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Abstract. Models that have been developed for wheel/rail rolling noise are generally 
linear in order to make use of a frequency-domain approach. In fact, the local 
elasticity between the wheel and the rail exhibits a non- linear stiffness behaviour due 
to geometrical effects. This is, therefore, usually linearised about a nominal static 
preload. For large defects on the wheel or rail surface, however, such an approach can 
no longer be used and a time-domain solution including the non-linearities is 
required. By using simplified models of the wheel and rail dynamics in such a time-
stepping model, the effects of the non-linearities have been determined. It has been 
found that, for normal levels of surface roughness found on wheels and rails, the 
linear models give a satisfactory prediction. However, for larger defects, such as 
wheel flats or rail joints, the non-linear effects are found to be significant. A hybrid 
approach is used to predict the noise radiation due to such defects, for which more 
detailed dynamic models should be incorporated. The contact force from the non-
linear calculation is converted back to an equivalent roughness that can be used in a 
linear model for the response and noise radiation.  
 

1. INTRODUCTION 
 
When a wheel rolls on a rail, irregularities on the wheel and rail surfaces excite 
vibrations which radiate noise. Theoretical models describing the interaction between 
a railway wheel and the track are used for predicting noise generation, as well as 
wheel and track vibration, fatigue damage and rail corrugation. Often, especially for 
noise prediction, a linear model is used, which has the advantage that calculations can 
be carried out in the frequency domain [1,2]. In practice, although the wheel can be 
considered as a linear system, the local elastic deformation of the contact zone has a 
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non- linear stiffness characteristic [3], as do the rail pads and the ballast in the track 
structure [4]. Nevertheless, a linear model is usually justified on the basis that the 
corresponding deflections are small. This paper reviews recent research that has 
investigated the effects of the non- linear behaviour of the contact spring on the 
wheel/rail interaction force and hence on rolling noise for situations where the 
deflections of the contact spring are no longer small. The frequency range of interest 
for rolling noise is generally 50 to 5000 Hz. 

Time-domain models, incorporating the non- linearities in the contact zone, have 
been used by, for example, Clark et al [5] and Nielsen [6]. These models contain 
large numbers of degrees of freedom to represent the track. Nevertheless they are 
limited to a maximum frequency of around 1500 Hz. In the present study, simplified 
models of the wheel and rail are used in a time-stepping model in order to determine 
the effects of the non- linearities. Although these models use only a small number of 
degrees of freedom they are representative for a wide frequency range. 

 
2. THE EFFECT OF NON-LINEARITIES ON ROLLING NOISE 

 
2.1 Wheel/rail interaction 
 
A model for the generation of rolling noise is shown in Figure 1. As the wheel rolls 
over the rail, the roughness of the rail and wheel surfaces induces a relative motion in 
the vertical direction. A roughness of wavelength λ, traversed at a speed v, induces 
vibration at the circular frequency ω = 2πv/λ. This is represented in Figure 1 by a 
static wheel and a moving irregularity.  
 

 W 

Wheel Mw 

Rail V r 

Contact spring 

 
Figure 1. Representation of the excitation of the wheel/rail system by a moving 

irregularity. 
 

Depending on the receptances (displacement per unit force frequency response 
functions) of the wheel and rail at this frequency, the roughness can result in vibration 
of the wheel or the rail. This vibration spreads out along the rail and around the 
wheel, and radiates sound. Vibration can also be absorbed by the local elasticity of 
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the wheel/rail contact, represented by a Hertzian contact spring. This spring has a 
non- linear behaviour due the geometry of the wheel/rail contact. As the compression 
is increased the contact area increases in size and the spring becomes stiffer. As the 
compression is reduced, the stiffness reduces until total unloading can occur. For 
contact between cylindrical bodies, the contact force F is given by [7] 
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where δ is the deflection of the contact spring, r is the roughness relative 
displacement input between the wheel and rail (positive for an indentation), xr is the 
rail displacement, xw is the wheel displacement (both positive downwards) and CH is 
the Hertzian constant, which depends on the radii of curvature of the surfaces and 
their material properties. 

