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PROFESSOR KOMPRESSOR RE-CAP
1. Consider a conservative single fluid system with flux na: 

1.1.  It is a field describing the worldlines of fluid elements in spacetime, where each element 
contains a certain number of particles dNa; i.e. if xa(t) are the points on the worldline, where 
t is the proper time, then 

1.2.  Pictorially, 

1.3.  The unit tangent vector ua is  

1.4. The flux magnitude is the particle number density n = - ua na. 
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2. For a single-fluid system the set-up is as follows: 

2.1.  There are four elements: 
2.1.1. the flux na = n ua, 
2.1.2. the mass-energy density r, 
2.1.3. the pressure p, 
2.1.4. and the Equation of State; i.e. r = r(n) and/or p = p(n). 

2.2.The Energy-Momentum-Stress tensor Tab for a single-fluid system is 

2.3.  If we introduce the chemical potential µ = dr/dn, the chemical potential covector µa = µ ua, 
and use the Euler relation µn = r + p, we can write 

2.4. Non-dissipative, or conservative, flow means  

2.5. Take the Einstein Equation (Gba = 8p Tba), use the Second Bianchi Identity (▽b Gba= 0, next 
slide!), use the particle conservation, and the Euler Relation, et voila!, we get 

2.6. This is an integrability condition for the vorticity; pictorially, the fluid flux worldlines do not 
“pierce” their own vorticity world-tube.

PROFESSOR KOMPRESSOR RE-CAP CONTINUED

T ab = pgab + ρ + p( )uaub

T ab = pgab + µanb

∇bT
b
a = n
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a = 0
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1. Coordinate (Diffeomorphism) Invariance is an essential assumption of General 
Relativity and it says the form of physical laws must be invariant under arbitrary 
differentiable coordinate transformations: 

2. Like any invariance, identities result; here, it is for combinations of the Riemann 
Tensor Rabcd, the so-called Bianchi Identities: 

3. The Einstein Equation is 

4. Because of the 2nd Bianchi Identity and the Einstein Equation it is an identity that 

5. This was something that always troubled me about dissipative fluid models; not 
that they were wrong, but that something was missing.  

COORDINATE (DIFFEOMORPHISM) INVARIANCE AND ENERGY-
MOMENTUM-STRESS TENSOR CONSERVATION

Bianchi ⇒ ∇bG
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5. In fact, regardless of the Einstein Equations, we have the following: 
5.1. Use the definition of Tab as a variation of the action with respect to the metric:  

5.2. Impose a “small” coordinate transformation on the metric: 

5.3. Coordinate invariance means the action variation must be zero: 

5.4. Therefore, strictly speaking, ▽b Tba= 0 is NOT the fluid field equation; it is an identity — true 
because of the field equations (as we will see).  

6. Also, the Bianchi Identity is four equations:  
6.1. When there are two or more fluids, it is not enough.  
6.2. A non-zero temperature superfluid compact object can have four of more independent fluxes — 

na (neutrons), pa (protons), ea (electrons), sa (entropy), etc. 

7. Also, when new physics is introduced, such as electromagnetism, the identity is not 
enough.
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COORDINATE (DIFFEOMORPHISM) INVARIANCE AND ENERGY-
MOMENTUM-STRESS TENSOR CONSERVATION CONTINUED



LOCAL FLUID CONTINUITY/PARTICLE CONSERVATION
1. Recall that the fundamental field of fluid dynamics is the flux na: 

2. The heart of the fluid model action principle is the basic picture of flux, and how 
to keep it conserved: 
2.1.  There are fluid elements having, say, volume d(3)V.  
2.2.  Into each fluid element we place, at some initial time, dNn particles. 
2.3.  The fluid element itself traces out a worldline with unit tangent ua. 
2.4.  These elements are combined to give 
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3. Consider a fluid element moving from spacetime point (t,xi) to (t + dt,xi + dxi): 
3.1. The number of particles at the different points are, respectively,   

3.2. For small enough fluid three-velocity, and cheap gravity, we have 

3.3. The fluid volume takes the two values  

3.4. We can think of an “active” coordinate transformation, or that the fluid element coordinates are 
carried along (Lie-Dragged), so as to write 

3.5.  Putting everything back together

LOCAL FLUID CONTINUITY/PARTICLE CONSERVATION CONTINUED
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THE ACTION PRINCIPLE: FIRST ATTEMPT
1. A fluid element is small enough as to be infinitesimal with respect to the whole fluid, but 

having enough particles where a thermodynamic description is warranted: 
1.1.  Let’s assume there is one free parameter and take it to be the particle number density n. 
1.2. Let’s also assume that an equation of state is known: r = r(n). 
1.3. From it all dependent thermodynamic functions can be determined: 

