
3+1 split, gauge, and constraints
Well-posedness

Specific formulations

Formulations of the Einstein equations for
spacetime evolutions

Carsten Gundlach

Mathematical Sciences
University of Southampton

Relativistic Fluid Dynamics, Southampton, 17 July 2019

C. Gundlach Numerical relativity 1 / 23



3+1 split, gauge, and constraints
Well-posedness

Specific formulations

Overview

10 Einstein equations Gµν = 8πTµν : second-order nonlinear
PDEs for 10 metric coefficients gµν

Gauge freedom: 4 functions of 4 variables xµ → x̃µ(xν)

Why 2 polarisations of gravitational waves? Why wave
equations?

Initial data and their time evolution?

Well-posed PDE problems?

Notation (Wald): V a an abstract vector, V µ its components
in coordinates xµ := (t, x i ), i = 1, 2, 3
a ∼ b means “something like”
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Time slices and their normal vector na

Time slice t = const has 3 tangent vectors ∂/∂x i

Vector na normal to time slice is defined by(
∂

∂x i

)a

na := 0 ⇒ ni = 0

A vector X a is purely spatial if X ana = 0, hence if X 0 = 0.

Recall ∂/∂t means “change t, keep x i constant”(
∂

∂t

)a

= αna + ba, nab
a := 0 ⇒ b0 = 0

na is defined to be future-pointing and unit length

nan
a := −1 ⇒

(
∂

∂t

)a

na = n0 = −α
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Lapse and shift

Starting from a point coordinates (t, x i ), the geometrical
location of the point with coordinates (t + ∆t, x i ) is
determined by the lapse α and shift vector bi

Vice versa, starting from an initial slice t = 0 with coordinates
x i , the coordinate system on spacetime is constructed along
with the spacetime by choosing α and bi
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The spatial metric as a projection operator

The 3-metric hab of a slice of constant t can be defined
geometrically in terms of na and the spacetime metric gab:

hab := gab + nanb ⇒ habn
b = 0, ha

bhb
c = ha

c

Hence ha
bX a = ga

bX a = X b for spatial vectors, and so we
can raise and lower indices for spatial vectors with hab

We have

habnb = 0 ⇒ h0i = hi0 = h00 = 0

and so we define γ ij := hij , then γij as the matrix inverse of
γ ij .

Recall b0 = 0 and we define βi := bi and then βi := γijβ
j .
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3+1 split of the 4-dimensional metric

We now have all the definitions to calculate

g00 = −α2 + βiβ
i , g0i = βi , gij = γij

or in line element form

ds2 = −α2 dt2 + γij(dx
i + βi dt)(dx j + βj dt)

The inverse spacetime metric is

g00 = −α−2, g0i = α−2βi , g ij = γ ij − α−2βiβj

Exercises: Check this against our definitions. Check
gµνg

νλ = δµ
λ. Calculate hµν , hµν , hµ

ν , nµ, bµ, Xµ.
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The extrinsic curvature

We could write the wave equation (in Minkowski spacetime)
φ,tt = ∆φ in first-order in time form as

φ,t =: Π, Π,t = ∆φ

The GR equivalent of φ is the 3-metric γij
The equivalent of Π is the extrinsic curvature Kij

Geometric definition (there are two conventions for the sign):

2Kab := Lnhab ⇒ Kab = ha
c∇cnb, Kab = Kba, Kabn

b = 0,

(exercise) so Kab is a symmetric spatial tensor like hab
In synchronous gauge α = 1, βi = 0 where na = (∂/∂t)a

2Kij = L ∂
∂t
γij = γij ,t

In general gauge (exercise)

γij ,t = 2αKij + βkγij ,k + γikβ
k
,j + γjkβ

k
,i
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3+1 split of the Einstein equations

Split the Einstein equations Eab := Gab − 8πTab into

time part E 00 (Hamiltonian constraint) (K := Ki
i )

H := (3)R i
i + K − KijK

ij − 16πρ = 0

mixed part Ei
0 (momentum constraints)

M i := DjK
ij − D iK − 8πj i = 0

spatial part Eij (evolution equations)

LnKij = −α−1DiDjα + (3)Rij + KKij − 2KikKj
k + matter

Definition of Kij was

Lnγij = 2Kij

No time derivatives of α and βi appear anywhere
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Formulations of the Einstein equations

The 6 + 6 variables (γij ,Kij) obey 4 constraints that need to
be solved for the initial data, given suitable free data

The constraints are propagated by the evolution equations

Ḣ ∼ M i
,i , Ṁi ∼ H,i

We need to give four gauge conditions (algebraic, evolution,
or elliptic equations) for α and βi