If the relative motion in the contact spring δ varies in a small range, the above 
equation can be linearised by writing F = W + dF, 

 δδδ dkdCdF HH =≈ 2/1
02

3  (2)  

where W is the nominal preload, dF is the fluctuating part of the contact force, dδ is 
the fluctuating part of the contact deflection and kH is the linear contact stiffness for a 
nominal deflection of δ0. Figure 2 shows the non-linear behaviour of equation (1) and 
linear approximations at two nominal preloads, 25 and 50 kN. The difference between 
the linear and non- linear models can be seen to be larger for a lower preload at a 
given relative deflection. 
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Figure 2. (a) Non-linear force-deflection relation showing linear approximations at 

two preloads, (b) ratios of the non-linear contact force to the equivalent 
linear one, - ⋅ - ⋅ static load W = 25 kN, ⋅⋅⋅⋅⋅ static load W = 50 kN. 

 
Using the linear contact stiffness of equation (2), the wheel/rail interaction 

model can be made linear, which allows the use of a frequency-domain approach. 
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This forms the basis of the model in [1]. The vibration displacement of the wheel and 
rail at frequency ω are then given by 
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where αw is the wheel receptance at frequency ω, αr is the rail receptance and 
αc = 1/kH is the receptance of the contact spring. Equation (3) allows for coupling in 
the vertical direction; actually the model in [1] includes coupling in other coordinate 
directions as well, in which case a matrix version of equation (3) is used [2]. 
 
2.2 Simple wheel and track models 

 
In order to examine the effects of the approximation in equation (2), a simple 

model has been used in which the wheel is represented by a mass [7] or a mass and 
spring [8], as shown in Figure 3. Although the details of the wheel resonances at high 
frequencies are not included, the simple mass-spring model gives a reasonable 
representation of the wheel receptance up to 1 kHz, and represents the average 
behaviour above this. 
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Figure 3. Wheel receptance  from finite element model, ⋅⋅⋅⋅⋅ from simple 

mass/spring model, - - - simple mass model. 
 
The track is replaced by an equivalent state space system. This has a frequency 

response given by 
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where ai and bj are constants and s = iω. H(iω) is the point receptance of the 
equivalent system. The coefficients ai and bj are chosen to ensure that H(iω) fits 
closely to the receptance of a track, αr(ω), modelled using a Timoshenko beam on a 
continuous spring-mass-spring foundation [7]. This system can also be written in the 
time domain as 
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where D represents differential operator d/dt. xr(t) and F(t) are the rail displacement 
and wheel/rail interaction force respectively.  

The system of time-domain equations (1,5) and the corresponding equations for 
the wheel mass are solved using a Runge Kutta method. The results are compared 
with those based on using a linear contact spring, equation (2), in place of the non-
linear one in equation (1). In [7,8] this has been done for a range of broad-band 
roughness spectra. Roughness time histories were generated from one-third octave 
band roughness spectra by first creating equivalent narrow-band spectra with random 
phase at each frequency and then applying an inverse Fourier transform. These time 
histories r(t) were used as inputs to the wheel/rail system. From this calculation a 
time history of the wheel/rail interaction force was obtained. This was then 
transformed into the frequency domain and converted to a one-third octave force 
spectrum for ease of presentation.  
 
2.3 Results 

 
The difference between the linear and non- linear contact force spectra in one-

third octave bands is shown in Figure 4 for four levels of roughness. The roughness 
spectra used range from a moderate roughness found on tread-braked wheels to a 
more severe roughness from a corrugated rail and an extreme case with twice the 
amplitude of the corrugated rail. The r.m.s. amplitudes of these roughnesses for the 
frequency range 250 Hz to 5000 Hz, rrms, are 7.6, 13.2, 25 and 50 µm. Typical train 
speeds were used of around 100-140 km/h (at other speeds the roughness spectra 
would shift to different frequencies). 

