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3+1 split, gauge, and constraints
Well-posedness
Specific formulations

Overview

e 10 Einstein equations G, = 87 T,,: second-order nonlinear
PDEs for 10 metric coefficients g,

e Gauge freedom: 4 functions of 4 variables x* — X*(x")

@ Why 2 polarisations of gravitational waves? Why wave
equations?

@ Initial data and their time evolution?

@ Well-posed PDE problems?

e Notation (Wald): V2 an abstract vector, V# its components
in coordinates x* := (t,x"), i =1,2,3
a ~ b means “something like"
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Time slices and their normal vector n?

Time slice t = const has 3 tangent vectors 9/0x’
Vector n normal to time slice is defined by

a
<8(?<"> ng:=0 = n=0

A vector X? is purely spatial if X?n, = 0, hence if X% = 0.
Recall /0t means “change t, keep x' constant”

8 a
<8t> = an® + b, mb?:=0 = =0

n? is defined to be future-pointing and unit length

a a
nan®=-1 = (81‘) n,=ng=—au
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Lapse and shift

e Starting from a point coordinates (t, x’), the geometrical
location of the point with coordinates (t + At,x') is
determined by the lapse « and shift vector b’

@ Vice versa, starting from an initial slice t = 0 with coordinates
x', the coordinate system on spacetime is constructed along
with the spacetime by choosing a and b’
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The spatial metric as a projection operator

@ The 3-metric h,p, of a slice of constant t can be defined
geometrically in terms of n? and the spacetime metric g,p:

hab i= Gab +nanp = hapn® =0,  hPhp¢ = h,°

@ Hence habX"” = gabXa = X" for spatial vectors, and so we
can raise and lower indices for spatial vectors with h,p

@ We have
habnb -0 = hOi — hiO — hOO -0

and so we define v/ := h, then ; as the matrix inverse of
7
@ Recall b% = 0 and we define 8 := b’ and then j3; := fy,J,BJ
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3+1 split of the 4-dimensional metric

We now have all the definitions to calculate
goo = —o?+ Bif, goi=Bi, & ="
or in line element form
ds®> = —a? dt? 4 ;(dx’ + ' dt)(dx’ + B dt)
The inverse spacetime metric is
g0 = —a2 gV — o723 gl =i o281

Exercises: Check this against our definitions. Check
gug’ =6, . Calculate hy,, B, h”, n", b,, X,.
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The extrinsic curvature

e We could write the wave equation (in Minkowski spacetime)
@1t = A¢ in first-order in time form as

d),t =: 1, n,t =A¢

@ The GR equivalent of ¢ is the 3-metric ;;
@ The equivalent of I1 is the extrinsic curvature Kj;
Geometric definition (there are two conventions for the sign):
2Kap = Lnhap = Kab = haVenp,  Kop = Kpay  Kapn® =0,
(exercise) so K, is a symmetric spatial tensor like hyp
@ In synchronous gauge ao = 1, 8’ = 0 where n? = (9/0t)?
2Ky = L o 7ij = 7ij,t
@ In general gauge (exercise)

Vit = 20K + BXii i + v B* j + v B~ i
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3+1 split of the Einstein equations

Split the Einstein equations E,p := G,p — 87 T,p into
e time part £%° (Hamiltonian constraint) (K := K;')

H:=CR + K- K;Ki —16mp=0
o mixed part E;° (momentum constraints)
M':= D;KY — D'K — 8mj' = 0
@ spatial part Ej; (evolution equations)
L,Kj = —a 'DiDja + PRy + KK — 2K K;* + matter
@ Definition of Kj; was
Lyvii = 2Kj;

@ No time derivatives of « and 3" appear anywhere
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Formulations of the Einstein equations

@ The 6 + 6 variables (v;;, Kjj) obey 4 constraints that need to
be solved for the initial data, given suitable free data

@ The constraints are propagated by the evolution equations
H~M M~ H,;
e We need to give four gauge conditions (algebraic, evolution,
or elliptic equations) for « and /'
@ We can add constraints to the evolution equations

@ The resulting evolution equations need to be well-posed

@ ...even when the constraints are violated (because of
numerical error)

