T— Nye) (4.34)
where N, is the number of occupied orbitals and the Lagrange multiplier p is
introduced to keep the number of occupied orbitals (or alpha electrons) constant.
We observe that this function has some idempotency-preserving properties too as
it is equivalent to the original function ©;(D) of McWeeny with a purification
transformation in place of the density.

In our implementation we use the IADIA initial approximation as a starting den-
sity. Furthermore, we use the set of orbitals that emerge from it as the orthonormal
basis set in terms of which the Fock and density matrices are expressed. On the
other hand, Millam and Scuseria used the Cholesky decomposition of the overlap

matrix to orthogonalise the basis set due to computational cost considerations for
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large systems. A conjugate gradient minimization method is used to find the den-
sity which mininises the function. The gradient with respect to the elements of D,

assuming F does not depend on D, is
VQ3(D) = 3DF + 3FD — 2D%F — 2DFD — 2FD? + 4l (4.35)

The Lagrange multiplier y is chosen so that the gradient is traceless. This is suffi-
cient to satisfy the constraint.

—3D'.F—3Ft.D +2(D?)" - F + 2(DF)' - D + 2D . F
:u’ =
N

(4.36)

The minimization of {23 is carried out with the conjugate gradient method. The
conjugate gradient method minimizes a function in steps by choosing a particular
direction for each step in the space of minimization variables and then carrying out
a line search in order to find the minimum of the function in this direction. The
directions are selected in such a way that if the function we minimise is quadratic,
we are guaranteed to reach a minimum in a number of steps which is equal to the
number of independent variables [139]. The CG-DMS method involves the following

steps:
1. Define initial direction as the negative of the gradient at the starting density:

Jo = Gy = —VQ3(Do) (4.37)

2. Construct a new density matrix D;;1 = D; 4+ A\;J;, where ); is a line search
coefficient and J; is the line search direction for the (i + 1)th step. The den-
sity Djy1 is not completely idempotent and therefore we need to apply the
purification transformation to it. We iterate the purification transformation
until the absolute value of each element of the matrix (D? — D) is less than
10~ !4, The density matrices that can be obtained by diagonalisation are idem-
potent to a similar extent. Usually five or less purification transformations
are enough to achieve idempotency below this threshold. Covergence of the
CG-DMS calculation is examined at this point by calculating the rms value
of the difference of the new density matrix from the density matrix of the

previous step.
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3. Git1 = —VQ3(Di1)
4. Jip1 = Gy +vid;

5. Set i equal to i + 1 and go to (2).

The line search in order to determine the coefficient A; can be performed exactly
since 23 has a cubic dependence on D; and can therefore be expressed as a cubic

polynomial in \; along the line search direction.
Q3(D; + X\iJi) = aXd + A2 4+ e\ +d (4.38)
where

a = 2N F
b = 3(3)".F;,—2(D;JY)-F; —2(3;D;3,) - F; —2(3?D,)t - F,
c = JI.vyD;)

d = (D)

If we differentiate equation (4.38) with respect to A; and set its derivative equal to

zero we obtain

3aM\2 +2b)\ +¢=0 (4.39)

Solution of this quadratic equation yields two roots. We keep the root that yields
the smallest value of Q3.

The next step is to determine the value of ;. There are three different formu-
las possible which constitute the three different variants of the conjugate gradient
method [140]. These variants are equivalent when the function to be minimised is
quadratic with respect to the independent variables but differ for functions of higher

order.

1. The Polak-Ribiére formula:

~ (VQ3(Dig1) — VQ3(Dy))T - VQ3(Dy11)
n = YLD VD) (4.40)

2. The Fletcher-Reeves formula:

(VQ3(Diy1)) - VQ3(Di1)
W = D) V(D) (4.41)
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Table 4.1: Number of iterations needed to converge DFT calculations to a con-
vergence threshold of 107¢ with different CG-DMS variants (PR=Polak-Ribiere,
HS=Hestenes-Stiefel, FR=Fletcher-Reeves) and with diagonalisation (Diag).

Molecule | Basis PR | HS | FR Diag
H,O DZ 46 | 43 | 53 9
RbC1 631G2DP | 157 | 100 | 174 13
U0zt DZP 74| 71213 26
PuO3t | DZP 89 | 77| 76 30
UF4 STO3G 8 | 76| 72 | no conv.

3. The Hestenes-Stiefel formula:

_ (VQ3(Diy1) — V3(Dy))T - VO3(Dy11)
He = ?VQ:(IDiH) —E;VQ?,(Dz‘))Jr '3~Ii - (4.42)

Millam and Scuseria used the Polak-Ribiére variant which is the preferred method
for most applications. We have chosen to examine all three variants in our imple-
mentation. Some representative results are given in Table 4.1.

The LDAX functional was used for the calculations on HoO, RbCl and UF4 and
the BLYP functional for UO3" and PuO3*. Quasirelativistic ECPs were used to
treat the core electrons of the metal atoms. For the calculations with diagonalisa-
tion both DIIS and level shifters were used. The results of Table 4.1 are typical of
density matrix search methods. There is no clear-cut superiority of one CG-DMS
variant from the other and this can be seen also from other calculations which we
don’t present here. DMS calculations require roughly 5 times as many iterations as
diagonalisation in order to converge to the same extent. CG-DMS is not therefore
our first choice for converging calculations for the types of systems we are interested
in. It has however some properties that make it preferable for systems which are
difficult to converge with conventional diagonalisation techniques. The energy in
CG-DMS decreases monotonically through the iterations. This is always observed,
in contrast with diagonalisation where the energy can often oscillate without de-
creasing overall. Another observation is that the energy decrease is rapid towards

the early CG-DMS iterations and slows down considerably towards convergence.
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Thus, we consider the CG-DMS to be a method which is useful for producing a
high quality initial approximation to the density matrix rather than a technique for
converging calculations to the end. We use it routinely as a means for extending
the quality of the IADIA initial approximation. Twenty to fifty CG-DMS iterations
produce energies which differ from the converged energy to a few millihartrees or
less and can be driven to convergence by diagonalisation without divergent oscilla-
tions that might occur with other initial approximations. The clusters Rhy(CO)19
and Rhg(CO)19C are two examples of molecules which converge with the assistance
of CG-DMS but not with any of the other initial approximations we have imple-
mented. Finally, CG-DMS used thoughout a calculation has proved effective in
converging calculations that seem to be intrinsically divergent when diagonalisation
is used. The UF, molecule of Table (4.1) is such an example.

There are however instances where the CG-DMS method breaks down. This
happens when the application of the purification transformation breaks down and
results in density matrices with elements whose magnitude increases rapidly through
the purification iterations. We have explained under what conditions the purifica-
tion transformation fails in subsection 4.5.1. Our implementation of CG-DMS does
provide for the rare cases where this happens. When it detects divergence of the
purification transformation it imposes idempotency by directly diagonalising the
density matrix and switching the occupation numbers to 1 and 0.

A further comment about the CG-DMS is that it can be used in conjunction with
the RI-J approximation for the Coulomb energy since in its minimisation procedure
it neglects the dependence of the Fock matrix on the density and it updates it
with the new density after each step. In contrast, minimization of the function of
equation (4.32) with a Newton-Raphson scheme requires explicit use of four-index
two-electron integrals. Furthemore, {29 is only valid for HF calculations and cannot

be adopted for DFT calculations without modification.

4.5.3 Density matrix search with explicit idempotency constraints

In an effort to improve the efficiency of density matrix search techniques we have

sought to devise a scheme which is conceptually more rigorous than the ones we
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have mentioned so far in the sense that it disposes completely of the purification
transformation and includes the idempotency constraint in a natural way. This can
be achieved simply by incorporating idempotency constraints through a matrix of

Lagrange multipliers A to the function of equation (4.30).