In each case results are shown for seven values of wheel preload, W. Typically, 
a passenger vehicle has a wheel load of around 50 kN, whereas that for a freight 
vehicle can vary between about 25 kN, when empty, and over 100 kN, when full. 
Preloads less than 25 kN are also included in the calculations to illustrate further the 
dependence on load. It is found that the linear and non-linear results are similar for 
low roughness amplitudes and large wheel loads, giving differences close to 0 dB, but 
the differences increase for large roughness and/or small loads.  
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Figure 4. Difference in one-third octave band spectra of the wheel/rail contact force 

from the non-linear model compared to the linear model. From largest 
deviations to smallest, static load W = 10, 15, 25, 35, 50, 70, 100 kN. 
(a) moderate roughness, (b) intermediate roughness, (c) corrugated rail 
roughness, (d) extreme roughness. 

For the tread-braked wheel roughness, rrms = 7.6 µm, the two models agree very 
closely for all wheel loads considered. When the amplitude increases to 13 µm 
deviations are found for the two lowest wheel loads, although these are lower than 
would occur in practice. For the corrugated track roughness, the differences are small 
for wheel loads of 50 kN and above, but significant for loads less than that. For the 
extreme roughness the differences are significant for all loads except 100 kN. 

As the wheel load is reduced, the static deflection of the contact spring becomes 
smaller, and loss of contact becomes more likely. In Figure 5(a), the average absolute 
difference between the results of non- linear and linear models, averaged over all 
frequency bands 50 to 5000 Hz, is plotted against rrms/δ0, the ratio of the r.m.s. 
amplitude of the roughness to the static deflection of the contact spring. For all four 
roughness spectra considered, when this ratio is less than about 1/3 the differences are 
small, whereas when it is greater than about 1/2 the differences increase considerably.  

In Figure 5(b), the percentage of the time over which loss of contact occurs is 
shown for the same cases, again plotted against the ratio rrms/δ0. This shows a similar 
shape, although it increases from a slightly higher value of rrms/δ0. This indicates that 
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non- linear behaviour is significant when loss of contact is occurring and just before it 
starts to occur, but is not significant otherwise, even though the dynamic contact force 
may reach peak values of two or three times the static value before loss of contact 
occurs. 
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Figure 5. (a) Average difference in one-third octave band spectra of the wheel/rail 

contact force from the non-linear model compared to the linear model 
plotted against ratio of r.m.s. roughness amplitude to static contact 
deflection. (b) Percentage of time that contact is fully unloaded. 
×: moderate roughness, *: intermediate roughness, o: corrugated rail 
roughness, +: extreme roughness. 

2.4 Discussion 
 
In ref. [7] it was shown that the non- linear effects are significant at frequencies 

where (i) the contact spring deflection δ is a large fraction of the roughness r and (ii) 
the roughness itself is large. Non- linear effects can be neglected for frequencies 
below 100 Hz, even though the roughness inputs at these frequencies may be quite 
large, as the contact spring deflection δ is only a small fraction of the roughness input 
at these frequencies. Larger effects were found for excitation around 200 and 900 Hz. 
These frequencies correspond to peaks in the contact force for a given roughness 
input. The first is due to a track anti-resonance, at which the contact stiffness and rail 
receptances are approximately equal and opposite. This also occurs, more strongly, at 
the second peak at 900 Hz. Differences can be seen at these frequencies in Figures 
3(c) and (d). For frequencies above 1 kHz, although δ ≈ r (since |α  c|>|α  w+α  r| for 
most frequencies above 1 kHz), the roughness amplitude is generally considerably 
smaller than a lower frequencies. The differences seen at higher frequencies in Figure 
4 are due to harmonics of the large excitation around 1 kHz on the corrugated rail. 

It is concluded, therefore, that the non- linear contact spring between the wheel 
and the rail has only a small effect on the wheel/rail response for normal levels of 
surface roughness. The effects of non- linearity increase as the roughness level 
increases or the normal load reduces.  Significant differences between the results of 
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linear and non-linear models occur when the r.m.s. roughness amplitude exceeds 
about one third of the static deflection of the contact spring. This condition 
corresponds closely to the onset of loss of contact, so that it is concluded that loss of 
contact is more important to the breakdown of the linear model than the non- linear 
spring stiffness. The effect on A-weighted noise levels is found to be negligible for 
practical situations [8]. Spectral differences greater than 1 dB are observed on a 
corrugated rail roughness (r.m.s. amplitude 25 µm) for wheel loads less than 50 kN, 
but for a roughness with r.m.s. amplitude 13 µm or less such differences do not occur 
for practical wheel loads. However, larger amplitude excitations occur for the 
wheel/rail system at discrete discontinuities such as wheel flats and rail joints. These 
are considered in the next sections. 