2. Since the equation of state contains all the thermodynamic “knowledge”, it is a reasonable 
guess that a fluid action principle could be based on r = r(n), provided that the 
independent parameter is relatable to the flux na, which of course it is because  

3. For variations which fix the metric, uadua = 0, so that the definition of the chemical 
potential allows us to write 

4. Unfortunately, if we take this to be our Lagrangian variation then the equation of motion is
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THE ACTION PRINCIPLE: FIRST ATTEMPT CONTINUED
5. We don’t need to give up on using the thermodynamic “master function” as the basis for 

the fluid action principle, rather, we need to be more careful about the flux variation: 
5.1.  It needs to be constrained in the since that even though na has four components, it has only three 

dynamical degrees of freedom. 
5.2.  Obviously, the fact that ua ua = -1 means the four-velocity is constrained. 
5.3.  The fluid element particle numbers depend on only the initial spatial coordinates, as in the picture 

below:   

6. So, it seems that both the initial worldline location and the number of particles imparted 
depend on only the 3 initial spatial coordinate values. 

7. In the flux conservation demonstration we argued that the initial fluid element locations 
could be carried along with the fluid element.  

8. We will now show that this feature can be exploited to the point that “worldline labels” 
become the degrees of freedom. 

x1
x2

x3
x0

t = t0

δNn t0, xI+1
i( )

(I + 1) th -- worldline
I th -- worldline

δNn t0, xI
i( )



1. There is a dual formalism to particle flux conservation; namely, closed three-forms: 
1.1.  The three-form which is dual to the particle number flux is given by 

1.2. There is a one-to-one correspondence between the vanishing covariant divergence of the flux and the 
closure of the dual three-form: 

2. The pull-back formalism allows one to construct three-forms which are automatically 
closed: 
2.1.  Introduce an abstract, 3D matter space where the points are labeled by XA, A = 1,2,3. 
2.2.  Each worldline in spacetime is identified with a matter space point, as in the following picture: 

THE PULL-BACK FORMALISM
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3. In the matter space we can construct a volume-form; i.e., it is a three-index, totally 
antisymmetric object which is a function of the matter space labels: 

4. The matter space labels, can be “imported” into spacetime and thereby become scalar 
functions XA(xa). 

5. Using the maps ▽aXA and the volume form nABC, we can build the spacetime three-form 

6. The exterior derivative of this is 

7. It vanishes identically because

THE PULL-BACK FORMALISM CONTINUED
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THE ACTION PRINCIPLE: SECOND ATTEMPT
1. Now we are set! 

1.1.  Assume that a Lagrangian is given: 

1.2. Assume that the nABC are given:  

1.3. Introduce the Lagrangian displacement 

1.4. A straightforward, but tedious, calculation gives the proper flux variation:

Λ = −ρ n2( )

δ XA = − ∇aX
A( )ξ a

δna = nb∇bξ
a − ξ b∇bn

a − na ∇bξ
a + 1
2
gbcδgbc

⎛
⎝⎜

⎞
⎠⎟

na = 1
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C( ) ∇dX

D( )nBCD XA( )



THE ACTION PRINCIPLE: SECOND ATTEMPT CONTINUED
2. Next, take the following steps: 

2.1.  Form the action: 

2.2. Take its variation:  

2.3. Therefore, the equation of motion is 

2.4. The energy-momentum-stress tensor is

Sfluid = d 4x −gΛ n2( )
M
∫

δSfluid = d 4x −g − nbωba( )ξ a + 1
2

Ψgab + µanb( )δgab⎡
⎣⎢

⎤
⎦⎥M
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µa = −2 ∂Λ
∂n2

na , ω ab = 2∇[aµb] , Ψ = −Λ + µan
a

nbωba = 0

T ab = Ψgab + µanb



CONCLUDING REMARKS
1. Want to have a multi-fluid system?  

1.1.  Form all the scalars that can be made from the fluxes. 
1.2. Assume there is a Lagrangian which is a function of these independent scalars. 

1.3. Introduce an independent abstract matter space for each independent fluid. 

2. Want to have electromagnetic effects? Start with 1. above and add to it the standard 
minimal coupling and Maxwell actions. [See, for example, Andersson et. al., CQG, v. 34, 
125001 (2017).] 

3. Want to have a crust? Start with 1. above, and add to the action that of an elastic material. 
[See, for example, Andersson et. al., CQG, v. 36, 105004 (2019).] 

4. Want to have dissipation? Think about it from 1993 to 2013, and learn how to extend 1. 
above with non-closed three-forms. [See Andersson and Comer, CQG , v. 32, 075008 
(2015).] 