(D) = FI-D+AT-(D?-D)
= H'-D+2D'.11.D + AT. (D? — D)

1
= EDT-(4II+I®A+A®I)-D+(H—A)T-D (4.43)

If we were using €24 to perfom a Hartree-Fock calculation H should be the core
Hamiltonian and II the two-electron supermatrix as defined in equation (4.29).
Then equation (4.43) is a quadratic equation in the elements of D and provided
we knew A, we could solve for the minimum in one step with the Newton-Raphson
method. For DFT calculations H has to be redefined as the sum of the core Hamil-
tonian and the exchange-correlation contribution to the Fock matrix. The two elec-
tron supermatrix has to be redefined also to contain only the two electron integrals

that contribute to the Coulomb energy.
ITijm = (ij]kl) (4.44)

The H matrix now depends on D in terms of some complicated function and €4
could not be minimised in one step with a Newtod-Raphson method. We try to
minimise {24 using a steepest descent method where we ignore the dependence of
H on D during the calculation of the gradient and the steepest descent step and

update it afterwards. For this purpose the gradient is necessary
Vu(D)=HII+IQA+AQI)-D+(H-A) (4.45)

In steepest descent the direction J for each step is given by the negative of the

gradient.

J = —vQ4(D) (4.46)

We also perform a line search to find a coefficient A which determines the minimum

value of Q4 along the steepest descent direction. Therefore the new density Dy,ey
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at each steepest descent step will be given by
Dypew =D+ AJ (4.47)

where D is the density that was computed in the previous step, or the starting
density. The line search has to be carried out at each step in conjunction with the
determination of the Lagrange multipliers. There seems to be no direct way to find
the Lagrange multipliers. We have devised an iterative scheme for this purpose.
Assuming that we start from an idempotent density, the idempotency condition for

the new density can be written and rearranged as follows

(D+M)? = D+
J = DJ+JD+\J? (4.48)

A = H+A-D+DJ+JID+\J? (4.49)

where equation (4.49) is derived by expanding the left side of equation (4.48) and
A=4IT+IQA+AQRL

The line search coefficient A is calculated simply by inserting the density matrix
of equation (4.47) into the expression for {24 and minimising with respect to to A.

The resulting expression is

JI.(A—H-A.-D)
JH.A.J

A= (4.50)

Our idea was to determine both A and A\ with an iterative process at every steepest

descent minimization step. We proceeded as follows:
1. Start by setting A equal to the unit matrix.
2. Insert the current A into equation (4.50) to get an improved estimate for .

3. Insert the current A into equation (4.49) in to get an improved estimate for

A.

4. Stop if A has converged, otherwise go to step 2.

Unfortunately this process either converges very slowly (thousands of iterations) or,

most of the times, diverges. The behaviour depends on the molecule and basis set.
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Our next attempt was to simplify the function we optimise by neglecting the
dependence of the Fock matrix on the density during the steepest descent steps.

Thus such a function can be written as
Q5(D):%DT-(I®A+A®I)-D+(F—A)T-D (4.51)
and its gradient is
VD) =(I’QA+ARI)-D+F—-A (4.52)
The line search direction J is defined again as the negative of the gradient
J=-VQ5(D) (4.53)
and the idempotency condition with equation (4.52) provide a formula for A

A = IQA+AQI) .- D+F+DJ+JD + \J?

= AD +DA +F +DJ+JD + \J? (4.54)

The line search coefficient is given as before by minimising 25 with respect to A

J'-(A—F+DA + AD)

A= JT (AT +JA)

(4.55)

It turns out that it is possible to determine A and A iteratively for Q25 with little
effort. In all cases we tried, A converges to a maximum error of less than 10 1°
in less than 20 iterations if we start from the unit matrix and in less than 10
iterations if we start from the A of the previous steepest descent step. This in turn
produces a density matrix which is idempotent to a maximum error of the order of
10—, i.e. comparable to diagonalisation. Attempts to improve the efficiency of the
minimisation of Q5 by using a conjugate gradient method have failed, again due to
difficulty or inability to converge A.

Overall, the minimisation of Q25 with the steepest descent method appears to be
as efficient as the minimisation of Q3 with the conjugate gradient method. Energy
lowering is fast at the beginning but slows down considerably when approaching
convergence. We view this too as a method for improving the initial approximation

prior to converging with diagonalisation. Amongst the advantages of the scheme is
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its independence from the purification transformation and that it can be combined
with the RI-J approximation. Updating the Fock matrix after every four steep-
est descent steps instead of after every step slightly increases the efficiency of the
method as it does for Q3 [141].

Probably other conceivable functions for DMS will perform in a similar way.
Improvements in efficiency should be sought in combining DMS methods with some
appropriate convergence acceleration technique. Millam and Scuseria suggest com-
bining the density matrix based DIIS with their CG-DMS method. We currently
have implemented only the Fock matrix based DIIS method which we described
in section 4.2. We have observed that the combination of this type of DIIS with
the minimisation of either €23 or 25 breaks down the minimization sequence and
leads to divergence. Level shifters also have a devastating effect on convergence.
It may well be that this does not happen with density matrix based DIIS. This is
one of the possibilities we wish to explore in the future. Also construction of new
extrapolation schemes suited better to DMS and combination with diagonalisation

are research directions worth pursuing.



Chapter 5

Gradient and geometry

optimisation

5.1 Introduction

A major success of quantum chemistry has been its ability to calculate and predict
the equilibrium geometries of molecules. Within the Born-Oppenheimer approxi-
mation that all our results are derived, the total molecular energy is a function of
the coordinates of the positions of the atoms. This function is a surface in many
dimensions and is called the Potential Energy Surface (PES). The equilibrium ge-
ometry of a molecule is defined as the minimum of its potential energy surface. The
PESs of molecules are usually very complicated functions with many local minima,
in which case we have many equilibrium geometries or stable conformations. Equi-
librium geometries are only a small part of the information available from the PES.
In principle, chemical reactions can be represented as paths on the potential energy
surface and features such as saddle points define transition states.

We need to explore the PES in order to obtain useful information for molecules.
The obvious approach of calculating the value of the PES at various points is very
inefficient due to the many dimensions of the surface (3 x Ng;), where Ng; is the
number of atoms. A more efficient approach is to use first and higher derivatives of

the PES that provide information about the topology of the surface around a point.

121
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Derivatives can be calculated in two ways:

1. Numerically, by varying each coordinate separately. Each partial derivative
is approximated by a finite difference from the SCF results at two or more

points.

2. Analytically, by evaluation of the expression for the gradient of the SCF energy

with respect to the nuclear coordinates.

The numerical approach requires at least 6 x N single point energy calculations
and therefore is not computationally tractable for large molecules. Furthermore, it
is only approximate and the coordinate interval for the finite difference has to be
chosen carefully; it has to be small enough to avoid contaminating effects of higher
derivatives but large enough to avoid causing significant errors by computational
roundoff [142]. On the other hand, the analytical gradient is exact. It has been
observed that the computational cost of calculating the gradient analytically is
only 3 - 4 times the cost of a single point SCF calculation [143]. Hence analytical
derivatives are necessary for calculations on large molecules. The current version
of MAGIC is able to calculate analytically first derivatives and use them to locate

equilibrium geometries.

5.2 The analytic gradient of the Kohn-Sham energy

The analytic gradient formulae for a variety of ab initio methods are readily available
[144]. The expression for the partial derivative of the restricted (closed shell) Kohn-

Sham energy with respect to, say, nuclear coordinate A, is [2]

OF Ner  gggre Ner oxi. 1 Rzr a(jillk)
= Y Dij—2—+ > Dij(xjlveel 555) + 5 Y. Dij—55— D
04, — A= TUT0A, T A 04, T2, & U oA,
Npr
8Sji OUnN
_ - N

where (ji|lk) is a four-index two-electron integral with j, i, etc. being abbreviations

for the basis functions x;, xi, etc. The classical electrostatic repulsion energy of the
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nuclei is Uy and
NOCC

Qji =2 ) €aCiaCja (5.2)

a=1

where the ¢;, are the orbital expansion coefficients and ¢, are the eigenvalues of the
occupied orbitals. As a result of the self-consistent nature of the energy expression,
equation (5.1) does not include partial derivatives of the density matrix elements.