 
3. IMPACT NOISE DUE TO WHEEL FLATS 

 
3.1 Contact force 

 
A wheel flat is an area of the wheel tread that has been worn flat, as shown 
schematically in Figure 6(a). This usually occurs due to the brakes locking up under 
poor adhesion conditions at the wheel/rail contact, for example due to leaves on the 
railhead during the autumn. Wheels with flats produce high levels of noise and impact 
loading of the track which can lead to damage of track components. Typically flats 
can be around 50 mm long, in extreme cases up to 100 mm. After their initial 
formation, flats become ‘worn’, i.e. rounded at their ends due to the high load 
concentration on the corners. A worn flat of a given depth is longer than the 
corresponding ‘new’ flat. 
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Figure 6. Rolling of a wheel with an idealised flat. 

 
Wheel flats introduce a relative displacement input to the wheel/rail system in 

the same way as roughness. The profile shape can be seen to correspond to a circular 
arc dip in the railhead. However, due to the geometry of the wheel and rail surfaces, 
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the actual displacement input is modified by the wheel curvature. For the idealised 
flat shown in Figure 6(a), the wheel first pivots downwards on the front corner of the 
flat, Figure 6(b), then pivots upwards again on the rear corner [9], Figure 6(c). The 
resulting relative displacement input experienced by the wheel/rail system is shown in 
Figure 7. In ref. [9] it is shown that a worn wheel flat can be represented by a curve of 
a similar shape to that in Figure 7 but elongated. 
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Figure 7.  Wheel flat geometry for new flat of length l0 and depth d. −−−− profile 
shape, − − − after geometric filtering. 

 
The response of the wheel and rail can be calculated using the same model as 

described in the previous section. In ref. [9] the wheel is represented by a mass and a 
spring (see Figure 3). For numerical convenience an additional small mass is attached 
on the underside of the spring. Figure 8 shows examples of the calculated response to 
a new wheel flat of depth 2 mm (length 86 mm). The contact force has a static value 
of 100 kN.  

When the indentation (relative displacement input due to the wheel flat) appears 
between the wheel and rail, the wheel falls and the rail rises. Since the wheel and rail 
cannot immediately follow the indentation due to their inertia, the contact force is 
therefore partly unloaded. At a train speed of 30 km/h, Figure 8(a), full unloading 
first occurs. 

After the relative displacement input reaches its maximum, the contact force 
increases rapidly until it reaches its peak (the wheel is now pivoting about the trailing 
edge of the  flat). The peak force is here about 4 times as large as the static load. As 
the speed increases, contact is lost for longer during the unloading phase. At 80 km/h, 
Figure 8(b), a second loss of contact can be seen to occur. At the first impact at about 
3.5 ms the force rises dramatically. Since the momentum of the wheel and rail are 
changed dramatically by the large impulse during this first impact, the wheel and rail 
are forced to move apart from each other and a second loss of contact occurs at about 
7.5 ms. However, the second impact is much smaller than the first one. For a rounded 
flat of the same depth but overall length 121 mm the speed at which loss of contact 
first occurs increases from 30 km/h to about 50 km/h.  
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Figure 8. Wheel/rail interaction and displacements of wheel and rail due to 2 mm 

newly formed wheel flat. (a) At train speed 30 km/h, (b) at 80 km/h,  
 wheel displacement, - ⋅ - ⋅ rail displacement, ⋅⋅⋅⋅⋅ relative displacement 
excitation. 

 
The maximum contact force is plotted against train speed in Figure 9 for several 

cases. The details of the contact force depend on the flat geometry. Comparisons with 
measured impact forces [10] suggest that the geometrical effect of wheel curvature 
indicated in Figure 7 leads to over-estimates of the contact force. In future work it is 
planned to use measured wheel flat profiles to study this effect further. 