We can add constraints to the evolution equations

The resulting evolution equations need to be well-posed

...even when the constraints are violated (because of
numerical error)

Ideally, the constraints should decay in time
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Solving the constraints

Parameterize 6+6 (γij ,Kij) at t = 0 as

γij = ψ4γ̃ij

Kij = Aij +
1

3
γijK , Ai

i = 0

Aij = ψ−10(Ãij
TT + Ãij

L), D̃j Ã
ij
TT = 0

Ãij
L = D̃ iW j + D̃ jW i − 2

3
γ̃ ij D̃kW

k

where D̃k γ̃ij := 0

Free data (γ̃ij , Ã
ij
TT ) (5+3 components)

4 coupled nonlinear elliptic equations for (ψ,W i )

Simple cases: conformally flat initial data γ̃ij = δij , and/or
time-symmetric initial data Kij = 0
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Counting degrees of freedom

Initial data: 6+6 (gij ,Kij) - 4 Einstein constraints (H,Mi )
= 5+3 (ÃTT

ij , γ̃ij)

But we can still change the 3 spatial coordinates without
changing the initial data

And we can push the initial data slice backwards and forwards
in the spacetime it defines, separately at each point

8 (ÃTT
ij , γ̃ij) - 4 (∆t,∆x i ) = 4 (h+, h×, ḣ+, ḣ×)
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Well-posedness of time evolution problems

Solution exists and is unique
Solution u(x, t) depends continuously on the initial data
u(x, 0) (and boundary data) in suitable function norms

||δu(·, t)|| ≤ f (t) ||δu(·, 0)||
where f (t) does not depend on u(x, 0)
Otherwise numerics do not converge with resolution
Simple example: the flat space linear wave equation

φ,t =: Π, Π,t = ∆φ

with (Π, φ) = 0 at infinity (Cauchy problem) is well-posed in
the energy norm

||(Π, φ)(·, t)||2 :=

∫ [
Π2 + (∇φ)2

]
d3x

because ||δu(·, t)|| = ||δu(·, 0)|| (exercise)
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Testing well-posedness

Consider first-order systems for u(x, t)

u,t = P i (u, x, t)u,i + S(u, x, t)

Linearise about a reference solution u0 by setting
u = u0 + δu, then “freeze” coefficients

δu,t = P iδu,i + Qδu

where P i and Q are now constant square matrices

This tests the high frequency, small amplitude limit

This is the regime that potentially goes wrong: higher spatial
frequencies grow faster

Only the principal part P i matters for well-posedness
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Strong hyperbolicity in 1D

Single first-order linear PDE with constant coefficients in 1D

u,t + λu,x = 0, u(x , 0) = f (x) ⇒ u(x , t) = f (x − λt)

System of such PDEs

u,t + Pu,x = 0, u(x , 0) = f(x)

Strong hyperbolicity in 1D: P has a complete set of real
eigenvectors with real eigenvalues ⇔ it can be diagonalised
P = RΛR−1 where the columns of R are the eigenvectors

Vector of characteristic variables U := R−1u

U,t + ΛU,x = 0

Each characteristic variable propagates at its own speed λ
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Strong hyperbolicity in 3D

Now consider linear system in 3D with constant coefficients

u,t + P iu,i = 0, u(x, 0) = f(x)

Strong hyperbolicity: (1) P ini has a complete set of real
eigenvectors with real eigenvalues for all directions ni
(2) R and Λ depend smoothly on ni
Formal solution (exercise): Fourier transform in space, split
into characteristic variables, evolve, put back together

u(x, t) =
1

2π

∫
e ikx

(
R(k)e−iΛ(k)tR(k)−1

∫
e−ikx

′
f(x′) d3x ′

)
d3k

Hence Cauchy problem well-posed in L2 norm
√∫

u2 d3x

Much harder: proof that the linear system with variable
coefficients is well-posed (for some short finite time), and then
the full nonlinear system

C. Gundlach Numerical relativity 15 / 23



3+1 split, gauge, and constraints
Well-posedness

Specific formulations

Symmetric hyperbolicity

Consider again a linear(ised) system with constant (frozen)
coefficients, and neglect non-principal part

u,t + P iu,i = 0

Symmetric hyperbolicity: There is a Hermitian matrix H
such that HP ini is Hermitian for all directions ni , with H
independent of ni