The second term in (5.1) comes from the differentiation of the exchange-correlation

energy
0Esclp]  _ / 0Eqclp] Op
0A, op 0A;
NBF NBF
0D, oxi
= Z BA: <Xj|Uzc|Xi> + Z Dij(le'Uwc|a—Aw) (5.3)

ij=1 ij=1

where the first term in (5.3) is absorbed into the formation of @Q;; of equation (5.2).
In chapter 3 the RI-J approximation was presented and its potential to increase

the speed of calculations by roughly an order of magnitude was discussed. The com-

putational benefits of the RI-J approximation are also transfered to the calculation

of the gradient. Therefore the gradient implementation in MAGIC is based on the

RI-J approximation. This requires the substitution of the third term in the right

hand side of equation (5.1) by

NBr Nauvx . Navx
a(jilt) 1 a(s|t)
E E D;; A, =3 E gs A, qt (5.4)

ij=1 t=1 s,t=1

with (j7|t) being a three-index two-electron integral between two basis functions and
one auxiliary function. A detailed derivation of the gradient formalism in the RI-J
case, including extensions for second derivatives has been published by Komornicki
et al. [102].

It can be seen from equations 5.1 and 5.4 that first derivatives of the one- and
two-electron integrals are required. The calculation of the derivatives of the two-
electron integrals is done in a direct manner. This means that each batch of deriva-
tives of integrals is computed, included into the expression for the gradient, and then
deleted from memory. As shown in equation (1.25), the derivative of a primitive
Cartesian Gaussian function is simply the sum of two primitive Cartesian Gaus-

sian functions and thus the derivatives of the two-electron integrals are expressed
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as sums of two-electron integrals. Hence the implementation of the derivatives of
the two-electron integrals is simply an appropriate modification of the subroutines
that calculate two-electron integrals. The calculation of two-electron integrals is
described in section 3.9.

The derivatives of all one-electron integrals are initially computed together,
stored in the archive (disk) and then accessed in order to form the gradient of
the energy. The storage of these derivatives in the archive deserves some caution.
In early versions of the program they were stored in the form of lower-triangle
two-dimensional arrays, one for every atomic coordinate. Each array contained
Npr(Npr + 1)/2 elements so the total space required for these derivatives was
3 X Ngt X Ngp(Npr + 1)/2. This is not the most efficient way of solving the prob-
lem because the required storage space grows cubically with system size and already
becomes prohibitively large at molecules of the order of 50 atoms. Most of this space
is filled with zeros. This is because the derivatives of one-electron integrals are zero
if none of the two basis functions and the operator belong to the centre with re-
spect to which the differentiation is carried out or if all three of them belong to the
same centre. The solution to this difficulty is quite simple. Let the following be the

integral to be differentiated

{(xi(A)|O(B)x;(C)) (5.5)

where the basis functions x;(A) and x;(C) depend on the coordinates of centres A
and C respectively and the one-electron operator O(B) depends on the coordinates
of centre B. All the information necessary for the gradient can be obtained from

derivatives of the type

(O PLD) . =z (5:5)

because the translational invariance principle [66, 145] can be used to avoid differen-
tiation of the operator. Its derivative integral can be expressed in terms of integrals

containing derivatives of basis functions.

()| G b (€)= ~( 308 s (©)) — (x4 OB) 2
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The storage requirements for the integrals of equation (5.6) are only 3 x N3, scaling
quadratically with system size and furthermore none of the elements stored is zero.
They are comparable to the storage requirements of usual one-electron integrals of
a single point SCF calculation and constitute a small fraction of the information
stored in the archive during a geometry optimisation.

Some attention is also due to the evaluation of the derivatives of the exchange-
correlation potential matrix elements. These integrals are evaluated by three-
dimensional molecular quadrature and errors in the gradient can result with small
quadrature grids. These errors disappear in the limit of an infinite grid or if consis-
tency is preserved by taking account of the derivatives of the grid with respect to
atomic coordinates, as some authors have stated [146, 147, 148]. In all calculations
described in this thesis large enough grids were used with consequent negligible er-
rors in the gradient. Such an approach is preferable to the computational complexity
of grid derivatives because it leads to overall more accurate exchange-correlation en-
ergies. The extra overhead due to the larger grid is very small due to the neglect of

zero contributions, an important feature of the DF'T subroutines of MAGIC.

5.3 The BFGS geometry optimiser

The optimisation of geometries is achieved through an implementation of a quasi-
Newton optimisation method. This is essentially the Newton-Raphson method for
locating minima of functions, using an exact gradient calculated by analytic deriva-
tives and an approximation to the inverse Hessian. This approximation to the
inverse Hessian is calculated with the Broyden, Fletcher, Goldfarb and Shanno
(BFGS) update formula [149, 150, 151, 152] which improves as the number of op-
timiser steps increases [153, 154]. Such quasi-Newton methods have been demon-
strated to be rather successful while avoiding the high computational cost of directly
calculating the Hessian [2, 155]. According to the BFGS formula the inverse Hes-

sian G,, at a specific molecular geometry (nth step of the geometry optimisation)
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is given by the following expression:

1.
Qndtn qndfn anL
G,=(1I—- G, |I- + 5.7

" ( Q*ndn> " < afndn)  gld, (57)

where the column vector q,, = X,, — X,,_1 is the difference between the molecular
geometry at step n and at the previous step. In a similar fashion, d,, = g, — gn—1
contains the difference between the two consecutive gradients. I is the unit matrix.

The new geometry at point n + 1, is given by the Newton-Raphson equation.
Xn+1 =X, — aGprgn (5.8)

As an initial approximation for G, the unit matrix is used. Even though the
approximation to the inverse Hessian improves with increasing number of iterations,
it never gets satisfactorily close to the exact inverse Hessian. This realisation,
combined with the fact that the potential energy surface is not simply a quadratic
function of the coordinates suggests the need for a line search. The line search
determines the coefficient a of equation (5.8) that minimises the molecular energy.
A variety of schemes can be used, such as schemes specially tailored for the BFGS
method [153] or simply fitting the energy of the molecule as a function of « to a
polynomial. These schemes are costly because they require several single point SCF
calculations and sometimes gradient evaluations too. Their implementation and
testing in MAGIC showed that the benefit they afford by reducing the optimiser
steps is usually outweighted by the extra cost and each scheme is effective within
particular classes of molecules. Furthermore, unpredictable oscillatory behaviour
is rare but cannot be excluded. The approach that proved successful is to simply
set a equal to 1 (the Newton-Raphson value) for all optimiser iterations apart
from the first. In the first step a is set equal to 0.4 because the magnitude of the
gradient is large (especially with a poor starting geometry) and the approximation
to the inverse Hessian is non-existent. In such cases, a value of « equal to 1 can
overshoot the equilibrium geometry and seriously slow down the subsequent steps
of optimisation. As the equilibrium geometry is approached, the PES is locally
approximately quadratic, the inverse Hessian approximation has improved and thus

convergence with o = 1 is rapid.



CHAPTER 5. GRADIENT AND GEOMETRY OPTIMISATION 127

Usually during a geometry optimisation the first SCF calculation is the most
expensive. The subsequent SCF calculations employ as an initial approximation for
the density the converged density of the previous geometry. This is a very good
initial approximation because the consecutive geometries differ only slightly. Thus,
all SCF calculations at subsequent geometries converge in a small fraction of the

number of SCF iterations at the initial geometry.

5.4 An example geometry optimisation

The energy gradient and geometry optimiser of MAGIC were tested extensively
during and after development in order to ensure that correct results are obtained.
The tests involved a variety of small molecules and combinations of all functionals
currently available in MAGIC: uniform electron gas exchange (LDAX) [16], Becke
'88 gradient correction to exchange (B88X) [59], Vosko-Wilk-Nussair correlation
(VWN) [75] and Lee-Yang-Parr gradient corrected correlation (LYP) [60]. Both
restricted and unrestricted determinant Kohn-Sham calculations were used to de-
scribe the electronic state of the PESs.