 
3.2 Noise prediction 

 
The above process is sufficient to estimate the contact forces, including the 

effects of contact non- linearity. The next stage is to use these results to estimate the 
radiated noise. For this, the response of the wheel and rail are required incorporating 
details of the wheel modes of vibration and the propagation of vibration along the 
rail. Such effects are included in the conventional rolling noise model, TWINS [1].  
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Figure 9. Peak impact force predicted from different wheel flats.  due to 2 mm 

rounded flat, - - - 1 mm rounded flat, - ⋅ - ⋅ 2 mm newly formed flat, ⋅⋅⋅⋅⋅ 
1 mm newly formed flat. 

 
Unfortunately, it is not possible to use the contact force obtained from the 

impact model and apply it directly within the TWINS model, because the interaction 
force is sensitive to details of the wheel and track dynamics. With a modal wheel 
model, the force will have strong dips at the wheel resonance frequencies. The wheel 
response has only shallow peaks, just above the resonance frequencies, the interaction 
with the track thereby introducing apparent damping to the wheel [3]. 

A hybrid approach has therefore been developed in ref. [9] whereby an 
equivalent roughness spectrum is derived. This is defined such that the contact force 
spectrum obtained using the above non-linear model is identical to that obtained 
using a linear model excited by the equivalent roughness spectrum. At this stage the 
wheel and track are represented by the same simple elements described above in both 
cases. The equivalent roughness spectrum can then be used as the input to a more 
detailed linear frequency-domain model, such as the TWINS model, to predict the 
noise due to the impact. This procedure has been validated in [9]. 

Example results are given in Figure 10(a). This shows the sound power due to 
one wheel and the associated track vibration for a 2 mm new wheel flat at different 
speeds for 100 kN wheel load. Results correspond to the average over a whole wheel 
revolution. Figure 10(b) shows, for comparison, corresponding results for roughness 
excitation due to the moderate roughness considered in Section 2 (tread-braked wheel 
roughness). The wheel is represented by its full modal basis in the frequency range up 
to 6 kHz, determined from a finite element model. The track is modelled by a 
Timoshenko beam, continuously supported on layers of damped springs and mass. As 
the speed increases, the noise at frequencies above about 200 – 400 Hz increases in 
both cases. The increase in rolling noise with increasing speed is greater than that due 
to the flat. For the wheel flats that were considered here, the noise generated exceeds 
that due to the tread-braked wheel roughness at all speeds and in all frequency bands, 
although the noise due to roughness increases more rapidly with speed so that at 



David Thompson 
 

12

sufficiently higher speeds it can be expected to dominate. For corrugated track, the 
noise due to roughness exceeds that due to wheel flats at 120 km/h. 
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Figure 10. Sound power level due to wheel and track. (a) 2 mm new wheel flat, 

(b) rolling noise from moderate roughness. − ⋅ − ⋅ 30 km/h, ⋅⋅⋅⋅⋅⋅ 50 km/h,  
- - - 80 km/h,  120 km/h. 

 
Figure 11 shows a summary of the variation of the overall A-weighted sound 

power level with train speed. The predicted noise level due to conventional roughness 
excitation increases at a rate of approximately 30 log10 V, where V is the train speed, 
whereas the noise due to flats increases at an average of around 20 log10 V onve loss 
of contact occurs For example, loss of contact was found to occur for the newly 
formed 2 mm flat at speeds above 30 km/h and for the rounded 2 mm flat above 
50 km/h. This variation with speed indicates that the radiated sound due to wheel flats 
continues to increase with increasing speed, even though loss of contact is occurring. 

Impact noise from wheel flats is found to depend on the wheel load. The 
increase in noise between a load of 50 kN and 100 kN is about 3 dB. In contrast, the 
rolling noise due to roughness is relatively insensitive to wheel load. 

 
4. IMPACT NOISE DUE TO RAIL JOINTS 

 
In a similar way to wheel flats, rail joints provide discrete inputs to the wheel/rail 
system that induce quite large contact force variations. Rail joints can be 
characterised by a gap width and a step height (either up or down). Moreover, the rail 
often dips down to a joint on both sides. Such dips are also present at welds, and are 
usually characterised in terms of the angle at the joint. 
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Figure 11. Sound power radiated by one wheel and the associated track vibration.  