(u†Hu),t+(u†HP iu),i = 0 ⇒ d

dt

∫
(u†Hu) d3x = boundary

The energy
∫

(u†Hu) d3x is locally conserved (exercise) in the
small amplitude, high frequency limit (and can be bounded in
the nonlinear problem)
∃ class of boundary conditions (maximally dissipative BCs)
such that the initial-boundary value problem is wellposed
Symmetric hyperbolicity ⇒ strong hyperbolicity
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General considerations

The Einstein equations written in terms of the metric are
second-order in space and time

Reducing to first order in time as in γij ,t ∼ Kij , Kij ,t ∼ ∂∂γkl
makes no difference to well-posedness

Reducing to first order in space as in dijk := γij ,k introduces
additional constraints, and sources of numerical error

Necessary and sufficient criteria for strong and symmetric
hyperbolicity exist for general first-order in time, second-order
in space systems

Hyperbolic systems coupled to elliptic or parabolic equations
through non-principal terms are also well-posed
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Partly the same slide as earlier

We need to give four gauge conditions (algebraic, evolution,
or elliptic equations) for α and βi

We can introduce new variables

We can add constraints to the evolution equations

The resulting evolution equations need to be well-posed

...even when the constraints are violated (because of
numerical error)

The (formal) constraint evolution system should also be
well-posed (constraint-preserving boundary conditions if
possible)

Free versus constrained evolution

Ideally, the constraints should decay in time

C. Gundlach Numerical relativity 18 / 23



3+1 split, gauge, and constraints
Well-posedness

Specific formulations

Generalized harmonic gauge formulation

Leading order of the vacuum Einstein equation

Rµν = −1

2
gαβ

(
gµν,αβ + gαβ,µν − 2gα(µ,ν)β

)
+ lower order = 0

Impose gauge condition Cµ := �xµ − Hµ(x, gαβ) = 0

�xµ =
1√
−g

(√
−ggαβ(xµ),α

)
,β

=
1√
−g

(√
−ggµβ

)
,β

Einstein equations in GH gauge (exercise)

Rµν + C(µ,ν) = −1

2
gαβgµν,αβ − H(µ,ν) + lower order = 0

Solve Einstein constraints for initial data in usual 3+1 form

But then evolve all 10 gµν directly with �gµν ∼ 0
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Z4 formulation

Add 4 new variables Zµ. Instead of Rab = 0 solve

Rab +∇aZb +∇bZa = 0

The time derivatives of the new variables are essentially the
Einstein constraints

Żµ ∼ Eµ := (H,Mi )

Setting Zµ = 0 and Eµ = 0 in the initial data we obtain a
solution of Rab = 0, but the new system is strongly hyperbolic
in a family of useful gauges
Modifying further

Rab +∇aZb +∇bZa − κ(taZb + tbZc − gabt
cZc) = 0

we get constraint damping

Żµ ∼ Eµ − κZµ
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BSSN formulation and some popular gauges

Split conformal factor from γij and trace from Kij

Add 3 new variables Γ̃i := γ̃jk γ̃ij ,k

Further modifications to lower-order terms

Strongly or symmetric hyperbolic in suitable gauges

Harmonic slicing Ki
i = 0⇒ ∆α ∼ α(R + KijK

ij)
“1+log slicing” α̇ ∼ f (α)K
Zero shift βi = 0
“Γ-driver” shift β̇i ∼ Γ̃i

Initial data for two black holes can be “puncture data” where
γij ∼ (M/r)δij

By contrast Z4 and harmonic gauge need black hole excision
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Polar-radial coordinates in spherical symmetry

Make the coordinate r the “area radius”, meaning that the
area of the 2-spheres t = r = const is 4πr2

Choose t normal to r in the sense ∇at∇ar = g tr = 0

ds2 = −α(t, r)2 dt2 + a(t, r)2 dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
The Hamiltonian constraint becomes an ODE for a(r) at each
moment t

The polar slicing condition becomes a linear ODE for α(r) at
each moment t

Example of “maximally constrained evolution”

In 3D, only “free evolution” is common
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Null coordinates

Surfaces of constant coordinate u are null

gab∇au∇bu = guu = 0

V a := ∇au is null and obeys V a∇aV
b = 0, so u-surfaces are

ruled by null geodesics with tangent vector V a

Coordinate choices

double null (u, v , θ, ϕ) where guu = g vv = 0
Bondi (u, r , θ, ϕ) where r is an area radius
affine (u, λ, θ, ϕ) where λ is an affine parameter along V a

Constraints on constant u “time” slices can be solved by
integration outwards (including the initial data u = 0)

Another example of maximally constrained evolution

Problems when light rays cross
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