@ ldeally, the constraints should decay in time
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Solving the constraints

e Parameterize 6+6 (v;;, Kjj) at t =0 as

Vi = Y
K; = A,-J-+%WK, Al =0

AV = AL+ A]), DAL =0
Al = E"WerDfW"—%f“y"kaW"

where D;ﬁ;j =0
e Free data (&U,Z\"J%T) (543 components)
@ 4 coupled nonlinear elliptic equations for (¢, W')
@ Simple cases: conformally flat initial data 4;; = d;;, and/or

time-symmetric initial data Kj; = 0
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Counting degrees of freedom

Initial data: 646 (gjj, Kjj) - 4 Einstein constraints (H, M)

=543 (AT, %)

@ But we can still change the 3 spatial coordinates without
changing the initial data

@ And we can push the initial data slice backwards and forwards

in the spacetime it defines, separately at each point

8 (Z\,JT.T,%) -4 (At,Ax") = 4 (hy, hy, hy, hy)
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Well-posedness of time evolution problems

@ Solution exists and is unique
@ Solution u(x, t) depends continuously on the initial data
u(x,0) (and boundary data) in suitable function norms

[[0u(-, t)[] < £(2)[|0u(-, 0)]|

where f(t) does not depend on u(x,0)
@ Otherwise numerics do not converge with resolution
@ Simple example: the flat space linear wave equation

Qb,t =: 1, n,t:A¢

with (I, ¢) = 0 at infinity (Cauchy problem) is well-posed in
the energy norm

(M), 0l = [ [P+ (T0] o

because ||du(-, t)|| = ||0u(-,0)|| (exercise)

C. Gundlach Numerical relativity 12 /23



3+1 split, gauge, and constraints
Well-posedness
Specific formulations

Testing well-posedness

e Consider first-order systems for u(x, t)
u;= Pi(u, x, t)u; + S(u,x, t)

@ Linearise about a reference solution ug by setting
u = ug + d0u, then “freeze” coefficients

Sus = P'du; + Qdu

where P’ and @ are now constant square matrices
@ This tests the high frequency, small amplitude limit

@ This is the regime that potentially goes wrong: higher spatial
frequencies grow faster

@ Only the principal part P’ matters for well-posedness
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Strong hyperbolicity in 1D

@ Single first-order linear PDE with constant coefficients in 1D
ur+Aux =0, u(x,0)=Ff(x) = u(x,t)="Ff(x—At)
@ System of such PDEs
u:+ Pu, =0, u(x,0)="F(x)

e Strong hyperbolicity in 1D: P has a complete set of real
eigenvectors with real eigenvalues < it can be diagonalised
P = RAR™! where the columns of R are the eigenvectors

@ Vector of characteristic variables U := R~1u
U:+AU,=0

@ Each characteristic variable propagates at its own speed A
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Strong hyperbolicity in 3D

@ Now consider linear system in 3D with constant coefficients
u;+Pu;=0, ux0)="Ff(x)
e Strong hyperbolicity: (1) P'n; has a complete set of real
eigenvectors with real eigenvalues for all directions n;
(2) R and A depend smoothly on n;

e Formal solution (exercise): Fourier transform in space, split
into characteristic variables, evolve, put back together

1 ; : e
()= o / ik (R(k)e'Mk)fR(k)l / e~ f(x)) d3x’> ey
i
@ Hence Cauchy problem well-posed in L? norm \/ [ u?d3x

@ Much harder: proof that the linear system with variable
coefficients is well-posed (for some short finite time), and then
the full nonlinear system
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Symmetric hyperbolicity

Consider again a linear(ised) system with constant (frozen)
coefficients, and neglect non-principal part

u;+ P"u7; =0
Symmetric hyperbolicity: There is a Hermitian matrix H

such that HP'n; is Hermitian for all directions n;, with H
independent of n;

dt

The energy [(u'Hu) d®x is locally conserved (exercise) in the
small amplitude, high frequency limit (and can be bounded in
the nonlinear problem)

3 class of boundary conditions (maximally dissipative BCs)
such that the initial-boundary value problem is wellposed
Symmetric hyperbolicity = strong hyperbolicity
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General considerations