− − − 1 mm rounded flat, ⋅⋅⋅⋅⋅⋅⋅ 2 mm rounded flat, − ⋅ − ⋅ 1 mm new flat, 
 2 mm new flat, o−−−o rolling noise due to roughness (moderate 
roughness). 

 
A similar approach has been used as above to study the effects of rail joints 

[11,12]. To allow for the reduced bending stiffness at a fish-plated joint a model of a 
pin-jointed beam was adopted [11]. The sound radiation was calculated using the 
same hybrid method as for the wheel flats, except that a correction had to be 
introduced to allow for the pin-jointed model of the rail receptance. It was found, for 
realistic parameter values, that the gap width is insignificant compared with the step 
height and dip angle and this will not be considered further here.  

Results are shown in Figure 12(a) for un-dipped rail joints in the form of the 
total A-weighted sound power emitted by the wheel and rail during 1/8 sec. The 
results for a step-down joint are found to be virtually independent of the step height 
(only results for one value are shown) and also change very little with train speed. 
The same is found to be the case for the peak contact force [1]. However, for step-up 
joints both the peak contact force and the sound power level increase with step height 
and with train speed. The sound power level from a single joint has a speed 
dependence of around 20 log10V. 

In Figure 12(b) results are given for dipped joints with no height difference. 
Here a dip of 5 or 10 mm is considered as a quadratic function over a length of 0.5 m 
either side of the joint. A dip of 5 mm corresponds to a joint angle of 0.04 radians 
which is large although typical, a dip of 10 mm corresponds to 0.08 radians which is 
severe. The 10 mm dip produces a similar noise level to a 1 mm step-up un-dipped 
joint, although for speeds above 120 km/h the noise level from the dip joint becomes 
independent of train speed. 
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Figure 12. A-weighted sound radiated by one wheel and the associated track 

vibration during 0.125 second due to a wheel passing over (a) flat rail 
joints, − − − 1mm step-up, ⋅⋅⋅⋅⋅⋅ 2 mm step-up, ⋅ -⋅ - 3 mm step-up,  
2 mm step-down (b) dipped rail joints with no height difference,  
5 mm dip, − − − 10 mm dip (all with 7 mm gap). 

 
 

25 50 100 200 100 

105 

110 

115 

120 

125 

130 

135 

Speed (km/h) 

(a) 

S
ou

nd
 p

ow
er

 (
dB

(A
) 

re
 1

0-1
2
W

) 

140 

  

 

25 50 100 200 100 

105 

110 

115 

120 

125 

130 

135 

Speed (km/h) 

S
ou

nd
 p

ow
er

 (
dB

(A
) 

re
 1

0-1
2
W

) 

(b) 
140 

 
Figure 13. A-weighted sound power radiated by one wheel and the associated track 

vibration during 0.125 second due to a wheel passing over different rail 
joints with 7 mm gap and 5 or 10 mm dip. (a) for 5 mm dip, (b) for 10 mm 
dip.  ⋅⋅⋅⋅⋅⋅ 2 mm step-up, - - - 1 mm step-up,  no height difference, 
* 2 mm step-down, o 1 mm step-down.  

 
Figure 13 shows the predicted noise for joints with both dipped rails and steps. 

The noise radiation generally increases with speed, regardless of whether loss of 
contact occurs. For the 5 mm dip, the noise level increases by 8 dB when the step 
height increases from 0 to 2 mm. For the step-down joints, the noise level is higher 
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than without a step, although at higher speeds the dip has more effect than the step. 
The results for the 10 mm dip are similar for both step-up and step-down joints 
indicating the dominance of the dip in this case.  

These results may be compared with the rolling noise results given in Figure 11 
and are seen to be 5-20 dB greater. However, this comparison is related to the sound 
within 1/8 sec. indicating that the joint can be heard above the rolling noise. To 
evaluate their effect on the average noise level, the time base of the joint noise should 
be adjusted to the average time between joints. This shows [11] that rolling noise due 
to the moderate roughness considered above is similar to the average noise due to 
5 mm dipped joints with no height difference. With a height difference of 2 mm the 
average noise predicted from the joints increases to almost 10 dB greater than the 
rolling noise. Moreover, since the time between rail joints decreases as train speed 
increases, it is also found that the average noise level from joints increases at about 
30 log10V, similar to rolling noise. 