Here an example geometry optimisation on a somewhat larger molecule which
has been an important discovery for the developent of organometallic chemistry is
presented. Zeise’s salt, K[Pt(CoH4)Cl3], was discovered in about 1827 and was the
first m-complex to be known [69]. Although its elemental composition was elucidated
very early, it took until 1950 to resolve its structure by X-ray crystallography. The
key point in such complexes of unsaturated organic molecules is that the C—C axis of
the coordinated alkene is perpendicular to one of the expected bond directions from
the metal. A qualitative description of this form of bonding was given by Chatt,

Dewar and Duncanson [69]. The alkene-metal bond consists of two components

1. A ¢ component resulting from donation of electronic density from the = bond

of the alkene to metal orbitals of suitable symmetry.

2. A 7 component resulting from back-donation of electronic density from the

metal into antibonding orbitals on the carbon atoms.
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Thus the bonding has dual character and its two components are synergically related
to each other, i.e. the increase or decrease of the strength of one of the components
has an analogous effect on the other.

An optimisation of the geometry of K[Pt(CyH4)Cls] was performed, using the
LDAX functional and the closed-shell restriced determinant formalism. The initial
geometry was obtained from the crystal structure of the complex [156]. The SVP
basis set was used on non-metallic atoms. The metal atoms were described by
quasirelativistic ECPs with 60 core electrons for Pt [53] and 10 core electrons for K
[67]. The auxiliary basis sets of Ahlrichs et al. [94, 95] were used on all atoms. The
total number of basis functions was 172 and the total number of auxiliary functions
was 439. For the DFT integration (section 1.5) the value of LEBEDEV was set to
3 and the value of LOG3 was set to 10. The resulting quadrature grid had 480850
points. The optimisation was completed in 56 steps, and the maximum magnitute
of the gradient components was equal to 0.000345 a.u. In MAGIC a geometry
optimisation is considered completed by default when the maximum magnitude of
the gradient components is less than 1073, This value can be altered in the input
file.

Figure (5.1) shows the geometries of the complex from the crystal structure and
the LDAX optimisation. Lengths of selected bonds (in A) and selected angles (in
degrees) are also given. There is reasonably good agreement between the experi-
mental and theoretical geometry. This is especially true if we consider that finite
temperature, as well as steric effects from interactions with the other molecules
packed in the crystal, affect the geometry of the crystal structure. The C—C bond
length in the crystal structure is 1.375 A while for the LDAX optimised molecule
it is 1.430 A. Both of these values are larger than the C—C bond length of a free
ethylene molecule which is 1.330 A. This lengthening is consistent with the Chatt,
Dewar and Duncanson model that predicts weakening of the C—C bond upon co-

ordination.
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Crystal Structure

LDAX

Figure 5.1:  Experimental (top) and theoretical (bottom) geometry of
K[Pt(CoHy)Cl3]. Pt atoms are represented by blue spheres, Cl atoms by green
spheres and K atoms by purple spheres. Bond lengths are given in A and bond

angles in degrees.



Chapter 6

Applications

Even though this thesis describes mainly methodologial developments of DFT and
their implementation, it is necessary to demonstrate the functionality and usability
of the MAGIC program, which is the final result. It is also satisfying for the author
to demonstrate that this work has made some contibution to the understanding of
chemistry from the theoretical viewpoint. The examples in this chapter are taken
from the area of inorganic chemistry which is the target of application of MAGIC.
Two out of the four examples presented were generated with the visualisation facili-
ties of MAGIC (from the Cerius? - MAGIC interface). As will be seen, presentation

in this way gives a totally new insight to molecules and their properties.

6.1 Zeise’s salt, K[Pt(CyH,)Cl;]

The geometry optimisation of K[Pt(CoH4)Cls], also known as “Zeise’s salt” was de-
scribed in section 5.4. Here, some visual representations of the density and orbitals
of the single point energy SCF calculation on the converged geometry are presented.
These pictures were created by Cerius? [12] through an interface of this software to
MAGIC. This interface was developed by Dr Andrew G. Ioannou.

Figure 6.1 shows isosurfaces of the density of the complex for various values of
the density. The shape of the isosurfaces varies from spheres surrounding the atoms
for large values of the density (0.500 - 10.00 a.u.) to a shape that indicates clearly

the bonding between the atoms for medium values (0.050 - 0.100 a.u.), reducing
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Figure 6.1: Isosurfaces of the density of K[Pt(CoH4)Cls] for the values: (a) 10.000
a.u., (b) 5.000 a.u., (c) 1.000 a.u., (d) 0.500 a.u., (e) 0.100 a.u., (f) 0.050 a.u., (g)
0.010 a.u. and (h) 0.005 a.u.
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gradually to a spherical shape that encloses the whole molecule for values of 0.010
a.u. or less. This picture is consistent with the common notion of chemists that
most of the electronic density is contained in the core of the atoms and is unaffected
by bonding, while the small fraction of the valence density is responsible for the
bonding. Furthermore, at sufficiently long distances the molecule resembles a point
charge.

It should be born in mind that the isosurface drawings of Figure 6.1 are not
quantitatively correct as far as their shape around the K and Pt atoms is concerned,
due to the use of ECPs. In reality the density isosurfaces must include more volume
around the K and Pt atoms. However the ECPs reduce the number of electrons
of K from 19 to 9 and of Pt from 78 to 18 with a consequent decrease in density
around these atoms.

Figure 6.2(a) shows a contour plot of the density of the molecule on the plane
defined by the platinum and the two carbon atoms. The values of the density are
represented on this surface by different colours ranging from red for the highest
values to green for the lowest.

Figure 6.2(b) contains a representation of the density on an isosurface of the
Highest Occupied Molecular Orbital (HOMO). The values of the density are repre-
sented by the same colour code as in Figure 6.2(a).

Figure 6.2(c) shows an isosurface of the Lowest Unoccupied Molecular Orbital
(LUMO). Two colours (blue and yellow) are used to represent the areas of the
orbital with different sign (positive and negative). It is just as easy to examine the
remainder of the orbitals with the Cerius? - MAGIC interface. Their shapes become
more complicated as one goes higher in energy and the number of nodes increases.
The shapes of these orbitals contain many subtleties that simple LCAO approaches
such as Hiickel or semiempirical molecular orbital theories are not able to represent.
Furthermore, their use to qualitatively describe bonding as consisting mainly of
contributions from orbitals of certain atoms becomes extremely difficult for large
molecules. They could possibly assist in predicting reaction mechanisms in the
context of frontier orbital theory, such as in the case of the Woodward - Hoffmann

rules [134]. No such use however seems obvious from the present calculations and
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Figure 6.2: K[Pt(C2H4)Cl3]. (a) A contour plot of the density on the plane contain-
ing the Pt and C atoms. (b) The density plotted on one isosurface of the highest
occupied molecular orbital. (¢) An isosurface of the lowest unoccupied molecular

orbital.
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since these are Kohn - Sham DFT orbitals at any rate, their isosurfaces are regarded
by the author as an interesting curiosity. Their only definite utility lies in the fact
that they contribute to the density. The density appears to be visually substantially
more informative than the orbitals and as it will be shown in the following example,
there are ways to enhance the information it provides in order to reach qualitative

conclusions about the reactivity of a molecule.

6.2 Triphenylsiloxytriphenyllead(IV), Ph3SiOPbPh;

Alkoxides, such as R—ONa, where R is a hydrocarbon functional group, are common
reagents in organic chemistry [157]. The alkoxide oxygen is highy basic with a
large negative charge and serves as a strong nucleophile. It is very reactive and
is used routinely to displace functional groups on carbon atoms of other organic
molecules (nucleophilic substitution reactions) or to eliminate a functional group
and a neighbouring hydrogen atom to produce a C—C double bond (elimination
reactions). In most cases both reactions take place simultaneously and the relative
yields are regulated by the conditions (solvent, temperature, etc.) and by the nature
of the R functional group (steric effects and electronic induction and resonance
effects). There is extensive experience in using these compounds in various synthetic
paths. However less is known about siloxides, a similar class of compounds where
the oxygen is connected to a silicon atom or lead siloxides where the sodium atom
is replaced by an organolead group.