@ The Einstein equations written in terms of the metric are
second-order in space and time

@ Reducing to first order in time as in v;j : ~ Kjj, Kij.t ~ 00vk
makes no difference to well-posedness

@ Reducing to first order in space as in djj := 7;j x introduces
additional constraints, and sources of numerical error

@ Necessary and sufficient criteria for strong and symmetric
hyperbolicity exist for general first-order in time, second-order
in space systems

@ Hyperbolic systems coupled to elliptic or parabolic equations
through non-principal terms are also well-posed
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Partly the same slide as earlier

@ We need to give four gauge conditions (algebraic, evolution,
or elliptic equations) for « and g’

We can introduce new variables
We can add constraints to the evolution equations

The resulting evolution equations need to be well-posed

...even when the constraints are violated (because of
numerical error)

@ The (formal) constraint evolution system should also be
well-posed (constraint-preserving boundary conditions if
possible)

@ Free versus constrained evolution

@ ldeally, the constraints should decay in time
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Generalized harmonic gauge formulation

@ Leading order of the vacuum Einstein equation

1

R,uzl =—%8

aB
28" (

8uv,af + 8aBuw — 2ga(#’,,)ﬁ) + lower order = 0

Impose gauge condition C* := Ox* — H¥(x, g,3) =0
Oxk = (\/jggaﬁ (x*) a) - L (\/fgg“ﬁ )
vV—g /B Vg ,

Einstein equations in GH gauge (exercise)

B

1
Ruv + Clppy = —Ego‘ﬁgw,aﬁ — H(u,v) + lower order = 0

Solve Einstein constraints for initial data in usual 3+1 form

But then evolve all 10 g, directly with [g,,,, ~ 0
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Z4 formulation

@ Add 4 new variables Z,. Instead of R,, = 0 solve
Rap +VaZp+VpZs =0

@ The time derivatives of the new variables are essentially the
Einstein constraints

Z,~E,:=(H,M)

Setting Z, = 0 and E, = 0 in the initial data we obtain a
solution of R,, = 0, but the new system is strongly hyperbolic
in a family of useful gauges

e Modifying further

Rab + VaZp + VpZa — (talp + thZc — gabt“Zc) = 0
we get constraint damping
Z,~E,—r2Z,
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BSSN formulation and some popular gauges

@ Split conformal factor from ~j; and trace from Kj;
o Add 3 new variables [; := 3743
@ Further modifications to lower-order terms
@ Strongly or symmetric hyperbolic in suitable gauges
e Harmonic slicing Ki' = 0 = Aa ~ a(R + K;KY)
o “I+log slicing” & ~ f(a)K
o Zero shift g’ =0 B
o “I'-driver” shift 87 ~ T’
@ Initial data for two black holes can be “puncture data” where
i ~ (M/r)d
@ By contrast Z4 and harmonic gauge need black hole excision
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Polar-radial coordinates in spherical symmetry

@ Make the coordinate r the “area radius”, meaning that the
area of the 2-spheres t = r = const is 4w r?

@ Choose t normal to r in the sense V,tV3r = gt =0
ds? = —a(t, r)? dt®> + a(t, r)? dr® + r? (d92 +sin? @ dg02)

@ The Hamiltonian constraint becomes an ODE for a(r) at each
moment t

@ The polar slicing condition becomes a linear ODE for a(r) at
each moment t

@ Example of “maximally constrained evolution”

@ In 3D, only “free evolution” is common
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Null coordinates

@ Surfaces of constant coordinate u are null
gV, uVu =g" =0

@ V?:=V?uis null and obeys VaVaVb = 0, so u-surfaces are
ruled by null geodesics with tangent vector V?
@ Coordinate choices

e double null (u, v, 8, ) where g = g"¥ =0
e Bondi (u,r,0,¢) where r is an area radius
o affine (u, A\, 0, ) where A is an affine parameter along V?

@ Constraints on constant u “time” slices can be solved by
integration outwards (including the initial data v = 0)

@ Another example of maximally constrained evolution

@ Problems when light rays cross
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