 
5. EFFECTS OF WHEEL MODES OF VIBRATION 

 
It is known from studies of rolling noise that the wheel modes containing a significant 
radial component of motion at the contact zone dominate the noise radiation at 
frequencies above about 1.5 to 2 kHz [13]. High frequency wheel modes have been 
neglected in calculating the interaction force in the previous sections, but have been 
accounted for in the hybrid approach used to predict the noise. To investigate the 
effect of these wheel modes, they are included in the non- linear model in this section 
for an example case. 

The radial point receptance of a wheel at the contact point can be given in terms 
of a modal summation over N modes as 

 ∑
= +−

=
N

n nnn

n
w i1

22

2

2 ωωζωω
ψ

α  (6) 

where, for the nth mode, ψ  n is the mass-normalised modeshape at the contact point, 
ω n is the natural frequency and ζ n is the damping ratio. The net downwards force 
applied to the wheel is W – F(t) where W is the static wheel load. In the time domain, 
the modal amplitude yn(t) of each mode satisfies a single degree-of-freedom equation 

 )(2 2 FWyyy nnnnnnn −=++ ψωωζ &&& ,    n = 1, 2, …, N (7) 

The wheel displacement at the contact zone is composed of a superposition of 
all the modal displacements, yn 

 ∑
=

=
N

n
nnw tytx

1

)()( ψ ,    n = 1, 2, …, N (8) 

Equation (7) can be expressed in state space form using the state variables yn 
and ny& and solved using a Runge Kutta method along with equations (1) and (5). The 
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only difficulties are that there is a considerable increase in the number of state 
variables and that the modal damping is low. 

Results are given for a single case of a 5 mm dipped joint with a 1 mm step-up, 
as in Section 4. The wheel speed is 80 km/h and the static load 100 kN. The wheel is 
represented by 12 flexible modes (radial and one-nodal circle) as well as by its mass 
(rigid-body mode). These modes are sufficient to represent the receptance in the 
radial direction for frequencies up to about 5 kHz.  
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Figure 14. Wheel/rail impact forces for a dipped rail joint at 80 km/h (a) calculated 

using a modal wheel, (b) calculated using a mass wheel. 
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Figure 15. Wheel/rail impact force spectra for a dipped rail joint at 80 km/h  

calculated using a modal wheel, - - - calculated using a mass wheel, 
corrected using hybrid approach. 
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Figure 14 shows the contact force results in the time domain for this and for a 
simple mass. The results are very similar, although with the modal wheel high 
frequency oscillations are present. Figure 15 shows the force spectra. In the case of 
the simple wheel, these have been corrected using the procedure described in Section 
3. The corresponding results show very good agreement. 

 
6. CONTACT FILTER EFFECTS 

 
The wheel/rail contact exists over an area typically 10-15 mm long. When excited by 
roughness with wavelengths shorter than this length, the excitation is attenuated 
compared with that at longer wavelengths. This effect is known as the ‘contact filter’ 
[14]. Such a filtering effect can be applied to random roughness excitation as a 
frequency-domain correction. In fact, in the analysis described in Section 2, the 
roughness spectra used to generate the inputs were already filtered. Such filters have 
been based on analytical formulae [15] or on the results of numerical simulations 
using a ‘Discrete Point Reacting Spring’ (DPRS) model with actual roughness data 
[16]. 

However, for excitation by wheel flats or rail joints a time-domain approach to 
implementing the contact filter is required. The results given in Sections 3 and 4 do 
not take any account of contact filtering. Introducing a contact filter will attenuate 
high frequency components of vibration and noise. For the above results this will lead 
to reductions in the predicted sound power above about 1 kHz at 160 km/h, 
correspondingly lower frequencies at lower speeds. 