The crystal structure of the lead siloxide triphenylsiloxytriphenyllead(IV),
Ph3SiOPbPhs has been investigated by X-ray diffraction [158]. Its isolation was
possible because it is relatively inert compared to analogous compounds [159] and
does not undergo aerobic hydrolysis, presumably due to the steric hindrance of its
phenyl groups.

In order to determine if these experimental observations can be verified by cal-
culations with MAGIC and visualisation of the output with Cerius?, a single point
LDAX calculation on this compound was performed at the geometry of the crystal

structure. The STO3G basis [104] was used on all atoms except for the O atom
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which contained an SVP basis [76] and the Pb and Si atoms that were described by
a quasirelativistic ECP [160, 77] and corresponding valence bases leaving each of
them with 4 valence electrons. Overall, the calculation involved 253 basis functions
and 2179 auxiliary basis functions. The geometry of the molecule and an isosurface
of its density are shown in Figure 6.3. The isosurface of the density shows clearly
the bonding but is not much more informative. Furthermore, its shape is not quan-
titatively correct around the Pb and Si atoms due to the elimination of the core

density by the ECPs.
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Figure 6.3: The Ph3SiOPbPhs molecule (69 atoms) at the crystal structure ge-
ometry. Top: A ball and stick drawing. Bottom: A density isosurface at 0.005

a.u.
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To extract more information from the density, separate LDAX calculations were
performed on the ground state of each of the atoms of the molecule, with the same
basis sets, ECPs and auxiliary basis sets as in the molecule. The resulting atomic
densities were subtracted from the molecular density. An isosurface of the positive
part of the difference is shown in Figure 6.4. This represents the displacement of the
electronic density upon molecule formation with respect to the sum of the densities
of noninteracting atoms at the molecular geometry and will be referred to here as
the bonding density. The isosurface of the bonding density in Figure 6.4 extends,
as expected for a visual representation of bonding, between the atoms, where the
“traditional” chemical bonds are expected to be and its value is zero on the atoms.
There is however a single exception to this general trend: the bridging oxygen atom
is the only atom that has a buildup of bonding density on it. It is distinct from
all other atoms in this sense because the formation of the molecule has increased
its density compared to its density as an isolated atom. Based on this observation,
the conclusion that this oxygen atom will exhibit strong nucleophilic behaviour in

chemical reactions seems plausible.
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Figure 6.4: An isosurface of the bonding density of Ph3SiOPbPhg at 0.005 a.u.
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These observations are compounded by Figure 6.5 which shows an isosurface of
the negative part of the difference between the molecular density and the sum of
atomic densities. This is the density depletion upon molecule formation with respect
to the sum of the densities of the noninteracting atoms at the molecular geometry.
As expected, each atom is surrounded by a density depletion surface with the only
exception being the oxygen atom. As a further indication of its electron-rich nature
the oxygen has no density depletion and the same is true for the bonding regions of
the molecule.

This example demonstrates one of the possible ways in which results from a DF'T
calculation can be processed to produce visual interpretations for chemical purposes.
The nucleophilicity of the oxygen atom of the lead siloxide which was deduced by
Figures 6.4 and 6.5 is experimentally observed, and can also be speculated from the
rules of organic chemistry. It is expected that analysis along similar lines could be
used to derive conclusions regarding the reactivity of molecules where little or no

experimental information is available.
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Figure 6.5: An isosurface of the atomic density depletion due to bond formation in

Ph3SiOPbPh; at 0.005 a.u.
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6.3 Acetonitrile ruthenium entecacarbonyl, Rus(CO);;-

(NCMe)

Many low nuclearity transition metal clusters are known and the chemistry derived
from triatomic M3(CQO)q2 clusters of the iron group (M = Fe, Ru, Os) has been
studied particularly well [69, 161]. The structure of these clusters is triangular and
they are “electronically saturated” because, according to the electron counting rules
for clusters, 18 electrons can be attributed to each metal atom. A large amount
of interesting chemistry can be developed from these clusters involving reactions
with olefins. A common starting point for these reactions is the replacement of one
or two CO ligands with CH3CN (acetonitrile). The resulting species can then lose
CH3CN easily for substitution by olefins. Then reactions on the olefins, promoted
by their coordination on the metal cluster, can be studied.

Foulds et al. [162] reported the preparation and some reactions of
Ru3z(CO)11(NCMe) and Ruz(CO)19(NCMe),. Elemental analysis, IR and 'H NMR
spectroscopy were used to characterise these clusters. Their exact structure is not
known but it is expected to be similar to the structure of Rus(CO)2 for which
X-ray crystallographic data is available [163, 164].

A geometry optimisation of the structure of Ruz(CO);1(NCMe) was performed
with MAGIC. The starting geometry was taken from a Molecular Mechanics (MM)
optimised structure with the Cerius? program [12] using the universal force field of
Rappé et al. [78] and corresponds to the equatorial CH3CN conformer. The LDAX
functional [16] in a closed-shell Kohn-Sham formalism was used to describe the
electronic structure of the cluster. The quasirelativistic ECP of Hay and Wadt [49]
and the corresponding valence basis set were employed to describe the Ru atoms.
This ECP has a Kr core (36 electrons) which leaves 8 valence electrons. The 631G*
basis set [105] was used on the carbon and nitrogen atoms and the STO3G basis
[104] on the oxygen and hydrogen atoms. The auxiliary basis sets of Ahlrichs et
al. [94, 95] were used for the RI-J approximation. Overall the calculation involved
200 electrons, 31 atoms, 298 basis functions and 1436 auxiliary basis functions.

The optimised structure of the complex at a gradient tolerance of 10~2 is shown in
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Figure 6.6: The optimised structure of Rug(CO);; (NCMe).

Figure 6.6. Selected bond lengths and angles are presented in Table 6.1.

The values of Table 6.1 compare well with the X-ray crystal structure geome-
try of the similar Rug(CO)12 cluster [164]. In that crystal structure, the average
bond lengths of Ru—Ru, Ru—C, C—0O (axial) and C—O (equatorial) are 2.854 A,
1.920 A, 1.350 A and 1.126 A respectively. Also the average C—Ru—C (equatorial-
equatorial), Ru—C—O (axial) and Ru—C—O (equatorial) angles are 104.0°, 173.1°
and 178.9° respectively. The lengthening of the N14—C16 bond (1.177 A) compared
to its length of 1.157 A in the free acetonitrile molecule [157] can be atributed to
electronic density back-donation from the ruthenium atom to the antibonding or-
bitals of acetonitrile. The C—C bond in free acetonitrile is 1.462 A, very close to
the 1.465 A of C16—C28. It seems reasonable to conclude that at least as far as ge-
ometry is concerned, closed shell clusters such as Ruz(CO);;(NCMe) are described

accurately with a combination of quasirelativistic ECPs and the LDAX functional.



CHAPTER 6. APPLICATIONS 143

Table 6.1: Selected bond lengths and angles from the optimised structure of
Rug(CO)H(NCMe).

Bond (A) Angle (°)
Rul—Ru2 2.904 | Rul-Ru2—Ru3  60.9
Ru2—Ru3 2.828 | Ru2—Ru3—Rul  60.8
Ru3—Rul 2.906 | Rul-Ru3—N14  99.4
Ru3—N14 2.144 | N14—-Ru3—-C6  101.3
N14-C16 1.177 | C6—Ru3—Ru2 98.5
C16—C28 1.465 | Ru3—N14—-C16 171.4
Ru3—C6  1.864 | N14—-C16—-C28 178.8
C6—018 1.175 | Ru3—C6—018  178.3
Ru3—C15 1.984 | Ru3—C15—-026 164.8
C15-026 1.171 | Rul-C8-022  169.5
Rul-C8  1.958 | Rul-C11-024 164.7
C8—-022 1.170 | Ru3—Rul-C4  100.1
Rul—-C11 1.992 | C4—Rul-C8 100.2
C11-024 1.171 | C8—Rul—Ru2 101.4
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6.4 Uranyl hydroxide, [UO(OH),]*~

