(al) t -ty = -0.71 ms (a2) t - tyy = 0.02 ms Logo[ p (g/cm’) ]
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VACUUM VS MATTER

e Scale (Planck length vs particle and
turbulence lengths). Inherent

approximations (EQOS, interactions, ..

e Range of models considered (GR vs

(M)HD, non-ideal, vs, multifluids, ...).

Parameter extraction harder.

e Form of solutions (C*® or C* vs CY).

Restricts useful numerical methods.
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CONSERVATION

EFEs imply V,T* = 0. Pick a tetrad, e(’) to get

Vv, [el(j)Tab] _ % ) (\/—geg)Tab) _Tabvaeb
— 0,q + 0, (q) = s.

Balance law form. Only four equations: need other constituitive equations for,
eg, EM, particle number, etc.



KEY TAKEAWAY

Need numerical methods for

e complex, interlinked models

e some described by balance laws

e may have non-conserved constituents

e small (unresolved) scale effects through closure relations.



SHOCK FORMATION

Advection equation
0;q + 0,(vg) = 0.

Information moves right, speed v.

Burgers equation
0,9 + 30.q" = 0.

Information moves right, speed g.
Shocks form.
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SHOCKS AND UNIQUENESS

Shock speed V; from Rankine-Hugoniot, V, [g] = [f]. Burgers equation
0:q + q0,q = 0
IS equivalent to any of

atqn 4+ n an+1 — O,

n+1

but they all have different shock speeds. Total derivative form crucial:
otherwise need more information to fix solution.



WEAK FORMS

Move the derivatives off the fields using C* test function ¢:

/¢0tq+jlé gbf—/f-ng=/¢s.
V oV V V

e Split domain into volumes/elements/cells.
e Approximate fields, including ¢, leads to method.
e Surface integral couples neighbours; other terms local.



Newtonian:

SR:

EULER EQUATIONS

P PV
ol pv |+0:| po* +p | =0.
E (£ + p)v



GR EULER EQUATIONS
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0
> = \/8[ I (aﬂgl/j - F/zjj) ]
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WEAK FORMS

Move the derivatives off the fields using C* test function ¢:

/¢0tq+jlé gbf—/f-ng=/¢s.
V oV V V

e Split domain into volumes/elements/cells.
e Approximate fields, including ¢, leads to method.
e Surface integral couples neighbours; other terms local.



FINITE VOLUME METHODS

Spatially constant g ~ g,(¢) within cell:
LG+ @ f@=5@) =  $q+ 4 |firr—ficin] =0
adi Ty - q qi w49 T A Vi+12 — Ji-122 :

On dV, g is multi-valued: solve Riemann Problem to get unique g.



RECONSTRUCTION

Go from &i to g(xi+1/2).

e Piecewise constant is stable at shocks.

e Higher order leads to Gibbs' oscillations.
e Need limiting.

e WENO: expensive but accurate.



RIEMANN SOLVER

Go from two values for g;_1» to fi_1». Example (Rusanov):

1 A
| = 2(fL + fr + A);(QL —QR))-

e Full solution of Riemann problem expensive, not always available.
e Need care when phase transitions happen.
e Typically get more accuracy gain from reconstruction.



DISCONTINUOUS GALERKIN

Full function basis expansion: ¢ = ), g,,Pm(x). Plugin:

/ PouPodh 01, + ;é PoPrh . — / Pof b, VP, = / PoPah s
V oV V V

Simplifies to
Mo, G+ S'f(Q) = —[pFL17.

e More accurate.
e L ess communication - exascale!
¢ |ssues with shocks.



GRIDDING

Adaptive Mesh Refinement

e Cuts resource massively. x
e Builds on standard code.
e Communication and complexity issues.

Multi-patch and spherical coordinates :
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e Cuts resolution requirements, improves accuracy.
e Coordinate and complexity issues.
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CONSTRAINTS

MHD has no monopoles: require
V-B=0.

Enforces numerically through

e Constrained transport;
e Changing variables (vector potential);
e Constraint damping.



GOING FURTHER

e Well balanced

e Positivity preserving

e Adaptivity (h/p, adaptive model)
e Path conservative schemes.