During impact, the contact spring deflection varies considerably and 
consequently the contact patch length varies. As a result, a simple frequency domain 
filter is no longer appropriate. To overcome this a method based on a two-
dimensional version of the DPRS model has been developed. The wheel/rail contact 
is replaced by a ‘mattress’ of springs distributed over the contact zone. The stiffness 
of these springs is chosen such that together they replicate the three-dimensional 
Hertzian contact stiffness – whereas in the three-dimensional DPRS model their 
stiffness has to be non- linear this is not necessary for a two-dimensional mattress 
model. However, as in the three-dimensional DPRS model, the radii of curvature of 
the wheel and rail have to be modified to ensure the correct contact patch length is 
simulated for a given normal load. Validation of the results of this approach has been 
provided by an ‘exact’ Boussinesq model [16,17].  

Figure 16 shows some results obtained using various different contact filter 
models. The results using the DPRS model are obtained as the average of the results 
obtained using this model in combination with six different sets of wheel roughness 
data [14]. The results of the analytical contact filter, from [15], can be seen to give 
too great an attenuation at high frequencies. The two-dimensional mattress model 
gives slightly too little attenuation here but its results are quite encouraging. Such a 
simple mattress model can readily be incorporated into the simulations of impact due 
to wheel flats and rail joints although this has not yet been done. 
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Figure 16. Contact filter effect, - - - analytical model α = 1, ⋅ -⋅ - analytical model 

α = 2, ⋅⋅⋅⋅⋅⋅ results from 2D mattress model for six sets of wheel roughness 
data,   average 2D result,  average result from 3D DPRS model. 

 
7. CONCLUDING REMARKS 

 
This paper has reviewed recent work on the effect of non- linearities in the contact 
zone on the excitation of wheel/rail noise. It has been shown that, for rolling noise 
due to roughness excitation, non- linearities play a negligible role, whereas for 
discrete discontinuities such as wheel flats and rail joints, the effects of non-linearities 
should be taken into account. A hybrid approach has been developed allowing the 
non- linear wheel/rail interaction to be calculated using simple but representative 
wheel and track models and converting the results back to an equivalent roughness 
that can be used with a linear frequency-domain model to predict noise. 

A 1/5 scale model rig has been used for experimental validation of the results of 
impact noise generation. Tests have been carried out using a simulated wheel flat (in 
the rail head), dipped joint s and stepped joints as well as a relatively smooth rail. A 
range of preloads and wheel speeds have been used. Initial results are promising, 
although analysis has not yet been completed [18]. 

A number of other aspects of wheel/rail interaction have been studied and will 
be mentioned only briefly to conclude. The modelling described here has been based 
on interaction in only the vertical direction. Inclusion of the lateral coordinate as well 
has been considered in [19]. For this the track had to be represented by a similar 
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model to that given by equation (4) for both the lateral and cross receptances using 
higher order polynomials. The wheel and rail are coupled in the lateral direction by a 
creep force which is sensitive to the normal load, so that if loss of contact occurs this 
force also becomes zero. The vertical interaction is found to be largely unaffected by 
the addition of lateral coupling, although the lateral response is only correctly 
predicted when the lateral coupling is included. 

Roughness growth on the wheel and rail surface is affected by wheel/rail 
dynamics as well as wear phenomena. It has been found that rail roughness growth is 
influenced by the presence of multiple wheels on the rail [20,21]. Waves in the rail 
are reflected by neighbouring wheels, leading to fluctuations with frequency in the 
point receptance of the track and, as a result, the contact force. These lead to 
roughness growth at frequencies associated with peaks in the contact force that have a 
particular phase angle relative to the roughness excitation [21]. 

For a discretely supported track, the time-varying dynamic stiffness that is 
experienced by the wheel can induce parametric excitation. It has been possible to use 
a track model similar to that of equations (4,5) but with time-varying coefficients to 
estimate the effect of parametric excitation [22]. For this, a discretely supported track 
had to be used as the basis for choosing the constants ai and bj, and an eighth order 
model was used in place of the fourth order one presented in Section 2. This study has 
shown that, while the re is a large component at the sleeper-passing frequency and its 
first few harmonics, the amplitude at higher frequencies is generally less than that due 
to roughness excitation. Nevertheless, if roughness can be reduced, parametric 
excitation will present a lower limit to the noise that is produced by the wheel/rail 
system, which can only be overcome by using a continuous track support. 
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