The uranyl(VI) cation UO2" or dioxouranium(VT), is a very stable species and is
common in aqueous solutions of uranium. There is a fair amount of information
available regarding its chemical behaviour under acidic conditions [165]. In contrast,
little is known about its chemistry in strong alkaline solutions. Such information is
important because uranyl forms part of the contents of alkaline solutions in nuclear
waste storage tanks. It is known that hydrolysis of uranyl begins at pH = 3 and at

near neutral pH the uranyl ion forms a number of polymeric hydroxide species
mUO3T + nHyO 2 (UOy),, (OH)2™ " 4 nHT (6.1)

whose relative proportion depends on the concentration of uranyl and hydrox-
ide. Examples of the most important species include UO(OH)*, (UO2)2(OH)3T,
(UO2)3(OH)F*, (UOs)3(OH), (UOs)3(OH)7, (UO2)3(OH);™, (UO2)3(OH)]; and
(UO2)4(OH)7 [166]. At lower pH, uranium precipitates to form a uranate salt, a
process used industrially for the precipitation of uranium from ore-leach solutions
to form MyUyO7; (M = NHJ, Na*). This prevents the formation and isolation
of UO9(OH); and UOy(OH)%™ species. However, Clark et al. [167] managed to
prepare UOQ(OH)?L* by using the bulky tetramethylammonium countercation to
avoid precipitation of uranate salts. Furthermore, addition of [Co(NHjz)s]Cls led to
precipitation of crystals with stoichiometry [Co(NH3)g]2[UO2(OH)4]3-H20, suitable
for X-ray crystallography.

In parallel with the experimental isolation and characterisation of UOy(OH)2 ™,
Schreckenbach et al. [168] performed DFT calculations on this molecule. They
used the B3LYP three-parameter functional of Becke [169] that includes a fraction of
Hartree-Fock exchange because they claim that it can reproduce accurate geometries
and thermodynamic properties for transition metals even though it was fitted for
first row atom molecules. On the basis of some test calculations they determined
that the 6314+G* basis set of Pople et al. [170] was sufficient and it did not cause
errors more significant than the approximate treatment of correlation and relativistic
effects. The all-important role of polarisation functions to accurate geometries was

stressed once more. For the uranium atom the quasirelativistic ECP of Hay [171]
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was used, and its corresponding valence basis was uncontracted. This ECP has a
Pt core of 78 electrons and treats explicitly the outer 6s26p® shells and the valence
shells (5f, 6d, 7s, 7p) which accommodate fourteen electrons in total. At this level of
theory, the geometry of the complex was optimised, using the Gaussian 94 program
[172]. The geometry optimisation revealed more than one stable conformation, or
local minima of the potential energy surface. In particular, four conformers with a
linear UO2 unit were found, labelled I - IV and five conformers with a bent UO4
unit, labelled V - IX. The bent uranyl is a feature that has not been observed
experimentally to date.

In order to investigate the effect of different exchange-correlation functionals and
to find out if they can predict the existence of all these conformers, the same ge-
ometry optimisations were carried out by the author with MAGIC using the LDAX
[16] and BLYP [59, 60] functionals. Exactly the same basis sets and ECPs as in
Schreckenbach’s paper were used. These calculations also give the opportunity for a
further test of the effects of the RI-J approximation. The auxiliary basis of Ahlrichs
et. al. [94, 95] was used on the oxygen and hydrogen atoms and the working aux-
iliary basis described in subsection 3.7.2, was used for the uranium atom. There is
an extensive discussion in Schreckenbach et al. [168] about the difficulties of reach-
ing SCF convergence in DFT calculations at the starting geometries of UOy(OH)2~
conformers. These were overcome by “building the guess” which involves gradually
projecting the density of a converged Hartree-Fock single point energy calculation
to an increasing basis set and switching to DFT eventually. In MAGIC this problem
was solved by starting with the TADTA density approximation, described in section
4.4, and by improving it with 30 - 40 Density Matrix Search iterations using the
Q5 function described in subsection 4.5.3. After this, conventional diagonalisation
completed SCF convergence. The starting geometries for the optimisation were con-
structed with the “molecule sketcher” feature of Cerius? [12] to visually resemble
the ball and stick drawings of the optimised conformers in the paper of Schrecken-
bach. The geometry optimisations proceeded without any difficulty to produce, at
a gradient tolerance of 1073, all 9 conformer structures that Schreckenbach et. al.

reported. Schreckenbach verified that these structures belong to local minima by
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Table 6.2: The energies of the optimised UOy(OH)3~ conformers, relative to the en-
ergy of conformer I, in kcal/mol. The B3LYP results are taken from Schreckenbach
et al. [168].

Conformer LDAX BLYP B3LYP
I 0.0 0.0 0.0
II -0.1 -0.3 0.1
111 0.3 0.2 0.5
Iv 1.0 1.0 1.4
A\ 9.8 10.9 18.0
VI 10.5 11.7 19.2
VII 10.3 11.8 19.3
VIII 10.8 11.5 18.5
IX 11.0 12.4 19.3

explicitly evaluating the Hessian of the potential energy surface, and subsequently
vibrational frequencies, at these points. The current version of MAGIC is able to
locate only minima since the BFGS update formula for the approximation to the
inverse Hessian (section 5.3) produces only positive definite matrices.

The energies of the optimised conformers are given in Table 6.2 and the BLYP
optimised geometries are shown in Figure 6.7. It can be observed that the en-
ergy differences produced with the LDAX and BLYP functionals are smaller than
those by the B3LYP functional. Also, IT appears to be the global energy minimum
(most stable conformation) with both the LDAX and BLYP functionals by a very
small difference from I which is the global minimum with B3LYP. By observing
the geometries of the conformers and on the basis of steric considerations, I can
be predicted as the global minimum. In a recent review of DFT calculations on
actinide compounds [173], Schreckenbach et. al. report energies and geometries
calculated with the BLYP functional for I and V only. The energy of V relative
to I they find is 10.8 kcal/mol and compares well with the result of 10.9 kcal/mol

obtained with MAGIC. Amongst the reasons responsible for the difference are the
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Figure 6.7: The BLYP optimised structures of the conformers of uranyl hydroxide.
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different molecular quadrature grid for the exchange-correlation matrix elements
and the RI-J approximation. However this difference is small and is probably not
the reason for the discrepancy in the relative energy ordering of I and IT which is
0.5 kcal/mol. This is probably due to the different functionals.

Bond lengths and angles of the conformers are given in Table 6.3. The general
trend observed is that BLYP gives the longer bond lengths while B3LYP gives
the shortest U—O bond lengths and LDAX the shortest U—OH bond lengths. All
the methods overestimate bond lengths, BLYP most of all. This is deduced by
comparison with the crystal structure and solution (EXAFS) [167] data for the linear
uranyl species. The experimental values are U—O = 1.824 A, U-OH = 2.250 A for
the crystal structure and U—O = 1.80(1) A, U~OH = 2.21(1) A for the solution.
They do not correspond to any of the conformers I-IV in particular but rather they
are time-averages of all four conformers. Spectroscopic investigation suggests that
the conformers interchange very fast, a fact supported by the small differences in
energy that the calculations predict. In fact, energy differences of the order of 0.5
kcal/mol ~ 1mE, define the threshold for “chemical accuracy” (subsection 3.1.2)
achieved by DFT and therefore the only safe conclusion that can be drawn about
I-TIV is that they are of comparable energy. There is no obvious trend for the bond
angles of the conformers V-IX. According to the BLYP geometry optimisations
of conformers I and V only, in the review of DFT calculations on actinides by
Schreckenbach et. al. [173], the geometry parameters are U—O = 1.892 A and
U—OH = 2.360 A for I and U—O = 1.923, 1.918 A, U—OH = 2.301, 2.345, 2.374,
2.374 A and O—U—0 = 125.9° for V. These are essentially the same as the BLYP
results by MAGIC, U—O = 1.892 A and U—OH = 2.358 A for I and U-0 = 1.921,
1.918 A, U-OH = 2.297, 2.350, 2.370, 2.370 A and O—U—0O = 126.5° for V. The
reasons for the not exact coincidence were explained in the previous paragraph.

Another interesting feature of the UO9(OH)2™ complex is its oxo ligand ex-
change that has been confirmed with variable temperature O NMR spectroscopy.
This is a feature unprecedented for uranyl complexes. It is speculated [167] that the
oxo ligand exchange happens via migration of hydrogen from the hydroxide ligand

to the oxo ligand. The exact mechanism has not been established and it is possible
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Table 6.3: Bond lengths (A) and angles (°) of the optimised UO2(OH)?~ conformers.
The B3LYP results are taken from Schreckenbach et al. [168].

Conformer Functional U-0 U-OH O-U-0O
LDA 1.894 2.312 178.9
I BLYP 1.892 2.358 179.8
B3LYP 1.842 2.334 —
LDA 1.895 2.316 179.8
11 BLYP 1.895 2.356 179.9
B3LYP 1.843 2.333 —
LDA 1.910, 1.889 2.312, 2.313 179.6
2.317, 2.302
I11 BLYP 1.904, 1.887 2.355, 2.358 179.6
2.359, 2.355
B3LYP 1.894, 1.836 2.336, 2.336 —
2.332, 2.333
LDA 1.919, 1.880 2.313 179.5
IV BLYP 1.910, 1.879 2.361 179.6
B3LYP 1.857, 1.829 2.335 —
LDA 1.940, 1.933 2.259, 2.304 120.6
2.305, 2.305
Vv BLYP 1.921, 1.918 2.297, 2.350 126.5
2.370, 2.370
B3LYP 1.874, 1.870 2.267, 2.320 128.4
2.349, 2.349
LDA 1.947, 1.947 2.261, 2.261 110.1
2.311, 2.311
VI BLYP 1.940, 1.940 2.291, 2.291 113.4
2.376, 2.376
B3LYP 1.899, 1.899 2.252, 2.252 112.7
2.346, 2.346
LDA 1.969, 1.935 2.263, 2.252 110.2
2.313, 2.313
VII BLYP 1.952, 1.927 2.301, 2.284 116.0
2.380, 2.380
B3LYP 1.910, 1.888 2.257, 2.244 114.0
2.349, 2.349
LDA 1.922, 1.946 2.259, 2.307 119.3
2.306, 2.312
VIII BLYP 1.914, 1.933  2.298, 2.343 123.9
2.373, 2.379
B3LYP 1.862, 1.880 2.268, 2.326 129.4
2.348, 2.353
LDA 1.911, 1.969 2.251, 2.298 116.6
2.309, 2.309
IX BLYP 1.902, 1.946 2.293, 2.348 124.7
2.376, 2.376
B3LYP 1.847, 1.891 2.268, 2.336 131.6
2.354, 2.354
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Table 6.4: Calculated Mulliken charges of nuclei (a.u.) for the I and V conformers.
The B3LYP results are taken from Schreckenbach et al. [168].

Conformer | Atom LDA BLYP B3LYP
U 2.05 2.42 2.42

I 0] -0.85 -0.91 -0.90
O(H) -1.00 “1.05 -1.06

H 0.42 0.40 0.42

U 1.93 2.32 2.30

A% 0) -0.85 -0.88 -0.87
O(H) | -0.87 to -1.03 -1.02 to -1.08 -1.03 to -1.07

H 0.42 to 0.45  0.39 to 0.44  0.40 to 0.46

that the solvent (water) may participate. Schreckenbach et al. [168] optimised some
transition states of the molecule and proposed oxo exchange mechanisms which in-
volve the bent uranyl structures V-IX as stable intermediates. If this is the case
however, the energy gap of approximately 10 kcal/mol between the linear and bent
uranyl conformers that LDAX and BLYP predict is more realistic than the corre-
sponding gap of approximately 20 kcal/mol of the B3LYP results, as the activation
enthalpy for the ligand exchange was determined from NMR measurements to be
AHY =98+0.3 kcal/mol. The activation enthalpy corresponds to the transition
state and should be higher than the enthalpy of the stable intermediate.

A Mulliken population analysis was performed for I and V. The calculated
atomic charges are given in Table 6.4. These charges have only qualitative meaning.
They present a rather ionic picture of the molecule and are consistent with the
relative electonegativities of the atoms, but considerably smaller than the formal
oxidation numbers.

This study of uranyl hydroxide, UOy(OH)2™ is a good example of synergy be-
tween theory and experiment. The DFT calculations confirm and complement the
experimental observations. It is now known that the UOo(OH)3 ™ species exists in

solution and in the solid state if the formation of uranate salts is suppressed. The
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complex is found in the form of four conformers with linear uranyl units. These con-
formers are very close in energy (less than 1.5 kcal/mol) and interconvert rapidly.
Exchange between the hydroxyl and the oxo ligands takes place and five other con-
formers with bent uranyl units are believed to play the role of stable intermediates in
this process. Further experimental and theoretical investigations need to be carried
out in order to elucidate the mechanism of oxo ligand exchange. The bent-uranyl
conformers have not been confirmed experimentally. With appropriate multiden-
tate ligands it may be possible to prepare uranyl complexes where the most stable
conformer would possess a bent uranyl unit.

Calculations with MAGIC can provide a great deal of insight into the structure
and reactivity of heavy atom molecules encountered in industrial processes. To
this end, the capabilities of the current version of MAGIC can be increased by
further development, such as an extension of the geometry optimisation algorithm

for locating transition states.



Chapter 7

Conclusions

The modelling of large heavy atom molecules necessitates the utilisation of many
approximations in order to keep the computational cost at an affordable level. The
effect of this combination of approximations on the quantities calculated has not
been studied extensively, especially in the case of heavy atoms where relativistic
effects must be included and constitute one further challenge. The level of approx-
imations needs to be balanced against the errors it causes in the description of
molecular properties.

The basic theoretical model of the MAGIC program involves the inclusion of
correlation effects through Kohn-Sham density functional theory. Relativistic effects
are introduced at no extra computational cost by quasirelativistic effective core
potentials.

The implementation of the overlap, kinetic and nuclear attraction integrals was
carried out in a fashion not limited by the size of the systems to be studied but only
by available computer resources.

A new, efficient, algorithm for evaluating ECP integrals, suited to large systems,
was developed and tested.

Also two-electron integral algorithms for calculating the Coulomb energy, in a
direct SCF manner, with or without the RI-J approximation were developed and
tested. The accuracy of the RI-J approximation was examined extensively with a

variety of basis sets and it was determined that existing auxiliary basis sets produce
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results of chemical usefulness. Also methods for controlling the error of the RI-J
approximation were suggested as well as some simple ways for constructing auxiliary
basis sets when properly optimised ones are not available in the literature. The RI-
J approximation is very important as it speeds up the evaluation of the Coulomb
energy by an order of magnitude, yet the errors it introduces can be controlled. It
is therefore used by default in MAGIC.

SCF convergence difficulties are commonly encountered in calculations on
molecules involving heavy elements. Standard convergence assistance methods im-
plemented in MAGIC such as DIIS and level shifters solve many of the problems.
Their capabilities are greatly enhanced by the independent atomic densities ini-
tial approximation and some new density matrix search methods that were also
implemented.

The BFGS geometry optimiser for local minima of the potential energy surface
(molecular geometries corresponding to stable conformations) and the gradient of
the RI-J Coulomb and one-electron energy were implemented and tested.

Example calculations on large inorganic molecules with MAGIC show that the
combination of quasirelativistic ECPs with DFT is a level of theory sufficient to
provide useful insight into chemical properties. The interpretation of the results is
assisted and enhanced through the visualisation facilities provided by the interface
of Cerius? to MAGIC.

The modern programming conventions and modular structure of MAGIC facil-
itate the development of new modules that will extend the currently available the-
oretical model. Some future extensions that could follow naturally from this work
are the optimisation of auxiliary basis sets for the actinide and lanthanide elements,
the further improvement of density matrix search methods and the implementation

of an algorithm for locating transition states.



Appendix A

Single valence electron atomic

HF theory

Here a brief derivation of the Hartree-Fock eigenvalue equation for the valence
orbital of a single valence electron atom is given. The purpose is to show that the
radial part of the resulting valence orbital does not depend on the z-component of
its angular momentum. This result comes naturally by intuition but is a bit harder
to prove.

Let us consider an atom which consists of filled groups of orbitals of certain
angular momenta and a single electron in a shell of angular symmetry 8. This
is the electronic structure of alkali atoms with the valence electron either in an s
orbital (ground state) or in any other orbital of higher angular momentum. We

assume that all the spatial orbitals 1); are real and of central field type [174].

hi(r) = %Rn,.l,. (1) Ziam, (61, 1) (A1)

The real spherical harmonics Zj;,(6;,¢;) are defined by equation (2.66). The
Hartree-Fock eigenvalue equation for determining the spatial part of the valence

orbital, 1, (r1) = %Raﬁ (r1)Zgy (61, ¢1) is

A~

(]:L + jc + Kc)'éb'u = €Yo (A'2)

where h is the kinetic energy and nuclear attraction operator, J, is the Coulomb
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operator due to the core orbitals and K, is the exchange operator due to the core
orbitals of alpha spin.

It is instructive to further expand these operators and analyse their effect on
the valence orbital v, and then integrate over the angular coordinates to obtain a
Hartree-Fock equation with only radial dependence. We will focus on one operator

at a time:

h: This operator, expanded and expressed in spherical polar coordinates, gives the

following result

- zZ 190 19 1 9% 1 ) 1 9?
h = ———oo5——o—+t|-525m 5a0t0io — 55 "9
ri 20r{ r10r 2r{ 007  2r] 001 2r{sin® 0; 0¢]

Z 102 10 1 .
= = - -~ 4+ 17 A3
r 20r? i 0n + 2r2 (A-3)

where the first term is the nuclear attraction operator and the remaining
terms are the kinetic energy operator. The terms with angular dependence
are grouped together into the square of the magnitude of the orbital angular
momentum operator, L2. The real spherical harmonics Z;,, are eigenfunctions
of the .2 operator with eigenvalues I(I+1). Therefore the action of & on 1, (r;)
gives

2
Fpo(r1) = <—5 1o 10, m) %Raﬂ(rl)zﬂ7(91,¢1)

™ B 5 8r% T1 87"1 2’[‘%
and if we multiply this result by Zg,(01,¢1) from the left and integrate over

solid angles, the following radial equation is obtained

Z 10* 10 BB+1)\1
(‘a‘ia—r%‘aa—ﬁ “a7 ) el
Z_ Loy, BELDY
_ (_Z2_1 il 4
( " 2V7‘1+ 272 rlRaﬁ(rl) (A4)

where —V?2 /2 is the radial kinetic energy operator.

J,: This operator involves only the core orbitals. First we should note that the
density p.(r1) due to the N,y core spatial orbitals is spherical, or in other

words, it has only radial dependence

—_

Ncore n—

pe(r1) = 2 Z pi(e) =2

n=1 [=0

l
Ru(r1) Y Zim(01,¢1) (A.5)

m=—I

-
= F
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n—1

k
%Zz 2+ 1) 5 R2 (1) = pelr) (A.6)
n=11—0

1

where the last term is obtained after application of the spherical harmonic
addition theorem and k is the highest principal quantum number of the core
orbitals. Keeping in mind that the core density is spherical, the Coulomb

operator can be expanded as

T pc(

j = 7,61, AT
c - ;) ¥A2A+1 (01, b1) (A.7)
o A
x /Z,\,u(92,¢2)d92/0 %Pc(ﬁ)dm (A.8)
>

o0
— o [Ty (A.9)
0 >

where we have expanded the % term as a series of spherical harmonics [134]
and used the fact that [ Z) ,(62,2)dQs = dgrdo, due to the orthonormality
of spherical harmonics. Also, r« and rs represent the smaller and larger
respectively of r; and ro. Therefore the Coulomb operator for the valence
electron has only radial dependence, J,(r;) = J.(r;). Consequently, it is
possible to integrate out the angular part of the valence orbital from the

result of the action of the Coulomb operator.

)

.1 :
Je (’/‘1) Rag(’r‘l —47T/ e dr Q—Raﬂ(’rl) (A.10)

K,: Due to the non-local nature of the exchange operator we have to consider
from the outset its action on the valence orbital. At the same time we will
multiply from the left by the angular part Zg, (61, ¢1) of the valence orbital
and integrate over the solid angle d€)y = df1d¢;.

[ 201, 6K R (1) 23 (01, 610 (A1)

k n—-1 1

= XX Y S Rulr) [ 25,600,460 201, ) (A.12)

n=1|= Om*—l

X [/i anl(rz)sz(92,¢2) Rap(r2)Zgy (02, p2)dre | dy (A.13)
T12 Ty

The next step is to bring Z;,, (01, ¢1) into the integral over the coordinates ry
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and apply the addition theorem for the sum over m

k n—1
> Z Rpi(r1) /Zﬂ'y (01,¢1)
n=11=0
11
[ o Rutr2) Rar2) 20, 60) % Pios s ot
2

where ( is the angle between the r; and ry vectors. Now the 1/r19 term is

expanded as a series of Legendre polynomials

k n—1 oo 1 0 8
z Z > Rulr) [~ Rualra) Rap(ra)irs
— 5—0 >

(601, 91)Zg, (02, $2) Pi(cos () Ps(cos ()d21dp (A.14)

In order to proceed further from this point we have to take into account that
the Legendre polynomials are a complete set of functions and therefore any
function, including the product of two of them, can be expressed as a Legendre

series [175]:

Fs ot 41
>

Pi(cos ¢)Ps(cos ¢) = Cuus Py(cos €) (A.15)

t=0
The expansion coefficients Cys are integrals of three Legendre polynomials

and are zero unless they satisfy the triangle inequality:
t—1|<s<t+1 (A.16)

Inserting the expansion of equation (A.15) into (A.14) we obtain

oo l+s
1 2t +1 o0 7"
>3~ Rulr) =5 —Cu, [ i) Ras r2)dr

M//Zﬂ’y (01, $1) Zpy (62, p2) Pi(cos ()dQ1dQy  (A.17)

The addition theorem is used once more, this time to expand P;(cos () into a
sum of products of spherical harmonics. This allows to split the double integral

over solid angles into a product of integrals of pairs of spherical harmonics.

//Zﬂv(ela¢1)Zﬂ7(92,¢2)Pt(COSC)d91dQ2

(61, ¢1)Z15 (01, p1)dS2

2t+1

x [ 23302, 62) 2102, $2)d% = 5ty (A.18)

2t+1
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This result shows that in the sum of equation (A.17) only the terms with ¢ = g3

are nonzero. Therefore, (A.17) is simplified.

k 00
1 21 -l- 1 o0
> 3> —Rulr) =5 | C+1Rnl(r2)Raﬁ(7"2)d7'2 (A.19)

Finally, we can truncate the infinite summation over s by taking into account
the triangle inequality that the Cpg, coefficients have to satisfy according to
(A.16):

A | 2 +1

i ERnl (7"1)

o ri
Cpis /0 +1 Rpi(ra)Rop(ra)dra  (A.20)

This is the expression for the contribution of the exchange operator to the
radial part of the Hartre-Fock equation for a one valence electron atom. The
most remarkable feature about this result is that it does not depend on 7,
the z-component angular momentum quantum number of the valence orbital,
LRop(r)Zs,(0,¢). This was to be expected if we ever had a chance of sepa-
rating the Hartree-Fock equation into a radial and an angular part but it was
not at all obvious at the early stages of the expansion, for example in equation

(A.14).

The expressions of equations (A.4), (A.10) and (A.20) combined yield a radial-

only equivalent of the Hartree-Fock equation (A.2) for the valence orbital.

Z 1 +1) konl B 914
———§V,2,1 12 +4/ pelr d2+zz Z —Cﬂls
" ri n=11=0 s=|§—l|

S

o T .1 1
dro—==R,;(r2)r2Pia— Ry (r2) | —Ras(r1) = €4 —Ra T A.21
o drerg i(r2)r2 12 1 2)] - a(r1) 8 p(r1)  (A.21)

where €,5 = €, and Py is an operator which, operating to the right, interchanges

r1 and 7.
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